
Applied Analysis and Optimization Yokohama Publishers

Copyright 2024C
ISSN 2189-1664 Online Journal  



128 H. SU, L. HUANG, X. OU, AND J. CHEN

and Peng [21] discussed the relationship among the four types of stationary points
and provided the optimality conditions for group sparse optimization problems.
Although group sparse optimization has made some progress so far, most of them
are aimed at single objective problems. A lot of practical problems usually involve
multiple objectives, such as signal recovery and compressed sensing. Such problems
can be summarized as group sparse multiobjective optimization problems. As far as
we know, there is little results on group sparse multiobjective optimization problems.

Motivated by the above works, we are interested in optimality conditions for
group sparse multiobjective optimization problems (shortly, GSMOP) with non-
diffierentiable objective functions. This paper is organized as follows. In Section 2,
we introduce the optimization model and recall some basic notions, definitions and
preliminary results used in this paper. In Section 3, we provide some characteriza-
tions of (inner) outer second order tangent set of group sparse set and its secondary
tangent cone, and establish the relations between secondary tangent cone and (in-
ner) outer second order tangent set. In addition, some characterizations of group
sparse set are derived. In Section 4, we discuss the relationships among stationary
points and obtain the first-order optimality conditions of GSMOP by stationary
points. Section 5 is devoted to the study the second-order necessary and sufficient
optimality conditions by using the second-order tangent set and Dini directional
derivatives.

2. Preliminaries

In this section, we recall some notations and preliminaries. Throughout this
paper, let Rm be the m-dimensional Euclidean space with the usual Euclidean
norm ∥ · ∥ and the inner product ⟨·, ·⟩, here ⟨x, y⟩ :=

∑m
i=1 xiyi for any x, y ∈ Rm.

The nonnegative orthant of Rm is denoted by Rm
+ , i.e., Rm

+ := {(x1, . . . , xm) ∈ Rm :
xi ≥ 0, i = 1, . . . ,m}. Set ϵ := {1, 1, . . . , 1} ∈ Rm and Λ+ := {ζ ∈ Rm

+ : ⟨ζ, ϵ⟩ = 1}.
It is easy to see that Λ+ is a base of Rm

+ .
Now, we consider the following group sparsity multiobjective optimization prob-

lem (GSMOP):

minf(x) := (f1(x), f2(x), . . . , fm(x))⊤

s.t. ∥x∥2,0 ≤ k, x ∈ Rn,

where fi : Rn −→ R, i = 1, 2, . . . ,m are locally Lipschitz continuous functions,
∥x∥2,0 := |{i ∈ {1, 2, . . . , p} : ∥xi∥ ̸= 0}| counts the number of non-zero groups in x,

and x ∈ Rn is denoted by x = (x⊤1 , x
⊤
2 , . . . , x

⊤
p )

⊤ with xi := (xi,1, xi,2, . . . , xi,ni)
⊤ ∈

Rni , i = 1, 2, . . . , p and Σp
i=1ni = n. The group sparse feasible set of GSMOP

is denoted by S := {x ∈ Rn : ∥x∥2,0 ≤ k}, where k is a positive integer with
k ≤ p ≤ n.

Let I ⊆ {1, 2, . . . , p}, H := {I : |I| = k}, eij , i = 1, 2, . . . , p, j = 1, 2, . . . , ni denote
the m-dimensional vector in which the j-th entry in i-th group is one and the other
are all zeros, and the subspace spanned by {eij : i ∈ I, j = 1, 2, . . . , ni} is denoted
by Rn

I := span{eij : i ∈ I, j = 1, 2, . . . , ni}. It is clear that the set S can be written
as

S =
∪
I∈H

Rn
I .
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We denote by Γ(x) := {i ∈ {1, 2, . . . , p} : ∥xi∥ ̸= 0} the group sparsity support set
of x ∈ Rn. Furthermore, set H(x∗) := {I ⊆ H : Γ(x∗) ⊆ I}.

Next, we recall some basic definitions and results which will be used later.

Definition 2.1. x̂ ∈ S is called a local Pareto efficient solution of GSMOP if, there
exists a neighborhood U of x̂ such that

(2.1) f(x)− f(x̂) /∈ Rm
+ \ {0}, ∀x ∈ S ∩U.

x̂ ∈ S is also called a Pareto efficient solution of GSMOP if (2.1) holds when U = Rn.

Definition 2.2. x̂ ∈ S is called a local weakly Pareto efficient solution of GSMOP
if, there exists a neighborhood U of x̂ such that

(2.2) f(x)− f(x̂) /∈ Rm
++, ∀x ∈ S ∩U.

where Rm
++ := {x ∈ Rm : xi > 0, i = 1, 2, . . . ,m}.

x̂ ∈ S is also called a weakly Pareto efficient solution of GSMOP if (2.2) holds
when U = Rn.

It is easy to see that if x̂ ∈ S is a (local) Pareto efficient solution of GSMOP,
then x̂ ∈ S is a (local) weakly Pareto efficient solution of GSMOP.

Definition 2.3. For a function f : Rn −→ Rm and x ∈ Rn, the set

Sf (x
∗) = {x ∈ S : f(x)− f(x∗) ∈ −Rm

+}

is called the level set of f restricted in the set S.

Definition 2.4 ([8]). Let g : Rn −→ R be a locally Lipschitz function. The Clarke
subdifferential of g at x ∈ Rn is defined as

∂cg(x) = {ξ ∈ Rn : ⟨ξ, v⟩ ≤ g0(x; v), ∀ v ∈ Rn},

where g0(x; v) = lim sup
y−→x,t↘0

g(y+tv)−g(y)
t is the Clarke directional derivative of g at x

in the direction v.

Definition 2.5 ([7]). The Clarke subdifferential of f : Rn −→ Rm at x ∈ Rn is
defined as

∂cf(x) = {(ξ1, ξ2, . . . , ξm)⊤ : ξi ∈ ∂cfi(x), i = 1, 2, . . . ,m},

where ∂cfi(x) is the Clarke subdifferential of fi : Rn −→ R at x ∈ Rn.

Definition 2.6 ( [1]). A locally Lipschitz function g : Rn −→ R is said to be
∂c-pseudoconvex at x̂ ∈ A ⊆ Rn if, for any x ∈ A and x ̸= x̂,

g(x) < g(x̂) =⇒ ⟨ξ, x− x̂⟩ < 0 ∀ ξ ∈ ∂cg(x̂).

Definition 2.7. A function f : Rn −→ Rm is said to be ∂c-pseudoconvex at x̂ ∈
A ⊆ Rn if, fi, i = 1, 2, . . . ,m are ∂c-pseudoconvex at x̂.

Remark 2.1. Clearly, it is obvious that f : Rn −→ Rm is ∂c-pseudoconvex on x̂ if
and only if λ⊤f is ∂c-pseudoconvex on x̂ for all λ ∈ Λ+.
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Definition 2.8 ([19]). Let g : Rn −→ R be a locally Lipschitzian function and
x, u, v ∈ Rn. The lower Dini derivatives of g at x in the direction u ∈ Rn is defined
as

D−g(x;u) = lim inf
t↘0

g(x+ tu)− g(x)

t
.

Furthermore, if D−g(x;u) exists, the second-order Dini derivatives of g at (x, u) in
the direction v ∈ Rn is defined as

D2g(x;u, v) = lim inf
t↘0

g(x+ tu+ t2v)− g(x)− tD−g(x;u)

t2
.

Definition 2.9 ([18]). Let Ω be a nonempty closed subset of Rn and x ∈ Ω.

(i) The Bouligand tangent cone and Clarke tangent cone of Ω at x are respec-
tively defined as

TB
Ω (x) =

{
d ∈ Rn : ∃ xk

Ω−→ x, tk ↘ 0, lim
k−→∞

xk − x

tk
= d

}
,

and

TC
Ω (x) =

{
d ∈ Rn : ∀xk Ω−→ x, tk ↘ 0, ∃ yk −→ x, lim

k−→∞

xk − yk

tk
= d

}
,

where xk
Ω−→ x means lim

k−→∞
xk = x and xk ∈ Ω for each k = 1, 2, . . . .

(ii) The Fréchet normal cone and Clarke normal cone of Ω at x are respectively
defined as

NB
Ω (x) =

{
d ∈ Rn : ⟨d, z⟩ ≤ 0, ∀ z ∈ TB

Ω (x)
}
,

and

NC
Ω (x) =

{
d ∈ Rn : ⟨d, z⟩ ≤ 0, ∀ z ∈ TC

Ω (x)
}
.

Obviously, TC
Ω (x) ⊆ TB

Ω (x) for x ∈ Ω. It is directly obtained from Proposition
6.5 of [18] that

(2.3) NB
Ω (x) ⊆ NC

Ω (x).

Definition 2.10 ([3]). Let Ω be a nonempty closed subset of Rn and x ∈ Ω. The
outer second-order tangent set and the inner second-order tangent set of Ω at x in
the direction d ∈ Rn are respectively defined as

T 2
Ω(x, d) = {w ∈ Rn : ∃ tk ↘ 0, wk −→ w, x+ tkd+

1

2
t2kw

k ∈ Ω},

T 2,i
Ω (x, d) = {w ∈ Rn : ∀tk ↘ 0, ∃ wk −→ w, x+ tkd+

1

2
t2kw

k ∈ Ω}.

Definition 2.11 ([12]). Let Ω ⊆ Rn be a nonempty closed set. Ω is called pseudo-
convex set at x with respect to TΩ(x) if

Ω ⊆ x+ TΩ(x),

where TΩ(x) is a tangent cone to Ω at x ∈ Ω.
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Definition 2.12. Let Ω ⊆ Rn be a nonempty closed cone. The dual cone of Ω is
defined by

Ω∗ = {y ∈ Rn : ⟨y, x⟩ ≥ 0, ∀x ∈ Ω}.

The following results show the quality of Clarke subdifferentials of locally Lips-
chitz function.

Lemma 2.1 ([8]). If gi : Rn −→ R(i = 1, . . . ,m) are locally Lipschitz functions,
then the following relations hold:

(i) ∂c(g1 + · · ·+ gm)(x) ⊆ ∂cg1(x) + · · ·+ ∂cgm(x);
(ii) ∂c(tg)(x) = t∂cg(x) for all t > 0.

The following lemma gives the expression of the tangent cones and normal cones
of the group sparse feasible set S.

Lemma 2.2 ([21]). Let x∗ ∈ S. The Bouligand tangent cone, the Clarke tangent
cone and their normal cones of S at x∗ are respectively given as follows:

(i) Bouligand tangent cone:

TB
S (x∗) = {d ∈ Rn : ∥d∥2,0 ≤ k, ∥x∗ + µd∥2,0 ≤ k, ∀µ ∈ R}

=
∪

I∈H(x∗)

{d ∈ Rn : di = 0, i ̸∈ I}

=
∪

I∈H(x∗)

span{eij , i ∈ I, j = 1, 2, . . . , ni},

where di ∈ Rni is the i-th group of d ∈ Rn;
(ii) Clarke tangent cone:

TC
S (x∗) = {d ∈ Rn : di = 0, i ̸∈ Γ(x∗)}

= {d ∈ Rn : Γ(d) ⊆ Γ(x∗)}
= span{eij , i ∈ Γ(x∗), j = 1, 2, . . . , ni};

(iii) Fréchet normal cone:

NB
S (x∗) =

{
span{eij , i /∈ Γ(x∗), j = 1, 2, . . . , ni}, if ∥x∥2,0 = k,

{0}, if ∥x∥2,0 < k;

(iv) Clarke normal cone:

NC
S (x∗) = {d ∈ Rn : di = 0, i ∈ Γ(x∗)}.

3. Variational analysis of the group sparsity set S

In this section, we present the characterizations of (inner) outer second order
tangent set of the group sparse set S and its secondary tangent cone, and the
relations between secondary tangent cone and (inner) outer second order tangent
set. In addition, we also give some characterizations of the group sparse set S.

The following results present a characterization of the outer second-order tangent
set of the group sparse set S via the Bouligand tangent cone.



132 H. SU, L. HUANG, X. OU, AND J. CHEN

Proposition 3.1. Let x∗ ∈ S and d ∈ TBS(x∗). Then

T 2
S(x

∗, d) = TB
S (x∗) ∩ TB

S (d).

Proof. Obviously, the following equality holds:

(3.1) T 2
S(x

∗, d) = T 2∪
I∈H Rn

I
(x∗, d) =

∪
I∈H

T 2
Rn
I
(x∗, d),

where the second equality holds comes from [3, Proposition 3.37]. Take any Rn
I

satisfying I ̸∈ H(x∗). Then, x∗ ̸∈ Rn
I , T

2
Rn
I
(x∗, d) = ∅. Therefore, it follows from

(3.1) that

(3.2)
∪
I∈H

T 2
Rn
I
(x∗, d) =

∪
I∈H(x∗)

T 2
Rn
I
(x∗, d).

Obverse that Rn
I = TB

Rn
I
(x∗). Then if d ̸∈ Rn

I , T
2
Rn
I
(x∗, d) = ∅. This combined with

(3.2) yields that

(3.3)
∪

I∈H(x∗)

T 2
Rn
I
(x∗, d) =

∪
I∈H(x∗),d∈Rn

I

T 2
Rn
I
(x∗, d).

Therefore, the desire result is as follows

T 2
S(x

∗, d) =
∪

I∈H(x∗),d∈Rn
I

T 2
Rn
I
(x∗, d)

=
∪

I∈H(x∗),d∈Rn
I

(Rn
I + Rd)

=
∪

I∈H(x∗),d∈Rn
I

Rn
I

=
∪

|I|=k,Γ(x∗)⊆I,Γ(d)⊆I

Rn
I

= (
∪

|I|=k,Γ(x∗)⊆I

Rn
I ) ∩ (

∪
|I|=k,Γ(d)⊆I

Rn
I )

= TB
S (x∗) ∩ TB

S (d),

where the first equality holds due to (3.1)and (3.3), the second equality comes
from [18, Proposition 13.12 ]. □

Remark 3.1. The outer second-order tangent set of the group sparse feasible set
S at x∗ ∈ S in the direction d ∈ TB

S (x∗) can be also written as

T 2
S(x

∗, d) = {w ∈ Rn : ∥x∗ + αw∥2,0 ≤ k, ∥d+ βw∥2,0 ≤ k, ∀α, β ∈ R} .

The following result show that T 2
S(x

∗, d) has a different form when d ∈ TC
S (x∗).

Proposition 3.2. Let x∗ ∈ S and d ∈ TC
S (x∗). Then

T 2
S(x

∗, d) = {w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + µd+ γw∥2,0 ≤ k, ∀ µ, γ ∈ R}.
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Proof. Set D := {w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + µd + γw∥2,0 ≤ k, ∀ µ, γ ∈ R}. Take
any w ∈ T 2

S(x
∗, d). From Remark 3.1, we obtain that ∥w∥2,0 ≤ k and

(3.4) ∥x∗ + γw∥2,0 ≤ k, ∀γ ∈ R.

If ∥x∗∥2,0 = k, then it follows from (3.4) that Γ(w) ⊆ Γ(x∗). Since d ∈ TC
S (x∗),

by virtue of Lemma 2.2, we have

(3.5) Γ(d) ⊆ Γ(x∗).

Note that Γ(w) ⊆ Γ(x∗). Then combined with (3.5), we obtain

Γ(x∗ + µd+ γw) ⊆ Γ(x∗), ∀ µ, γ ∈ R,

which yields that

(3.6) ∥x∗ + µd+ γw∥2,0 ≤ k, ∀ µ, γ ∈ R.

If ∥x∗∥2,0 < k, without loss of generality, we can assume that for any j ∈ R,
∥x∗∥2,0 = k − j, 0 < j ≤ k. Then we can divide 1, . . . , p into

i ∈


I1, if wi ̸= 0, x∗i = 0

I2, if wi ̸= 0, x∗i ̸= 0

I3, if wi = 0, x∗i = 0

I4, if wi = 0, x∗i ̸= 0.

According to (3.4), one has |I1| = 0, 1, . . . , j. It is obvious that Γ(w) ⊆ Γ(x∗) if
|I1| = 0. Thus, (3.6) always holds. when |I1| ̸= 0, it stems from (3.5) that the index
ℓ satisfying Γ(x∗ + µd+ γw)ℓ ̸= 0 is up to |Γ(x∗)∪ I1| for all µ, γ ∈ R. This implies
that (3.6) holds. Altogether, T 2

S(x
∗, d) ⊆ D.

Conversely, take any w ∈ D. Let µ = 0. Then (3.4) holds. Again using (3.5),
one has ∥d+ βw∥2,0 ≤ k for all β ∈ R. Therefore, we conclude that D ⊆ T 2

S(x
∗, d).

Consequently, the conclusion holds. □

Similarly, we next give a characterization of the inner second-order tangent set
of the group sparse set S.

Proposition 3.3. Let x∗ ∈ S and d ∈ TB
S (x∗). Then

(3.7) T 2,i
S (x∗, d) = {w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + µd+ γw∥2,0 ≤ k, ∀µ, γ ∈ R}.

Proof. Set D := {w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + µd + γw∥2,0 ≤ k, ∀ µ, γ ∈ R}. Take

arbitrary w ∈ T 2,i
S (x∗, d). Then for any tk ↘ 0, there exists wk −→ w such that

x∗+tkd+
1
2 t

2
kw

k = xk ∈ S, which yields that xk
S−→ x∗ and w = limk−→∞

xk−x∗−tkd
1
2
t2k

.

Then we have

(3.8) Γ(x∗) ⊆ Γ(xk)

and

(3.9) Γ(w) ⊆ Γ(xk − x∗ − tkd).

We next claim that

(3.10) Γ(d) ⊆ Γ(xk − x∗).
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Suppose that Γ(d) ̸⊆ Γ(xk − x∗). Then there is at least one i that satisfies di > 0
and (xk −x∗)i = 0. Note that x∗+ tkd+

1
2 t

2
kw

k = xk. Then, tkd+
1
2 t

2
kw

k = xk −x∗.
Hence, we derive that

(tkd+
1

2
t2kw

k)i = (xk − x∗)i = 0,

which is a contradiction since di > 0 and wk
i ≥ 0. Then combined (3.8), (3.9) with

(3.10), we obtain

Γ(w) ⊆ Γ(xk − x∗) ⊆ Γ(xk),

which implies that ∥w∥2,0 ≤ k and ∥x∗+µd+γw∥2,0 ≤ k, ∀ µ, γ ∈ R. Thus, w ∈ D.

So T 2,i
S (x∗, d) ⊆ D.

Conversely, take any w ∈ D. For any tk ↘ 0, there exists wk = w such that

x∗ + tkd + 1
2 t

2
kw

k = x∗ + tkd + 1
2 t

2
kw ∈ S, which means that D ⊆ T 2,i

S (x∗, d).
Altogether, the conclusion holds. □

The following proposition gives a equivalent characterization of the Bouligand
tangent cone of TB

S (x∗) (i.e., secondary tangent cone) at d ∈ TB
S (x∗) by (3.7).

Proposition 3.4. Let d ∈ TB
S (x∗). Then

(3.11) TB
TB
S (x∗)(d) = {w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + µd+ γw∥2,0 ≤ k, ∀µ, γ ∈ R}.

Proof. Set D := {w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + µd + γw∥2,0 ≤ k, ∀µ, γ ∈ R}.
According to the definition of Bouligand tangent cone, we have

TB
TB
S (x∗)(d) = {w ∈ Rn : ∃ dn

TB
S (x∗)
−→ d, tn ↘ 0, lim

n−→∞

dn − d

tn
= w}.

For any w ∈ TB
TB
S (x∗)

(d), there exists dn ⊆ TB
S (x∗) such that dn −→ d. Then

(3.12) Γ(d) ⊆ Γ(dn)

for any sufficiently large n. Note that limn−→∞
dn−d
tn

= w and tn ↘ 0. Then

Γ(w) ⊆ Γ(dn − d). This together with (3.12) yields that

(3.13) Γ(w) ⊆ Γ(dn − d) ⊆ Γ(dn)

for any sufficiently large n.
Since dn ∈ TB

S (x∗), it follows from (3.13) that

(3.14) ∥x∗ + (µ+ γ)dn∥2,0 ≤ k, ∀ µ, γ ∈ R.
and

(3.15) ∥w∥2,0 = |Γ(w)| ≤ |Γ(dn)| = ∥dn∥2,0 ≤ k

Then, by virtue of (3.12), (3.13) and (3.14), one has

∥x∗ + µd+ γw∥2,0 ≤ k, ∀ µ, γ ∈ R.
This together with (3.15) yields that TB

TB
S (x∗)

(d) ⊆ D.

Conversely, take arbitrary w ∈ D and any given the sequence {tn} ↘ 0. Let

dn = d + tnw. Then we directly have limn−→∞ dn = d and limn−→∞
dn−d
tn

= w.
Besides, it follows from dn = d+ tnw and w ∈ D that

∥x∗ + µdn∥2,0 = ∥x∗ + µd+ µtnw∥2,0 ≤ k, ∀ µ ∈ R,
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then dn ∈ TB
S (x∗). Thus there exists dn

TB
S (x∗)
−→ d, tn ↘ 0 such that limn−→∞

dn−d
tn

=

w. This means that w ∈ TB
TB
S (x∗)

(d) and D ⊆ TB
TB
S (x∗)

(d). Altogether, the conclusion

holds. □
In the following, we state the relations among the inner, outer second-order tan-

gent set of the group sparse feasible set S at x∗ ∈ S in the direction d ∈ TB
S (x∗)

and secondary tangent cone at d ∈ TB
S (x∗).

Theorem 3.1. If x∗ ∈ S and d ∈ TB
S (x∗), then

T 2,i
S (x∗, d) = TB

TB
S (x∗)(d) ⊆ T 2

S(x
∗, d).

Proof. It follows from Proposition 3.3 and Proposition 3.4 that the equation obvi-
ously holds. By virtue of Proposition 3.4 and Remark 3.1, we obtain

(3.16)
T 2
S(x

∗, d) ={w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + αw∥2,0 ≤ k,

∥d+ βw∥2,0 ≤ k, ∀ α, β ∈ R}
and

(3.17) TB
TB
S (x∗)(d) = {w ∈ Rn : ∥w∥2,0 ≤ k, ∥x∗ + µd+ γw∥2,0 ≤ k, ∀ µ, γ ∈ R}.

Take any w ∈ TB
TB
S (x∗)

(d). Then let µ = 0 in (3.17) and we have ∥w∥2,0 ≤ k and

∥x∗+αw∥2,0 ≤ k, ∀α ∈ R. Now, let’s take µ∗ > 0 small enough. Then when di ̸= 0,
we derive that x∗i +µ∗di ̸= 0. This together with the definition of the group sparsity
support set implies that

(3.18) Γ(d) ⊆ Γ(x∗ + µ∗d).

Note that w ∈ TB
TB
S (x∗)

(d). Thus by (3.17) and (3.18), we arrive at

∥d+ βw∥2,0 ≤ ∥x∗ + µ∗d+ βw∥2,0 ≤ k, ∀β ∈ R.

Therefore, according to (3.16), w ∈ T 2
S(x

∗, d) and TB
TB
S (x∗)

(d) ⊆ T 2
S(x

∗, d). Conse-

quently, the conclusion holds. □
We now give an example to show that the anti-inclusion relationship does not

hold for the above result.

Example 3.1. Consider the group sparse set

S := {x = ((x1,1, x1,2), (x2,1, x2,2, x2,3), x3, x4)
⊤ ∈ R7 : ∥x∥2,0 ≤ 3}.

Let x∗ = ((1, 1), (0, 0, 0), 0, 0)⊤ and d = ((0, 0), (1, 1, 0), 0, 0)⊤. It is obvious that
d ∈ TB

S (x∗). Take w = ((0, 0), (1, 0, , 0), 1, 1)⊤. It is easy to get that

w ∈ TB
TB
S (x∗)(d).

After calculation, ∥x∗ + d+ w∥2,0 = 4 > 3. This yields that

w ̸∈ T 2
S(x

∗, d).

Therefore, we derive that T 2
S(x

∗, d) ̸⊆ TB
TB
S (x∗)

(d).

We now present some characterizations of the group sparse set S.
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Theorem 3.2. (i) The group sparse set S is a cone and its dual cone S∗ = {0}.
(ii) If x∗ ∈ S, then x∗ + TB

S (x∗) ⊆ S.
Moreover, if S is pseudoconvex set at x∗ ∈ S with respect to TB

S (x∗), then
x∗ + TB

S (x∗) = S.
(iii) If x∗ ∈ S, then x∗ + TC

S (x∗) ⊆ S. Moreover, if S is pseudoconvex set at
x∗ ∈ S with respect to TC

S (x∗), then x∗ + TC
S (x∗) = S.

Proof. (i) It is clear that S is cone. Due to Lemma 2.2 and |Γ(0)| < k, we have

TB
S (0) = {d ∈ Rn : ∥d∥2,0 ≤ k, ∥0 + µd∥2,0 ≤ k, ∀ µ ∈ R} = S

and NB
S (0) = {0}. Furthermore, one has by Definition 2.9 and 2.12

S∗ = TB
S (0)∗ = −NB

S (0) = {0}.
(ii) Taking µ = 1 for all d ∈ TB

S (x∗), then it follows from Lemma 2.2 that |Γ(x∗+d| ≤
k. This yields that x∗ + TB

S (x∗) ⊆ S. Besides, according to Definition 2.11, the
equality obviously holds.

(iii) The proof is similar to (ii). The proof is completed. □

4. First-order optimality conditions

In this section, we discuss the relationships among stationary points, and study
the first-order necessary and sufficient optimality conditions of GSMOP by station-
ary points. To do this, We firstly introduce the definitions of stationary points.

Definition 4.1. x∗ ∈ S is called:

(i) an N ♯-stationary point of GSMOP if there exists λ∗ ∈ Λ+ such that

0 ∈ ∂cf(x
∗)⊤λ∗ +N ♯

S(x
∗);

(ii) a strict N ♯-stationary point of GSMOP if there exists λ∗ ∈ Λ+ such that

∂cf(x
∗)⊤λ∗ ⊆ N ♯

S(x
∗);

(iii) an T ♯-stationary point of GSMOP if there exists λ∗ ∈ Λ+ such that

0 ∈ ∂♯
Sf(x

∗);

where ♯ ∈ {B,C} represent the mean of Bouligand or Clarke, and

∂♯
Sf(x

∗) := argmin
d∈T ♯

S(x
∗)
{∥d+ ξ∥ : ξ ∈ ∂cf(x

∗)⊤λ∗}.

The following theorem presents the relationship between TB-stationary point and
NB-stationary point of GSMOP.

Theorem 4.1. x∗ ∈ S is an NB-stationary point of GSMOP if and only if x∗ ∈ S
is an TB-stationary point of GSMOP.

Proof. In order to prove the desired result holds, we split the proof into two cases.
Case 1: Let ∥x∗∥2,0 = k.
“ ⇐ ” Assume that x∗ ∈ S is an TB-stationary point. Then there exists λ̄ ∈ Λ+

such that 0 ∈ ∂B
S f(x∗). On the other hand, according to Lemma 2.2, we have

d ∈ TB
S (x∗) ⇔ Γ(d) ⊆ Γ(x∗).
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Hence, it follows that

0 ∈ ∂B
S f(x∗) = argmind∈TB

S (x∗){∥d+ ξ∥ : ξ ∈ ∂cf(x
∗)⊤λ̄}

= argminΓ(d)⊆Γ(x∗){∥d+ ξ∥ : ξ ∈ ∂cf(x
∗)⊤λ̄}.

If i ̸∈ Γ(x∗), then by the above equality one has

(4.1) di = 0, ∀ d ∈ ∂B
S f(x∗).

If i ∈ Γ(x∗), then for any ξ ∈ ∂cf(x
∗)⊤λ̄, there exists d ∈ ∂B

S f(x∗) ⊆ TB
S (x∗) such

that di = −ξi. This combined with (4.1) and 0 ∈ ∂B
S f(x∗) implies that there exists

ξ̄ ∈ ∂cf(x
∗)⊤λ̄ such that

(4.2) ξ̄i

{
= 0, if i ∈ Γ(x∗)

∈ Rni , if i ̸∈ Γ(x∗).

Hence, by Lemma 2.2 and ∥x∗∥2,0 = k, we obtain

(4.3) NB
S (x∗) = {d ∈ Rn : di = 0, i ∈ Γ(x∗)}.

Then it follows from (4.2) and (4.3) that

0 ∈ ∂cf(x
∗)⊤λ̄+NB

S (x∗),

which means that x∗ ∈ S is an NB-stationary point of GSMOP.
“ ⇒ ” Assume that x∗ ∈ S is an NB-stationary point. Then there exists λ∗ ∈ Λ+

such that
0 ∈ ∂cf(x

∗)⊤λ∗ +NB
S (x∗).

Thus there exists ξ∗ = (ξ∗1 , ξ
∗
2 , . . . , ξ

∗
p) ∈ ∂cf(x

∗)⊤λ∗ such that

−ξ∗ ∈ NB
S (x∗).

Then according to Lemma 2.2, we have

ξ∗i

{
= 0, if i ∈ Γ(x∗)

∈ Rni , if i ̸∈ Γ(x∗).

On the other hand, for all d ∈ TB
S (x∗), it follows from ∥x∗∥2,0 = k and (4.1) that for

i ̸∈ Γ(x∗), di = 0, and for i ∈ Γ(x∗), there exists d∗ ∈ TB
S (x∗) satisfying d∗i = −ξ∗i .

Therefore, we get
0 = d∗i = argmind∈TB

S (x∗){∥d+ ξ∗∥}.

Consequently, by virtue of the definition of TB-stationary point, we conclude that
there exists λ∗ ∈ Λ+ such that 0 ∈ ∂B

S f(x∗). This yields that x∗ ∈ S is an TB-
stationary point of GSMOP.

Case2: Let∥x∗∥2,0 < k.

“ ⇐ ” Assume that x∗ ∈ S is an TB-stationary point. Then there exists λ̂ ∈ Λ+

such that

0 ∈ ∂B
S f(x∗) = argmind∈TB

S (x∗){∥d+ ξ∥ : ξ ∈ ∂cf(x
∗)⊤λ̂}.

Hence, there exists ξ̂ ∈ ∂cf(x
∗)⊤λ̂ such that

(4.4) ∥ξ̂∥ = ∥0 + ξ̂∥ ≤ ∥d+ ξ̂∥, ∀ d ∈ TB
S (x∗).
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Take any i ∈ {1, 2, . . . , p}. Let Γ(d̂) = i and d̂i = −ξ̂i. Then taking into account

∥x∗∥2,0 < k, we have ∥d̂∥2,0 ≤ 1 and ∥x∗ + µd̂∥2,0 ≤ ∥x∗∥2,0 + 1 ≤ k. Thus it stems

from Lemma 2.2 that d̂ ∈ TB
S (x∗). According to (4.4), we get

|ξ̂i| ≤ |d̂i + ξ̂i| = | − ξ̂i + ξ̂i|,

which yields that ξ̂i = 0. Then by virtue of the arbitrariness of i, one has

(4.5) ξ̂ = 0.

Then it follows from Lemma 2.2 that

(4.6) NB
S (x∗) = {0}.

Together with (4.5) and (4.6), we derive that

0 ∈ ∂cf(x
∗)⊤λ̂+NB

S (x∗),

which implies that x∗ ∈ S is an NB-stationary point of GSMOP.
“ ⇒ ” Assume that x∗ ∈ S is an NB-stationary point. Then there exists λ̃ ∈ Λ+

such that

0 ∈ ∂cf(x
∗)⊤λ̃+NB

S (x∗).

It follows from (4.6) that there exists ξ̃ ∈ ∂cf(x
∗)⊤λ̃ such that ξ̃ = 0. Hence, we

obtain

0 = argmind∈TB
S (x∗){∥d+ 0∥} ∈ argmind∈TB

S (x∗){∥d+ ξ̃∥}.

This implies that 0 ∈ ∂B
S f(x∗) and so x∗ ∈ S is an TB-stationary point of GSMOP.

□

The equivalent relationship between TC-stationary point andNC-stationary point
of GSMOP is established by the following theorem.

Theorem 4.2. x∗ ∈ S is an NC-stationary point of GSMOP if and only if x∗ ∈ S
is an TC-stationary point of GSMOP.

Proof. “ ⇐ ” Assume that x∗ ∈ S is an TC-stationary point. Then there exists
λ̄ ∈ Λ+ such that

(4.7) 0 ∈ ∂C
S f(x

∗) = argmind∈TC
S (x∗){∥d+ ξ∥ : ξ ∈ ∂cf(x

∗)⊤λ̄}.

According to Lemma 2.2, we have

(4.8) NC
S (x∗) = {d ∈ Rn : di = 0, i ∈ Γ(x∗)}

and

(4.9) TC
S (x∗) = {d ∈ Rn : di = 0, i ̸∈ Γ(x∗)}.

If i ̸∈ Γ(x∗), then from (4.7) and (4.9) we obtain,

(4.10) di = 0, ∀ d ∈ ∂C
S f(x

∗).

If i ∈ Γ(x∗), then by Lemma 2.2 (ii), for any ξ ∈ ∂cf(x
∗)⊤λ̄, there exists d ∈ ∂C

S f(x
∗)

such that

(4.11) di = −ξi.
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Note that 0 ∈ ∂C
S f(x

∗). Then it follows from (4.10) and (4.11) that there exists

ξ̄ ∈ ∂cf(x
∗)⊤λ̄ such that

(4.12) ξ̄i

{
= 0, if i ∈ Γ(x∗)

∈ Rni , if i ̸∈ Γ(x∗).

Hence, according to (4.8) and (4.12), we have −ξ̄ ∈ NC
S (x∗), which implies that

0 ∈ ∂cf(x
∗)⊤λ̄ + NC

S (x∗). This implies that x∗ ∈ S is an NC-stationary point of
GSMOP.

“ ⇒ ” Assume that x∗ ∈ S is an NC-stationary point. Then there exists λ∗ ∈ Λ+

such that
0 ∈ ∂cf(x

∗)⊤λ∗ +NC
S (x∗).

Thus there exists ξ∗ = (ξ∗1 , ξ
∗
2 , . . . , ξ

∗
p) ∈ ∂cf(x

∗)⊤λ∗ such that

(4.13) −ξ∗ ∈ NC
S (x∗).

Together with (4.8) and (4.13), we get

ξ∗i

{
= 0, if i ∈ Γ(x∗)

∈ Rni , if i ̸∈ Γ(x∗).

This combined with (4.9) yields that (4.10) holds and there exists d∗ ∈ TC
S (x∗) such

that
d∗i = −ξ∗i = 0, i ∈ Γ(x∗).

Therefore,
d∗ = 0 ∈ argmind∈TC

S (x∗){∥d+ ξ∥ : ξ ∈ ∂cf(x
∗)⊤λ∗},

which yields that x∗ ∈ S is an TC-stationary point of GSMOP. □
We now pay the attention to the first-order optimality conditions. The following

result presents the first-order necessary optimality condition of GSMOP under some
suitable conditions.

Theorem 4.3. Let x∗ ∈ S be a local weakly Pareto efficient solution of GSMOP.
Then there exists λ∗ ∈ Λ+ such that x∗ is an NC-stationary point of GSMOP.
Moreover, if ∂cf(x

∗)⊤λ∗ ⊆ TC
S (x∗), then x∗ is an NB-stationary point of GSMOP.

Proof. According to [11, Theorem 2.2 and Remark 2.3] and Λ+ is a base of Rm
+ ,

there exists λ∗ ∈ Λ+ such that

0 ∈ ∂c(λ
∗⊤f)(x∗) +NC

S (x∗).

By virtue of Lemma 2.1, we have

(4.14) 0 ∈ ∂cf(x
∗)⊤λ∗ +NC

S (x∗),

which yields that x∗ is an NC-stationary point of GSMOP.
It follows from (4.14) and Lemma 2.2 that there exists ξ∗ ∈ ∂cf(x

∗)⊤λ∗ such that

ξ∗i = 0, ∀ i ∈ Γ(x∗).

Note that ∂cf(x
∗)⊤λ∗ ⊆ TC

S (x∗). Then by Lemma 2.2, we derive that for all ξ ∈
∂cf(x

∗)⊤λ∗

ξi = 0, ∀ i ̸∈ Γ(x∗),
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which means that ξ∗ = 0. Therefore, we have

(4.15) 0 = ξ∗ ∈ ∂cf(x
∗)⊤λ∗.

Due to (4.15) and Lemma 2.2 (iii), one has

0 ∈ ∂cf(x
∗)⊤λ∗ +NB

S (x∗),

which implies that x∗ is an NB-stationary point of GSMOP. □

The following theorem establishes the sufficient optimality condition for GSMOP.

Theorem 4.4. Let x∗ ∈ S be a strict NB-stationary point of GSMOP and f be ∂c-
pseudoconvex at x∗. If Sf (x

∗) is a pseudoconvex set at x∗ with respect to TSf (x∗)(x
∗),

then x∗ is a weakly Pareto efficient solution of GSMOP.

Proof. Suppose that x∗ is not a weakly Pareto efficient solution of GSMOP. Then
there exists a feasible point x′ ̸= x∗ such that

f(x′)− f(x∗) ∈ −Rm
++.

This yields that

(4.16) λ⊤f(x′) < λ⊤f(x∗), ∀λ ∈ Λ+.

Since x∗ ∈ S is a strict NB-stationary point of GSMOP, it follows from Lemma 2.1
that there exists λ∗ ∈ Λ+ such that

(4.17) −∂c(λ
∗⊤f)(x∗) ⊆ −∂cf(x

∗)⊤λ∗ ⊆ NB
S (x∗).

By virtue of Lemma 2.2, we conclude that

TB
S (x∗) = {d ∈ Rn : ∥d∥2,0 ≤ k, ∥x∗ + µd∥2,0 ≤ k, ∀µ ∈ R}

and

NB
S (x∗) =

{
{d ∈ Rn : di = 0, i ∈ Γ(x∗)}, if ∥x∥2,0 = k,

{0}, if ∥x∥2,0 < k.

Take any ξ ∈ NB
S (x∗) and η ∈ TB

S (x∗). If |Γ(x∗)| = s, then ξ = 0 and so ⟨ξ, η⟩ = 0.
If |Γ(x∗)| < s, then ξi = 0, i ∈ Γ(x∗) and ηi = 0, i ̸∈ Γ(x∗) and so ⟨ξ, η⟩ = 0.
Therefore, we have

⟨ξ, η⟩ = 0, ∀ ξ ∈ NB
S (x∗), η ∈ TB

S (x∗).

This together with (4.17) implies that

(4.18) ⟨ξ′, η⟩ = 0, ∀ξ′ ∈ ∂c(λ
∗⊤f)(x∗), η ∈ TB

S (x∗),

where ξ′ = −ξ. It follows from (4.16) that x′ ∈ Sf (x
∗). Note that Sf (x

∗) ⊆ S.
Then

TSf (x∗)(x
∗) ⊆ TB

S (x∗).

Since Sf (x
∗) is a pseudoconvex set at x∗ with respect to TSf (x∗)(x

∗), we have

Sf (x
∗) ⊆ x∗ + TSf (x∗)(x

∗),

which yields that

x′ − x∗ ∈ TSf (x∗)(x
∗) ⊆ TB

S (x∗).
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Consequently, this together with (4.18) implies that

(4.19) ⟨ξ′, x′ − x∗⟩ = 0, ∀ξ′ ∈ ∂c(λ
∗⊤f)(x∗).

Besides, observe that f is ∂c-pseudoconvex at x∗. By Remark 2.1, we get

⟨ξ′, x′ − x∗⟩ < 0, ∀ξ′ ∈ ∂c(λ
∗⊤f)(x∗),

which contradicts with (4.19). Therefore, x∗ is a weakly Pareto efficient solution of
GSMOP. □

5. Second-order optimality conditions

In this section, we discuss the second-order necessary and sufficient optimality
conditions by using the second-order tangent set and Dini directional derivatives.

We now give a second-order necessary optimality condition of GSMOP.

Theorem 5.1. Let x∗ ∈ S be a local weakly efficient solution of GSMOP. Then
there exists λ∗ ∈ Λ+ such that for each v ∈ TC

S (x∗) with D−(λ∗⊤f)(x∗; v) = 0, the
following statement holds:

D2(λ∗⊤f)(x∗; v, w) ≥ 0, ∀ w ∈ T 2
S(x

∗, v).

Proof. On the contrary, suppose that for any λ ∈ Λ+, there exists some v∗ ∈ TC
S (x∗)

satisfying D−(λ⊤f)(x∗; v∗) = 0 and w∗ ∈ T 2
S(x

∗, v∗) such that

D2(λ∗⊤f)(x∗; v∗, w∗) < 0.

According to the definition of the second-order Dini derivatives, we have

D2(λ∗⊤f)(x∗; v∗, w∗)

= lim inf
t↘0

λ⊤f(x∗ + tv∗ + t2w∗)− λ⊤f(x∗)− tD−(λ⊤f)(x∗; v∗)

t2
< 0.

This together with D−(λ⊤f)(x∗; v∗) = 0 yields that there exists a sufficiently little
t∗ > 0 such that

λ⊤f(x∗ + tv∗ + t2w∗)− λ⊤f(x∗)

t2
< 0, ∀ t ∈ (0, t∗].

Hence, we get

λ⊤(f(x∗ + tv∗ + t2w∗)− f(x∗)) < 0, ∀ t ∈ (0, t∗].

Note that x∗ + tv∗ + t2w∗ ⊆ S by Proposition 3.2. Then it follows from the arbi-
trariness of λ ∈ Λ+ and the above inequality that

f(x∗ + tv∗ + t2w∗)− f(x∗) ∈ −Rm
++, ∀ t ∈ (0, t∗],

which is a contradiction duo to x∗ is a local weakly efficient solution of GSMOP. □

The following theorem presents a second-order sufficient optimality conditions of
GSMOP in terms of the first and second-order Dini directional derivatives.
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Theorem 5.2. Assume that x∗ ∈ S and there exists λ∗ ∈ Λ+ such that the following
condition (5.1) holds for each v ∈ TB

S (x∗):

(5.1) D−(λ∗⊤f)(x∗; v) ≥ 0, D2(λ∗⊤f)(x∗; v, w) > 0, ∀ w ∈ T 2
S(x

∗, v).

Then x∗ is a local weakly Pareto efficient solution of GSMOP.

Proof. Suppose on the contrary that x∗ is not local weakly Pareto efficient solution

of GSMOP. Then there exists a sequence xk
S−→ x∗ such that

f(xk)− f(x∗) ∈ −Rm
+ \ 0.

Then we have

(5.2) λ⊤(f(xk)− f(x∗)) < 0, ∀ λ ∈ Λ+.

Set vk = xk−x∗

∥xk−x∗∥ . Then without loss of generality, we can assume that vk −→ v.

Since xk
S−→ x∗, it follows from Lemma 2.2 that v ∈ TB

S (x∗). Set tk = ∥xk − x∗∥.
Then due to (5.2), we obtain

(5.3) λ⊤(f(x∗ + tkv
k)− f(x∗)) < 0, ∀λ ∈ Λ+,

which implies that for any λ ∈ Λ+,

D−(λ⊤f)(x∗; v) = lim inf
t↘0

λ⊤f(x∗ + tv)− λ⊤f(x∗)

t

≤ lim inf
k−→∞

λ⊤f(x∗ + tkv
k)− λ⊤f(x∗)

tk
≤ 0.

This combined with D−(λ∗⊤f)(x∗; v) ≥ 0 yields that

D−(λ∗⊤f)(x∗; v) = 0.

Set qk =
√
1+4tk−1

2 . Then q2k + qk = tk. Consequently, xk = x∗ + tkv
k = x∗ + (q2k +

qk)v
k and so,

D2(λ∗⊤f)(x∗; v, v)

= lim inf
t↘0

λ∗⊤f(x∗(t+ t2)v)− λ∗⊤f(x∗)− tD−(λ∗⊤f)(x∗; v)

t2

= lim inf
t↘0

λ∗⊤f(x∗ + (t+ t2)v)− λ∗⊤f(x∗)

t2

≤ lim inf
k−→∞

λ∗⊤f(x∗ + (q2k + qk)v
k)− λ∗⊤f(x∗)

q2k

= lim inf
k−→∞

λ∗⊤f(x∗ + tkv
k)− λ∗⊤f(x∗)

q2k
≤ 0,(5.4)

where the last inequality comes from (5.3). Note that v ∈ TB
S (x∗). Then one has

∥v∥2,0 ≤ k, ∥x∗ + αv∥2,0 ≤ k, ∥v + βv∥2,0 ≤ k, ∀ α, β ∈ R.
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Therefore, from Remark 3.1 we have

v ∈ T 2
S(x

∗, v).(5.5)

Hence, it follows from (5.4) and (5.5) that there exists v ∈ T 2
S(x

∗, v) such that

D2(λ∗⊤f)(x∗; v, v) ≤ 0, which contradicts the fact that for all w ∈ T 2
S(x

∗, v), D2(λ∗⊤f)(x∗; v, w) >
0. □
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