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biological neuronal features [4, 7, 14, 21–24]. A perturbation can create unexpected
behavior in the Rulkov map-based neuron model, similar to the malfunctioning of
the neuronal membrane due to pathologies. This perturbation can be represented
by the equation [6]

xn+1 =
α(1 + bnϵ)

1 + x2n
+ yn,

yn+1 = yn − σ(xn − ρ),

(1.2)

where ϵ is a perturbation parameter, bn is a control parameter and the traditional
Rulkov map (1.1) is obtained when ϵ = 0.
This paper studies the dynamics of model (1.2) by investigating its fixed point,
stability analysis, and bifurcation analysis in sections 2 and section 3, respectively.
Section 4 applies state feedback control methods to achieve chaos control in the
system (1.2). Ultimately, section 5 presents numerical simulations that confirm
theoretical findings and illustrate the complex dynamics of the system (1.2).

2. Local stability analysis

The system (1.2) has the unique fixed point (x∗, y∗) = (ρ, ρ− α(1 + bnϵ)

1 + ρ2
) which

is the solution of the following system

x =
α(1 + bnϵ)

1 + x2
+ y,

y = y − σ(x− ρ).

The Jacobian matrix calculated at (x∗, y∗) reads

J(x∗, y∗) =

 −2ρα(1 + bnϵ)

(1 + ρ2)2
1

−σ 1

 .

The characteristic equation associated to the J(x∗, y∗) is given by

(2.1) λ2 − tr(J)λ+ det(J) = 0,

where tr(J) = 1− 2ρα(1 + bnϵ)

(1 + ρ2)2
and det(J) = σ − 2ρα(1 + bnϵ)

(1 + ρ2)2
.

To determine the local stability of the system (1.2) at the fixed point (x∗, y∗), the
following lemma is a useful tool.

Lemma 2.1 ([1]). Let F (λ) = λ2 +Pλ+Q. Suppose that F (1) > 0, and F (λ) = 0
has two roots λ1 and λ2. Then

(1) F (−1) > 0 and Q < 1 if and only if |λ1| < 1 and |λ2| < 1 ;
(2) F (−1) < 0 if and only if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1);
(3) F (−1) > 0 and Q > 1 if and only if |λ1| > 1 and |λ2| > 1;
(4) F (−1) = 0 and P 6= 0, 2 if and only if λ1 = −1 and |λ2| 6= 1;
(5) P 2− 4Q < 0 and Q = 1 if and only if λ1 and λ2 are complex and |λ1,2| = 1.

Using the above Lemma we obtain the following result.

Proposition 2.2. The fixed point (x∗, y∗) = (ρ, ρ− α(1 + bnϵ)

1 + ρ2
) is
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1. a sink if
(σ − 1)(1 + ρ2)2

2ρ(1 + bnϵ)
< α <

(σ + 2)(1 + ρ2)2

4ρ(1 + bnϵ)
,

2. a source if α < min{(σ − 1)(1 + ρ2)2

2ρ(1 + bnϵ)
,
(σ + 2)(1 + ρ2)2

4ρ(1 + bnϵ)
},

3. a saddle if α >
(σ + 2)(1 + ρ2)2

4ρ(1 + bnϵ)
,

4. a non-hyperbolic if α =
(σ + 2)(1 + ρ2)2

4ρ(1 + bnϵ)
, and

2ρα(1 + bnϵ)

(1 + ρ2)2
6= 1, 3.

3. Bifurcations analysis

The system (1.2) exhibits two types of bifurcations, namely flip bifurcation and
Neimark-Sacker bifurcation, as we discuss in what follows.
We first discuss the flip bifurcation of (1.2) at (x∗, y∗). Suppose that λ1,2, the two
roots of equation (2.1), are real ,i.e.,

(3.1) (
2ρα(1 + bnϵ)

(1 + ρ2)2
− 1)2 − 4(σ − 2ρα(1 + bnϵ)

(1 + ρ2)2
) > 0.

Let

αF =
(σ + 2)(1 + ρ2)2

4ρ(1 + bnϵ)
,

and

(3.2)
2ρα((1 + bnϵ))

(1 + ρ2)2
6= 1, 3.

Then, from the previous proposition, λ1 = −1 and λ2 6= ±1.
Let x̃(n) = x(n)− x∗ and ỹ(n) = y(n)− y∗ to transform the fixed point (x∗, y∗) of
the system (1.2) to the origin producing the following system

x̃(n+ 1) =
α(1 + bnϵ)

1 + (x̃(n) + x∗)2
+ ỹ(n) + y∗ − x∗,

ỹ(n+ 1) = ỹ(n)− σ x̃(n).

(3.3)

Expanding (3.3) as a Taylor series at (0, 0) up to terms of order 3 produces the
following system

x̃(n+ 1) =a10x̃(n) + a01ỹ(n) + a20x̃(n)
2 + a30x̃(n)

3 +O(‖X‖),
ỹ(n+ 1) =ỹ(n)− σ x̃(n),

(3.4)

where a10 =
−2ρα(1 + bnϵ)

(1 + ρ2)2
, a01 = 1, a20 =

α(1 + bnϵ)(3ρ
2 − 1)

(1 + ρ2)2
,

a30 =
2α(1 + bnϵ)(1 + ρ2 − 24ρ3)

(1 + ρ2)4
and X = (x̃(n), ỹ(n))T . System (3.4) can be

rewritten as(
x̃(n)
ỹ(n)

)
→ J(x∗, y∗)

(
x̃(n)
ỹ(n)

)
+

(
F1(x̃(n), ỹ(n), σ)
F2(x̃(n), ỹ(n), σ)

)
,(3.5)
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Where F1 = a20x̃(n)
2 + a30x̃(n)

3 +O(‖X‖) and F2 = 0. It follows that

B1(x, y) =
2∑

i,j=1

∂2F1(ζ, α)

∂ζi ∂ζj
|ζ=0 xiyj = 2a20x1y1,

B2(x, y) =
2∑

i,j=1

∂2F2(ζ, α)

∂ζi ∂ζj
|ζ=0 xiyj = 0,

C1(x, y, u) =

2∑
i,j,k=1

∂3F1(ζ, α)

∂ζi ∂ζj ∂ζk
|ζ=0 xiyjuk = 6a30x1y1u1,

C2(x, y, u) =
2∑

i,j,k=1

∂3F2(ζ, α)

∂ζi ∂ζj ∂ζk
|ζ=0 xiyjuk = 0,

and α = αF .
Therefore, B(x, y) = (B1(x, y) B2(x, y))

T and C(x, y, u) = (C1(x, y, u) C2(x, y, u))
T

are multilinear symmetric vector functions of x, y, u ∈ R2.
At α = αF the Jacobian matrix has an eigenvalue λ1 = −1 with corresponding one-
dimensional eigenspace spanned by an eigenvector v ∈ R2 such that J(αF )v = −v.
Let w ∈ R2 be the adjoint eigenvector ,i.e., JT (αF )w = −w. By simple calculation
we find that

v = (1 1 +
2ρα(1 + bnϵ)

(1 + ρ2)2
)T ,

w = (−2 1)T .

To normalize w with respect to v, we denote

w = (
−2(1 + ρ2)2√

5(2ρα(1 + bnϵ)− 1)

(1 + ρ2)2√
5(2ρα(1 + bnϵ)− 1)

)T .

We can see that 〈v, w〉 = 1, where 〈v, w〉 = v1w2 + v2w1 ,i.e., 〈., .〉 is the standard
scalar product in R2.
The direction of the flip bifurcation is determined from the sign of the critical normal
form coefficient η(αF ) which is given by the following formula

η(αF ) =
1

6
〈w,C(v, v, v)〉 − 1

2
〈w,B(v, (J − I)−1B(v, v))〉.

From the above analysis and the bifurcation Theory in section 4 in [16](see also
[10,19,26]), we deduce the following result.

Theorem 3.1. If the conditions (3.1) and (3.2) hold and αF =
(σ + 2)(1 + ρ2)2

4ρ(1 + bnϵ)
,

then system (1.2) exhibits a flip bifurcation at the fixed point (x∗, y∗) when the pa-
rameter α varies in a small neighborhood of αF . In addition, if αF > 0 (respectively,
αF < 0), then the period-2 orbits that bifurcate from (x∗, y∗) are stable (respectively,
unstable).
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In what follows, we investigates the occurenc of a Neimark-Sacker bifurcation by
using the Neimark-Sacker Theorem in [10,16,19,26].
Suppose that the two roots of equation (2.1) are complex ,i.e.,

(3.6) (1− 2ρα(1 + bnϵ)

(1 + ρ2)2
)2 − 4(σ − 2ρα(1 + bnϵ)

(1 + ρ2)2
) < 0.

Let

(3.7)
2ρα(1 + bnϵ)

(1 + ρ2)2
< 3,

and

αNS =
(σ − 1)(1 + ρ2)2

2ρ(1 + bnϵ)
.

From Lemma 2.1 we deduce that at α = αNS the eigenvalues of the matrix asso-
ciated with the linearization of the map (3.5) at (x̃, ỹ) = (0, 0) are conjugate with
modulus 1, and they can be written as

λ, λ̄ = µ(αNS)± iω(αNS) =
tr(J)

2
± i

2

√
4det(J)− (tr(J))2

and
|λ(αNS)| = 1,

d|λ(α)|
dα

|α=αNS =
−ρ(1 + bnϵ)

(1 + ρ2)2
6= 0 whenever ρ 6= 0.

Moreover, if tr(J(αNS)) 6= 0,−1 i.e,

(3.8)
2ρα(1 + bnϵ)

(1 + ρ2)2
6= 1, 2,

then ,obviously, λk(αNS) 6= 1 for k = 1, 2, 3, 4.
Let v ∈ C2 be an eigenvector of J(αNS) which correspond to the eigenvalue λ(αNS)
such that

J(αNS)v = λ(αNS)v, J(αNS)v = λ̄(αNS)v.

suppose that w ∈ C2 is an eigenvector of of the transposed matrix JT (αNS) that
corresponds to its eigenvalue, λ̄(αNS),

JT (αNS)w = λ̄(αNS)w, J
T (αNS)w = λ(αNS)w.

direct computations yield

v ∼ (1− λ 1 +
2ρα(1 + bnϵ)

(1 + ρ2)2
)T ,

w ∼ (1− λ − 1)T .

In order to normalize w with respect to q, let

w =
1

γ
(1− λ − 1)T ,

where γ = (1 − λ)(
2ρα(1 + bnϵ)

(1 + ρ2)2
). We can see that 〈v, w〉 = 1, where 〈v, w〉 =

v̄1w2 + v̄2w1, that is, 〈., .〉 denotes standard scalar product in C2.
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Now, for any vector X ∈ C2, it can be expressed for α near αNS as X = z v + z̄v̄,
for some complex z. As a consequence, z = 〈w,X〉 . Thus, system (3.5) can be
transformed for sufficiently small |alpha| (close to αNS ) into the following form:

z 7→ λ(α)z + g(z, z̄, σ),

where λ(α) can be expressed as λ(α) = (1+ϕ(α))eiθ(α), where ϕ(α) is a smooth func-
tion with ϕ(αNS) = 0 and g is a smooth function of z, z̄, α whose Taylor expansion
with respect to z, z̄ includes quadratic and higher-order terms:

g(z, z̄, α) =
∑
i,j≥2

1

i!j!
gi,j(α) z

i z̄j ,

where gi,j ∈ C, i, j = 1, 2..... Now, the Taylor coefficients gi,j can be represented as
follows:

g20(αNS) = 〈w, B(v, v)〉, g11(αNS) = 〈w, B(v, v̄)〉,

g02(αNS) = 〈w, B(v̄, v̄)〉, g21(αNS) = 〈w, C(v, v, v̄)〉,
the coefficient ψ(αNS), determines the direction of the appearance of the invariant
curve can be computed via

ψ(αNS) = Re(
eiθ(αNS)g21

2
)−Re((1− 2eiθ(αNS))e−2iθ(αNS)g20g11

2(1− eiθ(αNS))
)−1

2
|g11|2−

1

4
|g02|2,

where eiθ(αNS) = λ(αNS).
Summarizing the above analysis and using the bifurcation Theory in section 4 in [16],
we may state the following theorem.

Theorem 3.2. If ψ(αNS) 6= 0 and the two conditions (3.8), (3.7) are satisfied,
then the system (1.2) exhibits a Neimark-Sacker bifurcation at

α = αNS =
(σ − 1)(1 + ρ2)2

2ρ(1 + bnϵ)
. Moreover, if ψ(αNS) < 0 (respectively, > 0 ) the

Neimark-Sacker bifurcation of system (1.2) at α = αNS is supercritical (respectively,
subcritical). In addition, there exists a closed invariant curve that bifurcates from
(x∗, y∗) for α = αNS.

4. Chaos control

In this section, the state feedback control method [8, 11, 17] is applied to the
system (1.2) to achieve the chaos control. Let (x∗, y∗) be a fixed point of (1.2) and
Consider the following controlled form of (1.2)

xn+1 =
α(1 + bnϵ)

1 + x2n
+ yn + un,

yn+1 = yn − σ(xn − ρ).

(4.1)

with the following feedback control law as the control force [11]

un = −K1(xi − x∗)−K2(yn − y∗),
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k1, k2 are the feedback gains.
The Jacobian matrix of the system (4.1) at (x∗, y∗) reads

Jc(x
∗, y∗) =

 −2α(1 + bnϵ)

(1 + ρ2)2
− k1 1− k2

−σ 1

 .

The characteristic equation corresponding to Jc(x
∗, y∗) reads

(4.2) λ2 − tr(J)λ+ det(J) = 0,

where tr(Jc) = 1− k1−
2α(1 + bnϵ)

(1 + ρ2)2
and det(Jc) = σ(1− k2)− (

2ρα(1 + bnϵ)

(1 + ρ2)2
+ k1).

Let λ1 and λ1 be the roots of (4.2). Then,

(4.3) λ1 + λ2 = 1− k1 −
2α(1 + bnϵ)

(1 + ρ2)2
,

(4.4) λ1λ2 = σ(1− k2)− k1 − (
2ρα(1 + bnϵ)

(1 + ρ2)2
+ k1).

The solutions of the equations λ1 = ±1 and λ1λ2 = 1 determine the lines which
determine the region of stability stability. Suppose that λ1λ2 = 1, then from (4.4)
we get

(4.5) l1 : k1 = σ(1− k2)− (
2ρα(1 + bnϵ)

(1 + ρ2)2
+ k1)− 1.

Solving (4.3) and (4.4) at λ1 = 1 we get

(4.6) l2 : k2 = 2.

Solving (4.3) and (4.4) at λ1 = −1, we get

(4.7) l3 : k1 =
σ(1− k2)

2
− (

2ρα(1 + bnϵ)

(1 + ρ2)2
+ k1) + 1.

The three lines l1, l2 and l3 determine a triangular region in the (k1, k2) plane which
gives | λ1,2 |< 1.

5. Numerical simulation

Here, we confirm the obtained theoretical results by performing some numer-
ical simulations. Figure 1 gives some bifurcation diagrams of the system (1.2).
Moreover, the maximal Lyapunov exponent corresponding to each bifurcation di-
agram is introduced below it. In Figure 1 (a), we start with the initial point
(1.5, 0.3) with ϵ = 0.1, σ = 0.2, ρ = 1.3, bn = −1. According to Theorem
, the system (1.2) undergoes flip bifurcation at α = 3.4016 which is illustrated
in Figure 1 (a). In Figure 1 (b), we start with the initial point (−0.8,−1) with
ϵ = 0.1, σ = 0.5, ρ = −1, bn = −1. According to Theorem , the system (1.2)
undergoes Neimark-Sacker bifurcation at α = 1.1111 which is illustrated in Figure
1 (b). In Figure
reffl11 (b), we start with the initial point (−0.1,−0.1) with ϵ = 0.2, σ = 0.3, ρ =
−0.3, bn = −1. According to Theorem , the system (1.2) undergoes Niemark-Sacker
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bifurcation at α = 1.7326 which is illustrated in Figure 1 (b). Figure 1 (h) illus-
trates that the system (1.2) undergoes flip bifurcation at ϵ = 0.2, σ = 0.3, ρ =
0.3, bn = (−1)n, α ≊ 1.7. Figure 1 (b) illustrates that the system (1.2) undergoes
Neimark-Sacker bifurcation at ϵ = 0.2, σ = 0.3, ρ = −0.3, bn = (−1)n, α ≊ 1.5.
Figure 2 consists of some phase portraits of the system (1.2) associated with Figure

Figure 1. Bifurcation diagrams and the corresponding maximal
Lyapunov exponent of the system (1.2)
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1 (b). In each diagram we use the same values of the parameters which have been
used in Figure 1 (b) i.e. ϵ = 0.1, σ = 0.5, ρ = −1, bn = −1 and start with the
same initial point (−0.8, −1). we can see a smooth invariant circle bifurcates from
the fixed point (−1,−1.45), Figure Figure 2 (a), to a circular curve enclosing the
fixed point, Figure 2 (b). In Figure 2 (c) and Figure 2 (d), circular curve appears
with radius increases as α increases. In Figure 2 (e) the circular curve breakdown.
The circular curve appear again, Figure 2 (f). The circular curve breakdown again
and a period-9 orbit appears, Figure 2 (g) and Figure 2 (h). Then as α increases
the system becomes chaotic, Figure 2 (i). Figure 2 (j) and Figure 2 (k) show that
a period-8 orbit appears and the Lyapunov exponent is negative again, Figure 1
(e). Then as α increases the system becomes chaotic as shown in Figure 2 (l), and
the Lyapunov exponent is positive again, Figure 1 (e). Figure 3 consists of some
phase portraits of the system (1.2) associated with Figure 1 (c). In each diagram
we use the same values of the parameters which have been used in Figure 1 (c)
i.e. ϵ = 0.2, σ = 0.3, ρ = −0.3, bn = −1 and start with the same initial point
(−0.1, −1). At α = 1.7 the attracting fixed point (−0.3, −1.5477) is illustrated in
Figure 3 (a). The fixed point loses its stability as α increases, in Figure 3 (b) at
α = 1.74 and Figure 3 (c) at α = 1.77. In Figure 3 (d), Figure 3 (e) and Figure
3 (f) circular curve appears with radius increases as α increases. In Figure 3 (g)
the circular curve breakdown at α = 2.4. In Figure 3 (h) the closed curve appears
again at α = 2.6. The curve breakdown at α = 2.8, Figure 3 (i), and then as
α ≥ 3 the system becomes chaotic, Figure 3 (j), Figure 3 (k), Figure 3 (l), and
the Lyapunov exponent becomes positive, Figure 1 (f). Figure 4 consists of some
phase portraits associated with Figure 1 (a). Figure 4 (a) illustrates the the ex-
istence of a period-2 orbit. A douple-period bifurcation occurs as α increases and
Figure 4 (b) illustrates the existence of a period-4 orbit. Figure 4 (c) illustrates
the birth of period-8 orbit. Then, the system becomes chaotic as α increases which
is illustrated in Figure 4 (d) and the Lyapunov exponent is positive, Figure 1 (d).
Figures 5, 7 and 6 show how a small change in the perturbation parameter ϵ leads
to a great change in the qualitative behavior of the system (1.2). As ϵ being the
bifurcation parameter, Figure 5 introduces some bifurcation diagrams of the system
(1.2) and the corresponding maximal Lyapunov exponent. In Figure 5 (a) we take
σ = 0.3, ρ = 0.3, bn = −1, α = 3 and start from the initial point (0.5,−2). We
can see that when ϵ = 0 i.e. there is no perturbation, the system is chaotic but
for small perturbation the system has periodic orbits. Moreover, we can see that a
halving-period bifurcation occurs as ϵ increases. The maximal Lyapunov exponent
of the system (1.2) corresponding to Figure5 (a) is given in Figure 5 (c). In Figure
5 (b) we take σ = 0.5, ρ = −1, bn = −1, α = 4 and start from the initial point
(−0.8,−1.3). We can see that a small change ϵ may make the system chaotic or has
periodic orbits. The maximal Lyapunov exponent of the system (1.2) corresponding
to Figure 5 (b) is given in Figure 5 (d). Figure 6 introduce some phase portraits of
the system (1.2) corresponding to Figure 5 (a). In Figure 6 (a), ϵ = 0 the system
(1.2) is reduced to the original Rulkov map and it is chaotic as illustrated by the
positive value of the maximal Lyapunov exponent in Figure 5 (c). For small per-
turbation ϵ = 0.08, Figure 6 (b) show that the system no longer chaotic but it has
a 4-period and the maximal Lyapunov exponent is negative in Figure 5 (c). Figure
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Figure 2. Phase portraits of the system (1.2) associated with Fig-
ure 1 (b)

6 (c) show that at ϵ = 0.15 the 4-period is reduced to 2-period. Figure 7 introduces
some phase portraits of the system (1.2) corresponding to Figure 5 (b). In Figure 7
(a), ϵ = 0 the system (1.2) is reduced to the original Rulkov map and it is chaotic as
indicated by the positive value of the maximal Lyapunov exponent in Figure 5 (d).
In Figure 7 (b), there is 8-period at ϵ = 0.35 and the maximal Lyapunov exponent
is negative in Figure 5 (d). The system becomes chaotic again in Figure 7 (c) and
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Figure 3. Phase portraits of the system (1.2) associated with Fig-
ure 1 (c)

the maximal Lyapunov exponent is positive in Figure 5 (d). In Figure 7 (d), there
is 9-period at ϵ = 0.56 with negative maximal Lyapunov exponent in Figure 5 (d).
In Figure 7 (e) and Figure 7 (f), circular curve appears with radius decreases as
ϵ increases. Figure 8 shows how the feedback control method works. Figure 8 (a)
illustrates the stability region in (k1, k2) plan. Figure 8 (b) shows a plot when the
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Figure 4. Phase portraits of the system (1.2) associated with Fig-
ure 1 (a)

Figure 5. Bifurcation diagrams and the corresponding maximal
Lyapunov exponent of the system (1.2)

control is switched on after 150 iterations and is left switched on. In Figure 8 (c),
the control is switched on after 150 iterations and then switched off after the 300th
iterate. In Figure 8 (d), the control is switched on after 50 iterations, switched
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Figure 6. Phase portraits of the system (1.2) corresponding to Fig-
ure 5 (a)

Figure 7. Phase portraits of the system (1.2) corresponding to Fig-
ure 5 (b)

off after 200 iterations and then switched on again after 250 iterations and is left
switched on.

6. Conclusion

The present study investigates the dynamics of a neuron model that is modified
through parametric perturbation in the Rulkov map. The authors carried out a lo-
cal stability analysis, which demonstrated that the system presents flip bifurcation
and Neimark-Sacker bifurcation. To achieve chaos control, the state feedback con-
trol approach was employed. Subsequently, numerical simulations were conducted
to verify the theoretical outcomes. The research also examines the impact of the
perturbation parameter on the system’s behavior. Specifically, the findings indicate
that even a small perturbation can lead to a significant change in the qualitative
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Figure 8. Chaos control of the system (1.2)

dynamics of the system. The system displays multiple periodic orbits, including
4-period, 8-period, and 9-period. Furthermore, by selecting the perturbation pa-
rameter as the bifurcation parameter, the study shows that the system may exhibit
a halving-period bifurcation.
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