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It is important to note that chaotic neural networks are non-linear dynamic sys-
tems that exhibit startling similarities to the biological neuronal networks that
comprise the human brain, and this can lead to increased processing speed due to
the complex spatiotemporal dynamics of neurons contained within the network.

On the other hand, the theory of time scales which was first introduced by
Hilger [10] in his Ph.D. thesis in 1988 has received a lot of attention due to the
fact that it is able to unite continuous and discrete systems in an equally effective
manner. In other words, by selecting the time scale to be the set of real numbers,
the general result produces a result for differential equations. Likewise, by selecting
the time scales as a set of integers, the same general result gives a result of dif-
ference equations. Furthermore, it is also possible to extend the results over time
scales to other types of equations as well. For that reason, there has been a rapid
development in the theory of dynamic equations on time scales during the last years
(see [9, 12,13,17]).

The theory of weighted pseudo almost periodicity in time scales, which is the
central subject of this paper started in 2016. When Y. Li and L. Zhao [15], extended
the well-known weighted almost periodic functions to time scales, then they studied
the existence and global exponential stability of weighted pseudo-almost periodic
solutions for a class of cellular neural networks with discrete delays on time scales.
Thereafter, in [3], the author demonstrated the existence and the global exponential
stability of the unique weighted pseudo-almost periodic solution of bidirectional
associative memory neural networks with mixed time-varying delays and leakage
time-varying delays on time-space scales. Meanwhile, X. Yu and Q. Wang [20]
investigated the existence, uniqueness, and global exponential stability of weighted
pseudo-almost periodic solutions for a class of Shunting Inhibitory Cellular Neural
Networks with mixed delays on time scales. In 2020, S. Shen and Y. Li [18] studied
the existence, and global exponential stability of weighted pseudo almost periodic
solutions for a class of Clifford valued neural networks on time scales.

In the light of the above-mentioned studies, the primary purpose of this paper is
to study the existence and uniqueness, global exponential stability of the weighted
pseudo almost periodic of the following chaotic neural networks on time scales

(1.1) y∆i (t) = −δi(t)yi(t) +
n∑

j=1

aij(t)fj(yj(t− ηij(t))) +
n∑

j=1

bij(t)g(yj(t− τij(t)))

+

n∑
j=1

cij(t)

t∫
t−ξ

h(yj(ζ))∆ζ + Ji(t)

where i = 1, 2, ..., n, n corresponds to the number of units in a neural network, T is
an almost periodic time scale, η(t), τ(t) are transmission delays at time t fulfilling
t− η(t) ∈ T t− τ(t) ∈ T.

As far as we know, there are no published papers in the literature on the existence,
and global exponential stability of weighted pseudo-almost periodic solutions on
time scales for (1.1).

The organization of the paper can be summarized as follows. In section 2, As
a prelude to the later sections of this paper, we introduce some notations and
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definitions as well as preliminary lemmas. In section 3 we study the existence and
Uniqueness of weighted pseudo almost periodic solutions for a class of chaotic neural
networks on time scales. In section 4, we prove that the weighted pseudo almost
periodic solution obtained in the previous section is globally exponentially stable.
Finally, in section5, in order to demonstrate the feasibility and effectiveness of our
results obtained in the last sections, we present a few examples.

2. Preliminaries

In this section, we introduce some notations and definitions and state some pre-
liminary results.

For convenience, for any y = (y1, y2, ..., yn)
T ∈ Rn, we let |y| = (|y1| , |y2| , .., |yn|)T

denote the absolute-value vector, and define ‖y‖ = max
1≤i≤n

|yi|.

Let BC(T,Rn) denotes the set of all bounded and continued functions which go
from T to Rn. Note that (BC(T,Rn), ‖·‖∞) is a Banach space where ‖·‖∞ denote
the sup-norm

‖f‖∞ = sup
t∈T

‖f(t)‖ .

A time scale T is an arbitrary nonempty closed subset of R. For t ∈ T, we
define the forward and backward jump operators σ, ρ : T → T, and the graininess
µ : T → R+, respectively, by

σ(t) := inf {s ∈ T : s > t} , ρ(t) := sup {s ∈ T : s < t} , and µ(t) = σ(t)− t.

In addition, we put inf ∅ = supT (i.e., σ(M) = M if T has a maximum M) and
sup ∅ = inf T (i.e., ρ(m) = m if T has a minimum m).

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. Points that
are right dense and left dense are called dense. If T has a left-scattered maximum
M then Tk := T\ {M} ; otherwise Tk := T. If T has a right-scattered minimum m
then Tk := T\ {m}; otherwise Tk := T. we denote by IT = I ∩ T each interval I of
R.

Definition 2.1 ([4]). A function f : T → R is called right-dense continuous or rd-
continuous provided it is continuous at right-dense point in and its left-side limits
exist (finite) at left-dense points in T.

Definition 2.2 ([4]). For a function f : T → R and t ∈ Tk, we define the delta
derivative of f at t, denoted f∆(t), to be the number (provided it exists) with the
property that given any ϵ > 0, there is a neighborhood U of t such that

(2.1)
∣∣f(σ(t))− f(s)− f∆(t)(σ(t)− s)

∣∣ ≤ ϵ |σ(t)− s| , for all s ∈ U.

Lemma 2.3 ([4]). Let f, g be differentiable functions at t ∈ Tk. Then

(1) The sum f + g : T → R is differentiable at t with

(f + g)∆ (t) = f∆(t) + g∆(t).

(2) For any constant α, αf : T → R is differentiable at t with

(αf)∆ (t) = αf∆(t).
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(3) The product fg : T → R is differentiable at t with

(fg)∆ (t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t))

Definition 2.4 ([12]). Let f be right-dense continuous. If F∆(t) = f(t), then we
define the delta integral by ∫ t

a
f(s)∆s = F (t)− F (a).

Lemma 2.5 ([9]). Let f be a delta differentiable function at t ∈ T k. If f and f∆

are continuous, then

(2.2)

(∫ t

a
f(t, s)∆s)

)∆

= f(σ, t) +

∫ t

a
f∆(t, s)∆s.

Definition 2.6 ([4]). A function p : T → R is called regressive if

1 + µ(t)p(t) 6= 0, for all t ∈ Tk.

The set of all regressive and rd-continuous functions p : T → R will be denoted by
R = R(T) = R(T,R).

Definition 2.7 ([4]). We define the set R+ of all positively regressive elements of
R by

R+ = R(T,R) = {ρ ∈ R : 1 + µ(t)p(t) > 0, for all t ∈ R}
.

Definition 2.8 ([4]). If p ∈, then for all t, s ∈ T the generalized exponential function
is defined by

ep(t, s) = exp

{∫ t

s
ξµ(τ)(p(t))∆τ

}
,

where the cylinder transformation is introduced by

ξh(z) =

{
log(1− hz)

h
if h 6= 0,

z if h = 0.

Definition 2.9 ([4]). If p, q ∈ R, then we define a circle plus addition by

(p⊕ q) (t) := p(t) + q(t)− p(t)q(t)µ(t),

for all t ∈ Tk. For p ∈ R define a circle minus p by

	p := − p

1 + µp

Lemma 2.10 ([4]). Let p, q ∈ R, and t, s, r ∈ T, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t))ep(t, s);
(iii) ep(t, s) =

1
ep(s,t)

= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, s);
(v) [e⊖p(t, s)]

∆ = 	p(t)e⊖p(t, s);
(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);
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(vii) If a, b, c ∈ T, then∫ b

a
p(t)ep(c, σ)δt = ep(c, a)− ep(c, b).

Lemma 2.11. Assume p ∈ R, and t0 ∈ T. If 1 + µ(t)p(t) > 0, then ep(t, t0) > 0
for all t ∈ T.

Definition 2.12 ([12]). A time scale T is called an almost periodic time scale if

(2.3) Π := {τ ∈ R : t± τ ∈ T, ∀t ∈ T} 6= 0

Definition 2.13 ([12]). Let T be an almost periodic time scale. A function f ∈
C(T,Rn) is called almost periodic if for any given ϵ > 0, the set

E(ϵ, f) = {τ ∈ Π : ‖f(t+ τ)− f(t)‖ < ϵ, ∀t ∈ T}
is relatively dense in T; that is, for any given ϵ > 0, there exists an lϵ such that
every interval of length lϵ contains at least a number τ ∈ E(ϵ, f) such that

‖f(t+ τ)− f(t)‖ < ϵ, ∀t ∈ T.
The set E(ϵ, f), is called ϵ-translation set of f(t), τ is called ϵ-translation number

of f(t), and lϵ is called contain interval length of E(ϵ, f). The collection of all almost
periodic functions which go from T to Rn will be denoted by AP (T,Rn). AP (T,Rn)
equipped with the sup-norm ‖f‖∞ = sup

t∈T
‖f(t)‖ is a Banach space.

Definition 2.14 ([14]). A function f ∈ C(T,Rn) is called pseudo-almost periodic
if f = g + h, where g ∈ AP (T,Rn) and h ∈ PAP0(T,Rn), where

PAP0(T,Rn)

:=

ϕ ∈ BC(T,Rn) : ϕ is ∆-mesurable such that lim
t→+∞

1

2r

t̄+r∫
t̄−r

‖ϕ(s)‖∆s = 0

 ,

for each t̄ ∈ T, r ∈ Π.

Definition 2.15 ([12]). Let y ∈ Rn and let A(t) be a n × n continuous matrix
defined on T. The linear system

(2.4) y∆(t) = A(t)y(t)

is said to admit an exponential dichotomy on T if there exist positive constant k, α,
projection P , and the fundamental solution matrix Y (t) of (2.4), satisfying∥∥Y (t)PY −1(σ(s))

∥∥
0
≤ ke⊖α(t, σ(s)), s, t ∈ T, t ≥ σ(s),∥∥Y (t)(I − P )Y −1(σ(s))

∥∥
0
≤ ke⊖α(t, σ(s)), s, t ∈ T, t ≤ σ(s),

where ‖·‖0 is a matrix norm on T.

Consider the following almost periodic system

(2.5) y∆(t) = A(t)y(t) + f(t), t ∈ T.
where A(t) is an almost periodic matrix function, f(t) is an almost periodic vector
function.
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Lemma 2.16 ([12]). If the linear system (2.4) admits exponential dichotomy, then
system (2.5) has a bounded solution y(t) as follows:

(2.6) y(t) =

∫ t

−∞
Y (t)PY −1(σ(s))f(s)∆s−

∫ +∞

t
Y (t)(I − P )Y −1(σ(s))f(s)∆s,

where Y (t) is the fundamental solution matrix of (2.4).

Lemma 2.17 ([12]). Let δi(t) be an almost periodic function on T, where δi(t) > 0,

−δi(t) ∈ R+, ∀t ∈ T and min
1≤i≤n

{
inf
t∈T

δi(t)

}
= m > 0 then the linear system

(2.7) y∆(t) = diag−δ1(t),−δ2(t), ...,−δn(t)y(t)
admits an exponential dichotomy on T.

Let Λ the collection of functions (weights) ν : T → (0,∞), that are locally inte-
grable over T such that ν > 0 almost everywhere. Let ν ∈ Λ, for r ∈ Π with r > 0,
we denote

ν(Qr) :=

∫
Qr

ν(x)∆x,

where Qr := [t̄− r, t̄+ r]T (t̄ = min{[0,∞)T}). If ν(x) = 1 for each x ∈ T, then
lim
r→∞

ν(Qr) = ∞. Consequently, we define the space of weights Λ∞ by

Λ∞ :=

{
ν ∈ Λ : inf

t∈Λ
ν(t) = ν0 > 0, lim

r→∞
ν(Qr) = ∞

}
.

In addition we define the set of weight ΛB by

ΛB :=

{
ν ∈ Λ∞ : sup

t∈T
<∞

}
and denote

BCU(T,Rn) = {f ∈ BC(T,Rn) : f is uniformly continuous}

Definition 2.18 ([15]). Fix ν ∈ Λ∞. A continuous function f : T → Rn is called
weighted pseudo-almost periodic if it can be written as f = h+ϕ with h ∈ AP (T,Rn)
and ϕ ∈ PAP0(T,Rn, ν) where the space PAP0(T,Rn, ν) is defined by

PAP0(T,Rn, ν) =

{
ϕ ∈ BCU(T,Rn) : lim

r→+∞

1

ν(Qr)

∫
Qr

‖g(t)‖ ν(t)∆t
}

= 0.

All weighted pseudo-almost periodic functions which go from T to Rn, will be de-
noted by PAP0(T,Rn, ν).

Denote

Λ+
∞ :=

{
ν ∈ Λ∞ : for all s ∈ Π, lim sup

|t|→∞

ν(t+ s)

ν(t)
<∞, lim sup

|t|→∞

ν(Qt+τ )

ν(Qt)
<∞

}
.

Lemma 2.19 ([15]). Let ν ∈ Λ+
∞. Then (PAP (T,Rn, ν), ‖·‖∞) is a Banach space.

Lemma 2.20 ( [15]). Let ν ∈ Λ+
∞, then the space PAP (T,Rn, ν) is translation

invariant.
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Lemma 2.21 ( [15]). Let ν ∈ Λ+
∞. If f, g ∈ PAP (T,Rn, ν), then f + g, fg ∈

PAP (T,Rn, ν). If f ∈ PAP (T,Rn, ν), g ∈ AP (T,Rn) then fg ∈ PAP (T,Rn, ν).

Lemma 2.22 ([15]). Let ν ∈ Λ+
∞. If f : R → R satisfies the Lipschitz condition

and ϕ ∈ PAP (T,Rn, ν) then Γ : t 7→ f(ϕ(t)) belongs to PAP (T,Rn, ν)

3. Existence of weighted pseudo almost periodic solutions

For convenience, we introduce the following notations:

δ−i = inf
t∈T

|δi(t)| , a−ij = inf
t∈T

|aij(t)| , b−ij = inf
t∈T

|bij(t)| , c−ij = inf
t∈T

|cij(t)| ,

a+ij = sup
t∈T

|aij(t)| , b+ij = sup
t∈T

|bij(t)| , c+ij = sup
t∈T

|cij(t)| ,

τ+ij = sup
t∈T

|τij(t)| , η+ij = sup
t∈T

|ηij(t)| , π = max
1≤i,j≤n

{
η+ij , τ

+
ij , ξ

}
.

Throughout this paper, we assume that the following conditions hold

H1) δi ∈ AP (T,R) with δi(t) > 0, −δi(t) ∈ R+, ∀t ∈ T and min
1≤i≤n

{
inf
t∈T

δi(t)

}
>

0, ηij(t), τij(t) ∈ AP (T,Π) ∩ C1(T,Π) with α := inf
{
(1− η∆ij (t)),

(1− τ∆ij (t))
}
> 0, aij , bij , cij ∈ PAP (T,R, ν) and Ii(t) ∈ PAP (T,R, ν).

H2) fj , gj , hj ∈ C(R,R) and there exist positive constants Lf
j , L

g
j , L

h
j ,M

f
j ,M

h
j

and Mg
j such that for all u, v ∈ R and j = 1, 2, ..., n.

|fj(u)− fj(v)| ≤ Lf
j |u− v| , |gj(u)− gj(v)| ≤ Lg

j |u− v| ,

|hj(u)− hj(v)| ≤ Lh
j |u− v| , fj(u) ≤Mf

j , gj(u) ≤Mg
j , hj(u) ≤Mh

j ,

and fj(0) = gj(0) = hj(0).

H3 F (τ) = sup
t T

ν(t+ τ)

ν(t)
is bounded and continuous on arbitrary closed subin-

terval of [0,+∞)T

H4) k = max
1≤i≤n



[
n∑

j=1
a+ijL

f
j +

n∑
j=1

b+ijL
g
j +

n∑
j=1

c+ijL
h
j ξ

]
δ−i

 < 1.

Lemma 3.1. Let ν ∈ Λ+
∞. Suppose that H1 and H3 hold. If f ∈ PAP (T,R, ν),

then f(· − τ(·)) ∈ PAP (T,R, ν)
Proof. By the weighted pseudo almost periodicity of f , we have

(3.1) f(t− τ(t)) = f1(t− τ(t)) + f2(t− τ(t)) := F1(t) + F2(t), t ∈ T,
where f1 ∈ AP (T,Rn) and f2 ∈ PAP0(T,R, ν). It’s obvious that F1(·) = f1(t −
τ(t)) ∈ AP (T,R). It remains to show that F2(·) = f2(· − τ(·)) ∈ PAP0(T,Rn, ν).
In view of H3 we have

ν(t)

ν(t− τ(t))
=
ν(t− τ(t) + τ(t))

ν(t− τ(t))
≤ sup

ϱ∈[τ−,τ+]

F (ϱ).
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Set γ = sup
t∈T

(
1

1− τ∆(t)

)
sup

ϱ∈[τ−,τ+]

F (ϱ), then

0 ≤ lim
r→∞

1

ν(Qr)

r∫
−r

‖f2(t− τ(t))‖ ν(t)∆t

≤ lim
r→∞

1

ν(Qr)

 r∫
−r

‖f2(t− τ(t))‖ ν(t− τ(t))∆t

 sup
t∈T

ν(t)

ν(t− τ(t))

≤ lim
r→∞

1

ν(Qr)

 r−τ(r)∫
−r−τ(−r)

|f(s)| ν(s) sup
t∈T

1

1− τ∆(t)
∆s

 sup
t∈T

ν(t)

ν(t− τ(t))

≤ lim
r→∞

γ
1

ν(Qr)

r−τ(r)∫
−r−τ(−r)

‖f(s)‖ ν(s)∆

≤ γ lim
r→∞

sup
ν(Qr+τ+)

ν(Qr)

1

(Qr+τ+)

r+τ+∫
−(r+τ+)

‖f(s)‖ ν(s)∆

= 0

which implies that f(·− τ(·)) ∈ PAP0(T,Rn, ν). Hence f(·− τ(·)) ∈ PAP (T,Rn, ν)
□

Lemma 3.2. Let ν ∈ Λ+
∞. Assume that H1 −H4 hold and yj(ζ) ∈ PAP (T,Rn, ν),

then χ(t) =

t∫
t−ξ

hj(yj(ζ))∆ζ ∈ PAP (T,Rn, ν).

Proof. Since the function χ satisfies

|χ| =

∣∣∣∣∣∣∣
t∫

t−ξ

hj(yj(ζ))∆ζ

∣∣∣∣∣∣∣
≤ ξMh

j

which gives that the integral

t∫
t−σ

hj(yj(ζ))∆ζ is absolutely convergent and the func-

tion χi is bounded. We will now show the the continuity of χ. For any rd-dense
point t ∈ T, let {tn} ∈ T a sequence such that tn > t and lim

n→∞
tn = t. The continuity

of the function y gives that for any ϵ > 0 there exists a constant N ∈ N such that
for any integer n > N , s ∈ T with tn − s ∈ T and t− s ∈ T, we obtain

|yj(tn − s)− yj(t− s)| < ϵ

Lh
j ξ
.
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Which yields,

|χ(tn)−χ(t)|

=

∣∣∣∣∣∣∣
tn∫

tn−ξ

hj(yj(ζ))∆ζ −
t∫

t−ξ

hj(yj(ζ))∆ζ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
tn∫

tn−ξ

hj(yj(ζ))∆ζ −
t∫

t−ξ

hj(yj(ζ))∆ζ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
ξ∫

0

hj(yj(u+ tn − ξ))∆u−
ξ∫

0

hj(yj(u+ t− ξ))∆u

∣∣∣∣∣∣
≤ Lh

j ξ |yj(u+ tn − ξ)− yj(u+ tn − ξ)|

≤ ϵ.

We conclude similarly that the function χ is ld-continuous. Consequently, χi is
continuous on T. By Lemma 2.22, we have hj(yj(ζ)) ∈ PAP (T,Rn, ν). Moreover,
let

hj(yi(ζ)) = h1j(yj(ζ)) + h2j(yj(ζ)) = H1(ζ) +H2(ζ)

where H1j ∈ AP (T,Rn), H2j ∈ PAP0(T,Rn, ν). Hence,

χ(t) =

t∫
t−ξ

H1j(ζ) +H2j(ζ)∆ζ

=

t∫
t−ξ

H1j(ζ)∆ζ +

t∫
t−ξ

H2j(ζ)∆ζ

= χ1(t) +χ2(t).

The almost periodicity of H1j implies that sup
t∈T

|H1j(t+ δ)−H1j(t)| <
ϵ

ξ
for all

ϵ > 0

∣∣χ1(t+ δ)−χ1(δ)
∣∣ =

∣∣∣∣∣∣∣
t+δ∫

t+δ−ξ

H1j(ζ)−
t∫

t−ξ

H1j(ζ)∆ζ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
t∫

t−ξ

n∑
j=1

c+ijH1j(ζ + δ))−
t∫

t−ξ

H1j(ζ)∆ζ

∣∣∣∣∣∣∣
≤

t∫
t−ξ

|H1j(ζ + δ)−H1j(ζ)|∆ζ
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≤ ϵ,

it follow that, χ1(t) ∈ AP (T,Rn). On the other hand, sinceH2j(·) ∈ PAP0(T,Rn, ν),
we obtain from Lemma (2.20) that H2j(·−s) ∈ PAP0(T,Rn, ν) for all s ∈ R. Hence

lim
r→∞

1

ν(Qr)

r∫
−r

∣∣χ2(t)
∣∣ ν(t)∆t ≤ lim

r→∞

1

ν(Qr)

r∫
−r

ν(t)∆t

t∫
t−ξ

|H2j(ζ)|∆ζ

≤ lim
r→∞

1

ν(Qr)

r∫
−r

ν(t)∆t

t∫
t−ξ

|H2j(ζ)|∆ζ

≤ lim
r→∞

1

ν(Qr)

r∫
−r

ν(t)∆t

0∫
−ξ

|H2j(t− s)|∆s

≤ lim
r→∞

1

ν(Qr)

0∫
−ξ

r∫
−r

|H2j(t− s)| ν(t)∆t∆s

= 0,

which gives that χ2 ∈ PAP0(T,Rn, ν). Thus χ ∈ PAP (T,Rn, ν). □

Lemma 3.3. Let ν ∈ Λ+
∞, suppose that assumptions H1-H4 hold. Define the non-

linear operator Π as follows for each φ ∈ PAP (T,Rn, ν)

(Πφ)i (t) =

t∫
−∞

e−δi(t, σ(s))Γi(s)∆s, i = 1, 2, ..., n(3.2)

where

Γi(s) =
n∑

j=1

aij(s)fj (φj(s− ηij(s))) +
n∑

j=1

bij(s)gj (φj(s− τij(s)))

+
n∑

j=1

cij(t)

s∫
s−σ

hj(φj(ζ))∆ζ + Ji(s),

Then Π maps PAP (T,Rn, ν) into itself.

Proof. For any given φ ∈ PAP (T,Rn, ν), we consider the following equation

y∆i (t) = −δi(t)yi(t) +
n∑

j=1

aij(t)fj(yj(t− ηij(t))) +
n∑

j=1

bij(t)(yj(t− τij(t)))(3.3)

+

n∑
j=1

cij(t)

t∫
t−ξ

h(yj(ζ))∆ζ + Ji(t), i = 1, 2, ..n,
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and its associated homogeneous equation

(3.4) y∆i = −δi(t)yi(t) i = 1, 2, .., n.

From H4 and Lemma 2.17 we deduce that (3.4) admits an exponential dichotomy.
In addition, we can assume by Lemmas (2.22) and (3.1) that the functions s 7→
fj(φj(s − ηij(s))) and s 7→ gj (ϕj(s− τij(s))) belong to PAP (T,Rn, ν). Note that

we have actually proved in lemma (3.2) that the function s 7→
s∫

s−ξ

hj(yj(ζ))∆ζ ∈

PAP (T,Rn, ν). Hence, the function Γi ∈ PAP (T,Rn, ν). Thus, by Theorem 4.2
in [15] obtain that

(3.5)

t∫
−∞

e−δi(t, σ(s))Γi(s)∆s, i = 1, 2, ..., n

is a weighted pseudo almost periodic solution of (1.1). □

Theorem 3.4. Suppose that assumptions H1-H4 hold. Then the delayed chaotic
neural networks (1.1) has a unique pseudo almost periodic solution in the region

(3.6) E =

{
ϕ ∈ PAP (T,Rn, ν), ‖φ− φ0‖ ≤

k ‖Ji‖∞
δ−i (1− k)

}
,

where φ0(t) =
s∫

−∞
e−δi(t, σ(s))Ji(s)∆.

Proof. Obviously, E is a closed subset of PAP (T,R, ν) and

‖φ0(t)‖ =

∥∥∥∥∫ t

−∞
e−δi(t, σ(s))Ji(s)∆(s)

∥∥∥∥ ≤
‖Ji‖∞
δ−i

.

Hence,for any φ ∈ E, we get

‖φ(t)‖ = ‖φ(t)− φ0(t)‖+ ‖φ0(t)‖ ≤
k ‖Ji‖∞
δ−i (1− d)

+
‖J‖∞
δ−i

≤
‖Ji‖∞

δ−i (1− d)
.

It is clear that the operator Π is a self-mapping from E to E . In fact, for any
φ ∈ E, we have

‖(Πφ)(t)− φ0(t)‖

=

∥∥∥∥∥∥
t∫

−∞

e−δi(t, σ(s))

 n∑
j=1

aij(s)fj (φj(s− ηij(s))) +
n∑

j=1

bij(s)gj (φj(s− τij(s)))

+

n∑
j=1

cij(t)

s∫
s−ξ

hj(φj(ζ))∆ζ

∆s

∥∥∥∥∥∥∥
≤

t∫
−∞

e−δi(t, σ(s))

 n∑
j=1

a+ij ‖fj (φj(s− ηij(s)))− f(0)‖+
n∑

j=1

b+ij ‖gj (φj(s− τij(s)))− g(0)‖
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+
n∑

j=1

c+ij

s∫
s−ξ

‖hj(φj(ζ))− h(0)‖∆ζ

∆s

≤ 1

δ−i

 n∑
j=1

a+ij ‖fj (φj(s− ηij(s)))− f(0)‖+
n∑

j=1

b+ij ‖gj (φj(s− τij(s)))− g(0)‖

+
n∑

j=1

c+ij

s∫
s−ξ

‖hj(φj(ζ))− h(0)‖∆ζ



≤

[
n∑

j=1
a+ijL

f
j +

n∑
j=1

a+ijL
g
j +

n∑
j=1

c+ijL
h
j ξ

]
δi

‖φ(t)‖

≤
k ‖Ji‖∞
δ−i (1− k)

.

Which yields that (Πφ) ∈ E. Our next aim is to prove that Π is a contraction
mapping of E. Under H2, for any φψ ∈ E we have

‖(Πφ)(t)− (Πψ)(t)‖

≤
t∫

−∞

e−δi(t, σ(s))

 n∑
j=1

a+ij ‖fj (φj(s− ηij(s)))− fj (ψj(s− ηij(s)))‖

+
n∑

j=1

b+ij ‖gj (φj(s− τij(s)))− gj (ψj(s− τij(s)))‖

+
n∑

j=1

c+ij

s∫
s−ξ

‖hj(φj(ζ))− h(0)‖∆ζ

∆s

≤


t∫

−∞

e−δi(t, σ(s))

 n∑
j=1

a+ijL
f
j +

n∑
j=1

a+ijL
g
j +

n∑
j=1

c+ijL
h
j ξ

∆s

 ‖ϕ− ψ‖∞

≤

[
n∑

j=1
a+ijL

f
j +

n∑
j=1

a+ijL
g
j +

n∑
j=1

c+ijL
h
j ξ

]
δ−i

‖ϕ− ψ‖∞

≤ k ‖ϕ− ψ‖∞ .

Since k < 1, we obtain that Π is a contraction mapping. Hence, system (1.1) has a
unique weighted pseudo almost periodic solution on E. □
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4. Exponential stability of the weighted pseudo-almost periodic
solution

In this section, we will study the exponential stability of weighted pseudo almost
periodic solution on time scale of system (1.1).

Definition 4.1. The pseudo almost periodic solution y of system (1.1) with initial
value φ is said to be globally exponentially stable if there exist a positive constant

λ with 	λ ∈ R+
and M > 0 such that every solution x of system (1.1) with initial

value φ∗ satisfies

‖x(t)− y(t)‖ ≤Me⊖λ ‖ψ‖0 , ∀ t ∈ (0,+∞)T,

where
‖ψ‖0 = sup

t∈[−π,0]
max
1≤i≤n

{|φ∗
i (t)− φi(t)|} , t0 ∈ max {[−π, 0]} .

Theorem 4.2. Assume that H1-H4 hold. Then system (1.1) has a unique weighted
pseudo almost periodic solution, which is globally exponential stable.

Proof. On account of the above theorem the system (1.1) has a weighted pseudo

almost periodic solution y = (y1, y2, ..yn)
T with the initial value φ = (φ1, φ2, ..., φn) .

Suppose that x = (x1, x2, ...xn) is an arbitrary solution of (1.1) with initial value
φ∗ = (φ∗

1, φ
∗
2, ..., φ

∗
n). Then, by system (1.1) we have

(4.1)

z∆i (t) = −δizi(t) +
n∑

j=1

aij(t) [fj(zj(t− ηij(t)) + yj(t− ηij(t)))− fyj(t− ηij(t))]

+
n∑

j=1

bij(t) [g(zj(t− τij(t)) + yj(t− τij(t)))− g(yj(t− τij(t))))]

+

n∑
j=1

cij(t)

t∫
t−ξ

[h(zj(ζ) + yj(ζ))− h(yj(ζ))]∆ζ,

where zi(t) = xi(t)− yi(t), i = 1, 2, ..n, the initial condition of (4.1) is

ψi(s) = φ∗
i (s)− φi(s), s ∈ [−π, 0]T , i = 1, 2, ..n.

Let

ϕi(β) = δ−i − β − exp(β sup
s∈T

µ(s))

 n∑
j=1

a+ijL
f
j exp(βη

+
ij) +

n∑
j=1

b+ijL
g
j exp(βτ

+
ij )

+
n∑

j=1

ξc+ijL
h
j exp(βξ)


where i = 1, 2, ..n and β ∈ [0,∞[. By H4, we get

(4.2) ϕi(0) = δ−i −

 n∑
j=1

a+ijL
f
j +

n∑
j=1

b+ijL
g
j +

n∑
j=1

σ+ijc
+
ijL

h
j

 > 0, i = 1, 2, ...n.
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Since ϕi, i = 1, 2, ..n are continuous on [0,+∞) and ϕi(β) −→ −∞ as β −→ +∞.
Hence, there exist εi > 0 such that ϕi(εi) = 0 and ϕi(β) > 0 for β ∈ (0, ε). Let
d = min

1≤i≤n
εi, we have ϕi(d) ≥ 0, i = 1, 2, ..n. Then, we can take a positive constant

0 < λ < min

{
d, min

1≤i≤n
δ−i

}
such that ϕ(λ) > 0, i = 1, 2..n which implies that for

i = 1, 2, .., n.

(4.3)
exp(λ sup

s∈T
µ(s))

δ−i − λ

 n∑
j=1

a+ijL
f
j exp

(
λη+ij

)
+

n∑
j=1

b+ijL
g
j exp(λτ

+
ij ) +

n∑
j=1

ξc+ijL
h
j exp(λξ)


< 1,

Multiplying (4.1) by e−δi(t, σ(s)) and integrating over [t0, t] for i = 1, 2, ..., n we
obtain

zi(t) = zi(t0)e−δi(t, t0) +

t∫
t0

e−δi(t, σ(s)) n∑
j=1

aij(s) [fj(zj(s− ηij(s)) + yj(s− ηij(s)))− fyj(s− ηij(s))](4.4)

+

n∑
j=1

bij(s) [g(zj(s− τij(s)) + yj(s− τij(s)))− g(yj(s− τij(s))))]

+
n∑

j=1

s∫
s−ξ

cij(ς) [h(zj(ς) + yj(ς))− h(yj(ς))]∆ς

∆s.

Denote

M = max
1≤i≤n


δ−i[

n∑
j=1

a+ijL
f
j +

n∑
j=1

b+ijL
g
j +

n∑
j=1

ξc+ijL
h
j

]
 ,

by H4 we can assume that M > 1. Hence,

1

M
−

exp(λ sup
s∈T

µ(s))

δ−i − λ n∑
j=1

a+ijL
f
j exp

(
λη+ij

)
+

n∑
j=1

b+ijL
g
j exp(λτ

+
ij ) +

n∑
j=1

ξc+ijL
h
j exp(λξ)

 ≤ 0.

It is obvious that
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|zi(t)| = |ψi(t)| ≤ ‖ψ‖0Me⊖λ(t, t0) ‖ψ‖0 , ∀ t ∈ [−π, 0]T , i = 1, 2, ..n,

where λ ∈ R+ is the same as in (4.3), then

‖x(t)− y(t)‖ = max
1≤i≤n

{|zi(t)|} ≤Me⊖λ(t, t0) ‖ψ‖0 , ∀ t ∈ [−π, 0]T .

We claim that

(4.5) ‖x(t)− y(t)‖ ≤Me⊖λ(t, t0) ‖ψ‖0 , ∀ t ∈ (0,+∞)T .

To prove that (4.5) holds, we first show that, for any P > 1 the following inequality
holds:

(4.6) ‖x(t)− y(t)‖ ≤ PMe⊖λ(t, t0) ‖ψ‖0 , ∀ t ∈ (0,+∞)T .

If (4.6) is not true, then there must be some t1 ∈ (0,+∞)T and C > 0 and some k
such that

(4.7) ‖x(t1)− y(t1)‖ = |xk(t1)− yk(t1)| = CPMe⊖λ(t1, t0) ‖ψ‖0 ,
and

(4.8) ‖x(t)− y(t)‖ ≤ CPMe⊖λ(t, t0) ‖ψ‖0 , ∀ t ∈ [−π, t1]T .
By (4.4)-(4.8)

|zi(t1)| = ‖ψ‖0 e−δi(t1, t0)

+

t1∫
t0

CPMe−δi(t1, σ(s))

 n∑
j=1

a+ijL
f
j e⊖λ(s− ηij(s), t0) +

n∑
j=1

b+ijL
g
je⊖λ(s− τij(s), t0)

+

n∑
j=1

c+ijL
h
j

s∫
s−ξ

e⊖λ(ζ, t0)∆ζ

∆s

≤ CPMe⊖λ(t1, t0) ‖ψ‖0

 1

CPM
e−δi(t1, t0)e⊖λ(t0, t1) +

t1∫
t0

e−δi(t1, σ(s))eλ(t1, σ(s))

×

 n∑
j=1

a+ijL
f
j e⊖λ(s− ηij(s), σ(s))

+
n∑

j=1

b+ijL
g
je⊖λ(s− τij(s), σ(s)) +

n∑
j=1

c+ijL
h
j

s∫
s−ξ

e⊖λ(ζ, σ(s))∆ζ




≤ CPMe⊖λ(t1, t0) ‖ψ‖0
{

1

M
e−δi⊕λ(t1, t0)+

 n∑
j=1

a+ijL
f
j exp(λ(η

+
ij + sup

s∈T
µ(s)))

+
n∑

j=1

b+ijL
g
j exp(λ(τ

+
ij + sup

s∈T
µ(s)))
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+

n∑
j=1

c+ijξL
h
j exp(λ(ξ + sup

s∈T
µ(s)))

 t1∫
t0

e−δi⊕λ(t1, σ(s))


≤ CPMe⊖λ(t1, t0) ‖ψ‖0

{
1

M
e−δi⊕λ(t1, t0)+

 n∑
j=1

a+ijL
f
j exp(λ(η

+
ij + sup

s∈T
µ(s)))

+
n∑

j=1

b+ijL
g
j exp(λ(τ

+
ij + sup

s∈T
µ(s)))

+
n∑

j=1

c+ijξL
h
j exp(λ(ξ + sup

s∈T
µ(s)))

 1− e−δi⊕λ(t1, σ(s))

δ−i − λ

}

≤ CPMe⊖λ(t1, t0) ‖ψ‖0
{

1

M
− 1

δ−i − λ

 n∑
j=1

a+ijL
f
j exp(λ(η

+
ij + sup

s∈T
µ(s)))

+

n∑
j=1

b+ijL
g
j exp(λ(τ

+
ij + sup

s∈T
µ(s)))

+
n∑

j=1

c+ijξL
h
j exp(λ(ξ + sup

s∈T
µ(s)))

 e−δi⊕λ(t1, σ(s))

+
1

δ−i − λ

 n∑
j=1

a+ijL
f
j exp(λ(η

+
ij + sup

s∈T
µ(s))) +

n∑
j=1

b+ijL
g
j exp(λ(τ

+
ij + sup

s∈T
µ(s)))

+

n∑
j=1

c+ijξL
h
j exp(λ(ξ + sup

s∈T
µ(s)))


≤ CPMe⊖λ(t1, t0) ‖ψ‖0 ,

which contradicts (4.7) and so (4.6) holds. Letting P → 1, then (4.5) holds. There-
fore, the weighted pseudo-almost periodic solution of system (1.1) is globally expo-
nentially stable. □

5. Examples and simulations

Consider the following neural network:

(5.1) y∆i = −δi(t)yi(t) +
2∑

j=1

aij(t)fj(yj(t− ηij(t))) +
2∑

j=1

bij(t)gj(yj(t− τij(t)))

+

2∑
j=1

cij(t)

t∫
t−3

hj(yj(ζ))∆ζ + Ji(t)
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5.1. Example. Take T = R

δ1(t) = 0.5 + 0.3 cos(
√
2t), δ2(t) = 0.9 + 0.6 sin(

√
2t),

(
a11 a12
a21 a22

)
=

(
0.07 cos(t) 0.08 cos(t)

0.05 cos(
√
2t) 0.05 cos(

√
5t)

)
(
b11 b12
b21 b22

)
=

(
0.05 sin(

√
4t) 0.06 cos(

√
2t)

0.07 sin(
√
5t) 0.04 sin(

√
5t)

)
(
c11 c12
c21 c22

)
=

(
0.01 cos(

√
7t) 0.01 sin(

√
4t)

0.011 cos(
√
3t) 0.03 cos(t)

)
(
τ11 τ12
τ21 τ22

)
=

(
η11 η12
η21 η22

)
=

(
1 1
1 1

)
,

(
J1
J2

)
=

(
sin(

√
2t) + sin(t) + e−|t|

cos(t)

)
f1(x) = g1(x) = h1(x) = 0.3 sin(x), f2(x) = g2(x) = h2(x) = 0.75 sin(x)

By calculation, we have δ−1 = 0.2, δ−2 = 0.3, Lf
1 = Lg

1 = Lf
1 = 0.3, Lf

2 = Lg
2 =

Lf
2 = 0.75

a+11 = 0.07, a+12 = 0.08, a+21 = 0.05, a+22 = 0.05, b+11 = 0.05, b+12 = 0.06, b+21 = 0.07, b+22 =
0.04, c+11 = 0.01, c+12 = 0.01, c+21 = 0.011, c+22 = 0.03, τ11 = τ12 = τ21 = τ22 = η11 =
η12 = η21 = η22 = 1, and

k = max
1≤i≤n



[
n∑

j=1

a+ijL
f
j +

n∑
j=1

b+ijL
g
j +

n∑
j=1

c+ijL
h
j ξ

]
δ−i

 = max {0.87375, 0.45} < 1.

T = Z

δ1(k) = 0.6 + 0.2 sin(
√
2k), δ2(k) = 0.8 + 0.5 cos(

√
2k),

(
a11 a12
a21 a22

)
=

(
0.08 sin(k) 0.07 sin(k)

0.06 cos(
√
2k) 0.04 cos(

√
5k)

)
(
b11 b12
b21 b22

)
=

(
0.06 sin(

√
4k) 0.05 cos(

√
2k)

0.08 cos(
√
5k) 0.03 sin(

√
5k)

)
(
c11 c12
c21 c22

)
=

(
0.02 cos(

√
7k) 0.03 sin(

√
4k)

0.013 cos(
√
3k) 0.01 cos(k)

)
(
τ11 τ12
τ21 τ22

)
=

(
η11 η12
η21 η22

)
=

(
1 1
1 1

)
,

(
J1
J2

)
=

(
cos(

√
2k) + cos(k) + e−|k|

sin(k)

)
f1(k) = g1(x) = h1(k) = 0.25 sin(k), f2(k) = g2(k) = h2(k) = 0.6 sin(k)
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δ−1 = 0.4, δ−2 = 0.3, Lf
1 = Lg

1 = Lf
1 = 0.25, Lf

1 = Lg
1 = Lf

1 = 0.6
a+11 = 0.08, a+12 = 0.07, a+21 = 0.06, a+22 = 0.04, b+11 = 0.06, b+12 = 0.05, b+21 =
0.08, b+22 = 0.03, c+11 = 0.02, c+12 = 0.03, c+21 = 0.013, c+22 = 0.01, τ11 = τ12 = τ21 =
τ22 = η11 = η12 = η21 = η22 = 1. and

k = max
1≤i≤n



[
n∑

j=1

a+ijL
f
j +

n∑
j=1

b+ijL
g
j +

n∑
j=1

c+ijL
h
j ξ

]
δ−i

 = max {0.44, 03, 4916} < 1.

Therefore, whether T = R or T = Z, all the conditions of Theorems (3.4) and (4.2) are
satisfied. Consequently, system (5.1) has a weighted pseudo almost periodic solution, which
is globally Exponentially stable (see Figs. 1-6).

Figure 1. T = R: Curve
of y1(t)

Figure 2. T = R: Curve
of y2(t)

Figure 3. T = R: Curve of y1(t) and y2(t)
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Figure 4. T = Z: Curve
of y1(n)

Figure 5. T = Z: Curve
of y2(n)

Figure 6. T = Z: Curve of y1(t) and y2(n)
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