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equations. Here, by placing some limitations on the perturbation term, we investi-
gate the problem of figuring out how the solutions of a perturbed dynamic equation
behave in relation to those of an original unperturbed dynamic system.

2. Stability analysis

Consider the time-varying system described by the following time-varying differ-
ential equation:

ẋ = f(t, x)(2.1)

where f : R+ × Rn −→ Rn is a continuous function and locally Lipschitz with
respect to x such that f(t, 0) = 0, ∀t ≥ 0, and the associated perturbed systems:

ẋ = f(t, x) + g(t)(2.2)

where t ∈ R+, g : R+ −→ Rn is a continuous function. The link between the
stability of the origin studied as the equilibrium point of the system (2.1) and the
null solution of (2.2) has been widely studied by many authors using Lyapunov
techniques or non-integral inequalities. Noting that, there exist systems of the form
(2.1) such that the origin is stable, but there exists bounded disturbances g(t) such
that (2.2) becomes unstable.

Consider the time-varying system (2.1). Unless otherwise stated, we assume
throughout the paper that the function f(., .) encountered is sufficiently smooth.
We often omit arguments of function to simplify notation, Rn is the n-dimensional
Euclidean vector space; R+ is the set of all non-negative real numbers; ‖x‖ is the
Euclidean norm of a vector x ∈ Rn. Br = {x ∈ Rn/‖x‖ ≤ r}, r > 0.

Definition 2.1. The solutions of system (2.1) are uniformly bounded if there exists
Λ > 0, such that for all Λ1 > 0, there exists a T = T (R1), such that for all t0 ≥ 0

‖x0‖ ≤ Λ1 ⇒ ‖x(t)‖ ≤ Λ, ∀t ≥ t0 + T.

Let x = 0 be an equilibrium point for the nonlinear system (2.1). The origin is
an equilibrium point, if

f(t, 0) = 0, ∀t ≥ 0.

Definition 2.2. x = 0 is said to be globally exponentially stable if there exist
k, λ > 0, such that all trajectories satisfy:

‖x(t)‖ ≤ k‖x0‖ exp(−λ(t− t0)), ∀x0 ∈ Rn, ∀t ≥ t0 ≥ 0.

Here, we have supposed that f(t, 0) = 0, ∀t ≥ 0. For the stability study of the
perturbed system (2.2), in the case where g(t) 6= 0 for a certain t ≥ 0, we shall
study the asymptotic behavior of solutions in a neighborhood of the origin, in the
sense that the solutions converge to a certain small ball Br, r > 0 centred at the
origin. Therefore, we introduce the notion of exponential stability of Br.
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Definition 2.3. The ball Br is globally uniformly exponentially stable with respect
the system (2.2), if there exists λ1 > 0, λ2 > 0, such that

‖x(t, t0, x0)‖ ⩽ λ1(‖x0‖)e−λ2(t−t0) + r,(2.3)

for all t ⩾ t0 ⩾ 0, ∀x0 ∈ Rn \Br.

The factor λ2 in the definition above will be named the convergence speed while
factor λ1 will be named the transient estimate. It is also, worth to notice that, in the
above definition, if we take r = 0, then one deals with the standard concept of the
global exponential stablity of the origin viewed as an equilibrium point. Moreover,
we shall study the asymptotic behavior of a small ball centered at the origin for
0 ⩽‖ x(t) ‖ −r, ∀t ⩾ t0 ⩾ 0 so that the initial conditions are taken outside the
ball Br. If r is small enough, then the trajectories approach to the origin when
t goes to infinity. Lyapunov´s direct method allows us to determine the stability
of a system without explicitly integrating the differential equation. This method
is a generalization of the idea that if there is an appropriate energy function in a
system, then we can study the rate of change of the energy of the system to ascertain
stability. To make this precise, we need the following properties.

For the linear case ẋ = A(t)x, the equilibrium point is globally uniformly ex-
ponentially stable if and only if the transition matrix Φ(t, t0) associated to A(t)
satisfies:

‖Φ(t, t0)‖ ≤ k exp−γ(t− t0), ∀t ≥ t0, k > 0, γ > 0.

In this case, we assume that A(t) is bounded for all t ≥ 0. When f(t, x) in (2.2) is
linear it means that f(t, x) = A(t)x, the solution of the equation (2.2) with initial
condition (t0, x0) is given by:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)g(s)ds.

Then, we have

‖x(t)‖ ≤ k exp−γ(t− t0)‖x(t0)‖+
∫ t

t0

ke−γ(t−s)‖g(s)‖ds.

If we suppose that, ‖g(t)‖ ≤ δ(t) where λ : t 7→ δ(t) is a continuous nonnegative L1

function, then

‖x(t)‖ ≤ k exp−γ(t− t0)‖x(t0)‖+
∫ t

t0

ke−γ(t−s)‖g(s)‖ds.

Thus,

‖x(t)‖ ≤ k exp−γ(t− t0)‖x(t0)‖+e−γt

∫ t

t0

keγsδ(t)ds.

Note that, the fact that the function δ(t) is integrable, then one has the integral I
defined by

I = e−γt

∫ t

t0

keγsδ(t)ds
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is bounded. Therefore there exits, η > 0 such that

‖x(t)‖ ≤ k exp−γ(t− t0)‖x(t0)‖+η.

The last expression implies that, the ball Bη is globally uniformly exponentially
stable with respect the system (2.2).

In the sequel, we give some of the main definitions that we need to study the
asymptotic behavior of the solutions. The notion of stability will be given in the
sense of ”Stability in variation” introduced by [4, 5].

For all x0 ∈ Rn and t0 ∈ R+, we will denote by x(t, t0, x0), or simply by x(t), the
unique solution of (2.1) at time t0 starting from the point x0. We have, ∀t ≥ t0 ≥ 0,

x(t, t0, x0) = x0 +
∫ t
t0
f(s, x(s, t0, x0))ds. Let fx(t, x) be the matrix whose element

in the ith row, jth column is the partial derivative of the ith component of f with
respect to the jth component of x, fx = mat( ∂fi∂xj

)i,j=1,...,n. Let x(t, t0, x0) be

the solution of (2.1). We have, Φ(t, t0, x0) = ∂
∂x0

(x(t, t0, x0), is a solution of the
variational system:

ż = fx(t, x(t, t0, x0))z(2.4)

Φ(t, t0, x0) is called the fundamental matrix solution of (2.3) with respect to the
solution x(t, t0, x0) which is the identity matrix for t = t0. We will define the notion
of stability in terms of variational system with respect the solution x = 0, (see [4,5]).

Definition 2.4. The solution x = 0 of (2.1) is said to be globally uniformly stable
in variation if there exists a positive constant M , such that

‖Φ(t, t0, x0)‖ ⩽ M, ∀ t ⩾ t0 ⩾ 0, ∀ x0 ∈ Rn.(2.5)

Note that, the solution x(t, t0, x0) of (2.1) satisfies the following equality:

x(t, t0, x0) = (

∫ 1

0
Φ(t, t0, sx0)ds)x0,

if x = 0 of (2.1) is globally uniformly stable in variation, then

‖x(t, t0, x0)‖ ⩽ M‖x0‖, ∀ t ⩾ t0 ⩾ 0, ∀ x0 ∈ Rn.(2.6)

Definition 2.5. The solution x = 0 of (2.1) is said to be globally uniformly slowly
growing in variation if for every ε > 0 there exists a positive constant M , possibly
depending on ε, such that

‖Φ(t, t0, x0)‖ ⩽ Meε(t−t0), ∀ t ⩾ t0 ⩾ 0, ∀ x0 ∈ Rn.(2.7)

Definition 2.6. The solution x = 0 of (2.1) is said to be globally uniformly expo-
nentially stable in variation if there exist two positive constants λ1 and λ2, which
are independent of the initial condition, such that

‖Φ(t, t0, x0)‖ ⩽ λ1e
−λ2(t−t0), ∀ t ⩾ t0 ⩾ 0, ∀ x0 ∈ Rn.(2.8)

Definition 2.7. The solution x = 0 of (2.1) is said to be uniformly asymptotically

stable in variation if there exists a positive constant M̃ , which is independent of the
initial condition, such that for every t0 ⩾ 0,∫ t

t0

‖Φ(t, s, 0)‖ ⩽ M̃, ∀ t ⩾ t0 ⩾ 0.(2.9)



BOUNDEDNESS AND CONVERGENCE OF SOLUTIONS OF A CLASS OF PERTURBED 43

The following result etablished by Brauer ([4, 5]):
If the solution x = 0 of (2.1) is uniformly asymptotically stable in variation then

there exist some positive constants c and M̃ such that,∫ t

t0

sup
x0⩽c

‖Φ(t, s, x0)‖ ⩽ M̃,

for every sufficiently large t0 and all t ⩾ t0 ⩾ 0.

Notting that, if the trivial solution x = 0 of (2.1) is uniformly asymptotically
stable in variation, then for all t0 ⩾ 0, and x0 ∈ Rn,

lim
t→+∞

‖Φ(t, t0, x0)‖ = 0.

The connection between the stability of the zero solution of (2.1) and the zero
solutions of (2.2), with respect the nominal part because in presence of g the origin is
not an equilibrium point, has been extensively investigated where analogous results
are established here for the notion of uniform Lipschitz stability (see [9,10]). Before
giving further details, we give some of definitions that are related to the Lipschitz
stability.

The zero solution of (2.1) is said to be uniformly Lipschitz stable if there exists
M > 0 and δ > 0 such that

‖x (t, t0, x0) ‖ ⩽ M‖x0‖,

whenever ‖x0‖ ⩽ δ and t ⩾ t0 ⩾ 0.
The zero solution of (2.1)is said to be globally uniformly Lipschitz stable if there

exists M > 0 such that ‖x (t, t0, x0) ‖ ⩽ M‖x0‖ for ‖x0‖ < ∞ and t ⩾ t0 ⩾ 0.
We remark here that the notion of global uniform Lipschitz stable implies the

“global uniform stability in variation.” For the linear system x′ = A(t), x the follow-
ing statements are equivalent (see [9, 10]): The zero solution is globally uniformly
Lipschitz stable in variation, uniformly Lipschitz stable in variation, globally uni-
formly Lipschitz stable, uniformly Lipschitz stable, uniformly stable.

Example 1. Consider the scalar equation:

ẋ(t) = f(t, x(t)) + g(t),

with f(t, x) = −etx3 and g(t) = e−t, t ≥ 0. We have, for ẋ(t) = f(t, x(t)) and the
initial condition (t0, x0),

x(t, t0, x0) = x0(1 + 2x20(e
t − et0))1

1
2 .

Therefore for t ≥ t0 ≥ 0, we have

‖Φ(t, t0, x0)‖ = ‖(1 + 2x20(e
t − et0))

−3
2 ‖ ≤ 1.

Thus, the zero solution of the nominal system is globally uniformly stable in vari-
ation. Now if we take a bounded perturbation g(t), the solutions of the perturbed
equation are bounded.
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Lyapunov approach The Lyapunov approach helps us to determine the stability
and convergence of the solutions of a system without explaining the general solution
also without integrate the differential equation.
Consider a continuous function V : R+ × Rn → R+, V is said to be globally
Lipschitzian in x (uniformly in t ∈ R+) if

|V (t, x)− V (t, y)| ⩽ κ‖x− y‖
for some κ > 0 and for all (t, x, y) ∈ R+ × Rn × Rn. Corresponding to V we define
the Dini derivative D+V with respect to system (2.1) by

D+Vf (t, x) = lim sup
h→0+

1

h
(V (t+ h, x+ hf(t, x))− V (t, x)),

called the upper Dini derivative of V (., .) along the trajectory of (2.1). Let x(t) be
a solution of (2.1) and denote by V ′(t, x) the upper right-hand derivative, i.e.,

V ′(t, x(t)) = lim sup
h→0+

1

h
(V (t+ h, x(t+ h))− V (t, x)).

If V (t, x) is continuous in t and Lipschitzian in x (uniformly in t) with the Lipschitz
constant κ > 0, then V ′(t, x) and D+

f V (t, x) are related as follows:

V ′(t, x(t)) ⩽ D+Vf (t, x(t)).

Indeed, we have

V (t+ h, x(t+ h))− V (t, x(t)) = V (t+ h, x(t+ h))− V (t+ h, x+ hf(t, x))

+V (t+ h, x+ hf(t, x))− V (t, x(t)).

Since the function V is globally Lipschitzian in x (uniformly in t), then

lim sup
h→0+

V (t+ h, x(t+ h))− V (t, x(t))

h
≤

κ{ lim
h→0+

‖x(t+ h)− x(t)

h
− f(t, x(t))‖}+ lim sup

h→0+

1

h
(V (t+ h, x+ hf(t, x))− V (t, x)),

which gives

(2.10) V ′(t, x) ⩽ D+
f V (t, x).

Note that, in case when the function V is differentiable, the derivative with
respect to time along the trajectories of system (2.1) is given by:

d

dt
V (t, x) =

∂V

∂t
(t, x) +

∂V

∂x
(t, x).f(t, x),

in this case, we have

d

dt
V (t, x) = V ′(t, x) = D+

f V (t, x).

Suppose that the jacobian matrix [∂f/∂x] is bounded on Rn, uniformly in t.
Assume that the system (2.1) is globally exponentially stable, then there is a con-
tinuously differentiable Lyapunov function

V : [0,+∞[×Rn −→ R+,
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that satisfies the following conditions for some positive constants c1, c2, c3, c4 and
for all x ∈ Rn, t ≥ t0:

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2,

V̇ (t, x) =
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −c3‖x‖2,

and

‖∂V
∂x

(t, x)‖ ≤ c4‖x‖.

If we suppose that, ‖g(t)‖ ≤ δ(t) where λ : t 7→ δ(t) is a continuous nonnegative
bounded function, by taking the derivative along the trajectories of the perturbed
system (2.2), one has

V̇ (t, x) =
∂V

∂t
+

∂V

∂x
f(t, x) +

∂V

∂x
g(t),

then

V̇ (t, x) ≤ −c3‖x‖2 + ‖∂V
∂x

‖δ(t).
So,

V̇ (t, x) ≤ −c3‖x‖2 + c4δ(t)‖x‖.
Thus,

V̇ (t, x) ≤ −c3‖x‖2 +
c4
2
(‖x‖2 + δ2(t)),

This implies that,

V̇ (t, x) ≤ [−c3
c2

+
c4
2c1

]V (t, x) +
c4
2
δ2(t).

Let Ṽ (t) = V (t, x(t)), ς1 =
c3
c2

− c4
2c1

and ς2 =
c4
2
, one gets

˙̃V (t) ≤ −ς1Ṽ (t) + ς2δ
2(t).

By integration we get:

Ṽ (t) ≤ Ṽ (0)e−ς1t + ς2e
−ς1t

∫ t

0
eς1sδ2(s)ds.

Since δ(t) is a nonnegative bounded function then it is the same for its square δ2(t).

There exists a nonnegative constant δ̃ > 0, such that for all t ≥ 0, δ2(t) ≤ δ̃. So,

Ṽ (t) ≤ Ṽ (0)e−ς1t + ς2δ̃e
−ς1t

∫ t

0
eς1sds.

Thus,

Ṽ (t) ≤ Ṽ (0)e−ς1t +
ς2
ς1
δ̃.

Using the fact that, c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2, it follows that,

‖x(t)‖ ≤ (
c2
c1
)
1
2 ‖x(0)‖e−

1
2
ς1t + (

ς2
c1ς1

δ̃)
1
2 .

The last expression implies that, the ball B
(

ς2
c1ς1

δ̃)
1
2
is globally uniformly exponen-

tially stable with respect the system (2.2),
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2.1. Convergence and boundedness of the solutions. Let consider the per-
turbed system (2.2). If the zero solution is uniformly Lipschitz stable for (2.1)
with

‖Φ(t, s, x)‖ ⩽ ι‖z‖, ∀x ∈ Rn, ∀t ≥ t0 ≥ 0, ι > 0,

and the perturbation term in (2.2) satisfies

‖g(t)‖ ⩽ ξ(t), ∀ t ⩾ t0 ⩾ 0,(2.11)

where ξ(.) ∈ C[R+,R+] and integrable function, then the zero solution of the per-
turbed system is uniformly Lipschitz stable.
Note that, Φ (t, t0, x (t, t0, x0)) is the fundamental matrix of (2.4), and the zero so-
lution of (2.2) is uniformly Lipschitz stable, where

∫∞
0 ξ(s)ds < ∞.

Indeed, using the nonlinear variation of constants formula, the solutions y(t) of the
perturbed system with the same initial values y0 = x0 are related by

y (t, t0, x0) = x (t, t0, x0) +

∫ t

t0

Φ(t, s, y (s, t0, x0)) g(s)ds

Hence

‖y (t, t0, x0) ‖ ⩽ ‖x (t, t0, x0) ‖+
∫ t

t0

‖Φ(t, s, y)‖‖g(s)‖ds.

Since the zero solution of (2.1) is uniformly Lipschitz stable, there exist α > 0
and δ > 0 such that |x0| ⩽ δ implies ‖x (t, t0, x0) ‖ ⩽ α‖x0‖. Hence, using the
assumption on ξ, we obtain

‖y (t, t0, x0) ‖ ⩽ α‖x0‖+ ι

∫ t

t0

‖y‖ξ(s)ds.

Applying Gronwall’s inequality, one obtains

‖y (t, t0, x0) ‖ ⩽ αexp(ι

∫ t

t0

ξ(s)ds).

Since the function ξ(s) is integrable, then there exists a nonnegative constant ∆ > 0
such that ‖y (t, t0, x0) ‖ ⩽ α∆. This implies that, the zero solution of the perturbed
system is uniformly Lipschitz stable.

Remark that, for the linear system of the form ẋ = A(t)x, where A(t) is con-
tinuous and bounded matrix, the perturbed system ẋ = A(t)x+ g(t) is uniformly
Lipschitz stable if

‖g(t)‖ ⩽ ξ(t) and

∫ ∞

0
ξ(t)dt < ∞.

In the sequel, we give a result on asymptotic behavior and growth properties of
the solutions of (2.2) under some restrictives conditions on the perturbation term
based on the following well known comparison Lemma.

Lemma 2.8. Consider a scalar differential equation:

u̇(t) = =(t, u), t ⩾ 0,
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where =(t, u) is a continuous function in (t, u). Let u(t) be the maximal solution
of this differential equation with u(t0) = u0. If a continuous function v(t) with
v(t0) = u0 satisfies

v′(t) ⩽ =(t, u(t)), ∀t ⩾ t0 ⩾ 0,

then

v(t) ⩽ v(t0) +

∫ t

t0

=(s, u(s))ds, ∀t ⩾ t0 ⩾ 0.

This lemma can provide an estimation on V (t, x(t)) from some bounds onD′V (t, x).
Let x(t) = x(t, t0, x0) be a solution of (2.1) existing for t ⩾ t0 ⩾ 0. Let V (t, x) is
continuous in t and Lipschitzian in x (uniformly in t) which satisfies the inequality:

D′V (t, x) ⩽ =(t, V (t, x))

for (t, x) ∈ R+ × Rn. Then, for

V (t0, x0) ≤ u0,

we have
V (t, x(t)) ⩽ u(t), for t ⩾ t0 ⩾ 0.

We will consider more general case when we do not know that g(t) 6= 0 for a
certain t ≥ 0. The origin may not be an equilibrium point of the perturbed system
(2.2). We can non longer study the stability of the origin as an equilibrium point,
nor should we expect the solution of the perturbed system to approach the origin as t
goes to infinity. The best we can hope that for a small perturbation term the solution
approach to the a small set which contains the origin. We first give the following
result which gives an estimation on the solutions of perturbed system when we
suppose that the nominal system is globally uniformly stable in variation. Suppose
that the nominal system (2.1) has a uniformly exponentially stable in variation
equilibrium point at the origin with V (t, x) as a Lyapunov function candidate.
Such Lyapunov function should verify the following assumptions:

i) V (t, x) is defined and continuous on R+ × Rn such that V (t, 0) = 0, ∀t ⩾ 0,
ii) ‖x‖ ⩽ V (t, x) ⩽ κ‖x‖ for (t, x) ∈ R+ × Rn, κ > 0,
iii) |V (t, x)− V (t, y)| ⩽ κ‖x− y‖ for all (t, x), (t, y) ∈ R+ × Rn, κ > 0.

In [4, 5, 9] and [10], converse theorems are established.

Theorem 2.9. Suppose that the perturbation term in (2.2) satisfies (2.11). Then,
a) If the trivial solution of (2.1) be globally uniformly stable in variation, then all

solutions are bounded for all t ≥ 0.
b) If the trivial solution of (2.1) be globally uniformly stable in variation and

D+
f V (t, x) ≤ −ζV (t, x), ζ > 0,

it means that (2.1) is globally uniformly exponentially stable in variation, then all
solutions are bounded and converge to a small ball centered at the origin.

Proof. a) Since the trivial solution of (2.1) is globally uniformly stable in varia-
tion, then there exists a function V (t, x) that verify i), ii), iii) and the inequality
D+

f V (t, x) ≤ 0. Now, we consider the upper right-hand derivative of V (t, x) with

respect the perturbed system (2.2), we have

D+
(2.2)V (t, x) ⩽ D+

f V (t, x) + κ‖g(t)‖.
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With the help of properties of V (t, x), the above estimation implies that:

D+
(2.2)V (t, x) ⩽ ξ(t).

Since the function ξ(.) is an integrable function, then x(t) is bounded. Thus, there
exist some positive constants α and ∆ such that, the solution x(t, t0, x0) of (2.2)
satisfies:

‖x(t, t0, x0)‖ ⩽ α‖x0‖+∆, ∀ t ⩾ t0 ⩾ 0, x0 ∈ Rn.

b) The condition imposed on the derivative of the Lyapunov function implies that
the trivial solution of (2.1) is globally exponentially stable in variation. Let consider
the upper right-hand derivative of V (t, x) with respect the perturbed system (2.2),
then

D+
(2.2)V (t, x) ⩽ D+

(2.1)V (t, x) +K‖g(t)‖.
With the help of properties of V (t, x), this implies that

D+
(2.2)V (t, x) ⩽ −ζV (t, x) + κ‖g(t)‖,

for all (t, x) ∈ R+ × Rn and ζ > 0.
Thus,

D+
(2.2)V (t, x) ⩽ −ζV (t, x) + κξ(t).

We will apply the comparison Lemma (2.8) where

g(t, u) = −ζu+ κξ(t).

Let x(t) = x(t, t0, x0) be a solution of (2.2) such that V (t0, x0) ⩽ u0, u0 ⩾ 0. Let
consider the differential equation:

u̇ = −ζu+ κξ(t), u(t0) = u0,

then

u(t) ≤ u(0)e−ζt + κe−ζt

∫ t

t0

eζsξ(s)ds.

Note that, the fact that the function ξ(t) is integrable, then one has the integral I

defined by I = e−ζt
∫ t
t0
keζsξ(t)ds is bounded. Therefore there exit, γ̃ > 0, η̃ > 0

such that
‖x(t)‖ ≤ k exp−γ̃(t− t0)‖x(t0)‖+η̃.

The last expression implies that, all the solutions are bounded and the ball Bη̃ is
globally uniformly exponentially stable with respect the system (2.2).

□
Example 2. For the scalar equation:

ẋ(t) = f(t, x(t)) + g(t),

with f(t, x) = −2x and g(t) = e−t, t ≥ 0. We have, for initial condition (t0, x0),

x(t, t0, x0) = x0e
−2(t−t0) + e−t − et0 .

Therefore for t ≥ t0 ≥ 0, we have in a first consequence:
a)

‖x(t, t0, x0)‖ ≤ ‖x0‖+ e−t + e−t0 .
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In a second consequence:
b)

‖x(t, t0, x0)‖ ≤ ‖x0‖e−2(t−t0) + 2.

It follows that, the ball B2 is globally uniformly exponentially stable with respect
the perturbed system.

Conclusion In this paper, some new sufficient conditions for the boundedness
and convergence of solutions of a class of time-varying differential equations are
studied. The notion of stability in variation is introduced for the nominal system.
It is shown that the solutions of the perturbed system are exponential stable with
respect a small ball by using Lyapunov functions that are not necessarily differen-
tiable. Some axamples are given showing the validity of the main result.
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