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ON THE ASYMPTOTIC STABILITY OF CAPUTO FRACTIONAL
DELAY SINGULAR SYSTEMS

ABDULLAH YIGIT AND CEMIL TUNC

ABSTRACT. In this paper, a Caputo fractional-order singular system is consid-
ered. An asymptotic stability theorem, which has sufficient conditions, is proved
in relation to this system. Razumikhin method is used in the proof. Two numer-
ical examples are given as applications of the given result. Our result is new and
provides new contributions to the topic of the paper.

1. INTRODUCTION

The qualitative topic of various fractional singular and non-singular differential
systems have been extensively studied in recent years and numerous interesting
qualitative results have been obtained in the relevant literature (see, [1-20]).

Now, let us summarize some of the recent studies on delay systems.

Stability of nonlinear system of fractional-order volterra delay integro differential
equations with Caputo fractional derivative are discussed in [2] by Graef et al.
In [2], some sufficient conditions for the stability are obtained using Razumikhin
method. In [7], Phat and Hien proved new exponential stability conditions for
non-autonomous linear-delay systems using Razumikhin’s stability theorem. In [§],
Phat et al. proved the guaranteed cost problem of fractional order delay systems
subject to nonlinear perturbations and parametric time-varying uncertainties with
help of the Razumikhin method. Yige and Meirong [15] proved some new results for
the stability of fractional order linear time delay systems using of the Razumikhin
method. They gave two examples to support these results.

Motivated from the papers [8,16] and those in the references of this paper, we
consider the following linear Caputo fractional singular system with constant delay:

(1.1) ND]z(t) = Ex(t) + Mx(t — h)
z(t) = p(t),t € [=h, 0],

where x(t) € R™ is the state vector function of the given system, ¢ € (0,1), E, N, M €
R™™ are constant system matrices with suitable dimensions,the matrix N € R"*"
is singular and rankN =r < n,n > 1,h > 0 is constant delay.

We start our study by converting the given singular system (1.1) to a neutral
system with the help of useful definitions and lemmas. For this, let us give the
following lemmas and definitions.

Definition 1.1 ([5]). The pair (N, E) or system (1.1) is said to be regular if
det(AN — E) # 0 and impulse free if deg(det(AN — E)) = rank(N), A = s%.
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Lemma 1.2 ([1]). If the pair (N,E) is regular and impulse-free, then there exist
two non-singular matrices S, F' € R™™*"™ such that

I, 0

0 0

SNF = [ o I

},SEF:{El 0 ]

Definition 1.3 ([8]). The Caputo fractional-order derivative of order ¢ > 0 for a
function f(t) is defined by

1 t )
D,?f(t)—r(n_q)/0 (t_s)q+1_nds,t20,n—1<q§n,

where n is a positive number. In particular, when ¢ € (0, 1), we get
L " f()
DI f(t) = / ds,t > 0.
HO=Ta=g Jy t=sy

Lemma 1.4 ([8]). Suppose x(t) € R™ be a differentiable function. Then the follow-
ing inequality is satisfied:

Di("(t) ) a(t) <227 (t) Y Dia(t),Vq € (0,1),t >0,

where 3 € R S = ST >0, is a constant matriz.

Lemma 1.5 (Fractional Razumikhin Theorem [8]). Let u,v,w : R™ — R™ are con-
tinuous and non-decreasing, and u(0) = v(0) = w(0) = 0,v(.) is strictly increasing.
If there exists a continuous function V(.) : R x R"™ — R" such that

i) u(||z]]) <V (t,z(t)) < v(||z]]),t > 0,2 € R™ and

i) DiV(t,x(t) < —w(|l|])
provided that

V(t+s,z(t+s)) < kV(t,z(t),k >1,¥s € [-h,0],t >0,

then the zero solution of fractional order system Dix(t) = f(t,x(t)) is asymptotically
stable.

Now, let us convert the system (1.1) to a neutral system. In the light of Lemma
1.2, there exist two regular matrices S, F' € R™*™ such that

(L 0] [E 0]+
SNF_[O 0}_N,SEF_[ 0 Inr]_E,

SMF = [ %; %ﬁ } _ WP e(t) = £() = [ 2(73 } .

Then, we can write the system (1.1) as:
NDIE(t) = BE() + ME(t — h).
This system can be decomposed to the following system:
(1.2) Di&i(t) = Ex&i(t) + Mi&i(t — h) + Ma&s(t — h),
(1.3) 0 =& (1) + M3&(t — h) + Mo (t — h).
If we take the fractional derivative of the equation (1.3), then we obtain

(1.4) 0 = D{&(t) + M3D{& (t — h) + MyD}&(t — h).
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Now, combining equations (1.3) and (1.4), we obtain

D{&(t) = — &a(t) — Ma&i(t — h) — Ma&a(t — h)
(1.5) — M3D{&(t — h) — MyDj&(t — h).

In light of equations (1.2) and (1.5), we have
(

[ Di&i(t) ] _ [ Er&i(t) + Mi&i(t — h) + Ma&a(t — h) ]
—&a(t) — Ms&i(t — h) — Mu&a(t — h)

0
* [ —M3DI¢,(t — h) — MyDY&5(t — h) ] ’

which is equivalent to the fractional-order delay neutral system given by

(1.6) DY¢(t) — ADIE(t — h) = BE(t) + Mé(t — h),
f(t) = @(t)at € [_hv 0])
where
an BB 0 mo[m M)Al 0 0]

Clearly, the system (1.1) and the system (1.6) are not equivalent, but the stability
property for both systems remains the same. That is, the stability of the system
(1.6) guarantees the stability of system (1.1), and vice versa.

2. MAIN RESULTS AND NUMERICAL APPLICATIONS

The following assumptions apply throughout this study.

A. Assumptions

(A1) Let the pair (N, E) is impulse-free and regular and ||A|| < 1.
(A2) For given ¢; > 0,(i = 1,2,...,7), and Z = ZT > 0 such that the following
matrix inequalities are satisfied:

Oy ZET I I
* —63] 0 0

(2.1) 0= . s el 0 <0,
* * * —e1l
(2.2) B3 =27+ el +ej' T+e; ' T+eZ <0,
(2.3) (eaMTM + exMTM)Z < €61,
(2.4) (e1ATA + esATAVZ < e71,
where

©11 = EZ + ZET + € 2.

Theorem 2.1. If conditions (A1) and (A2) are satisfied, then system (1.6) is
asymptotically stable and the system (1.1) is asymptotically admissible.
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Proof of Theorem 2.1.
V() = ET(H)ZHE().
It can be easily shown that the following inequality is satisfied:

Amin(ZHIED)P < V(E®R)) < Amaa(Z7H)IIER)

Thus, the condition (i) given in Lemma 1.5 is satisfied. In the light of Lemma
1.4, we have

DIV (&(t)) <267 (t)Z 7' Die(t)
=" (0[Z7'E + ETZ7e()
(2.5) + 27 ()27 Me(t — h) + 267 (1) 2V ADIE(t — h).
By applying the Cauchy matrix inequality, we can write the following inequalities

267 (1) 27 ADJE(t — h) <el(D{e(t — h)T AT A(D{e(t — h))

(2.6) +e 'z Z7 ),
26T (£) 2\ ME(t — h) <eat™(t — h)MTME(t — h)
(2.7) + e T Z7 Z7 ().

Furthermore, by applying the following identities
0 = —DJ&(t) + B&(t) + ME(t — h) + ADJ¢(t — h),
we get
2(DJE(t)" 27 [~ DIE(t) + EE(t) + ME(t — h) + ADIE(t — h)]
=~ 2Di(t))T 27 (Dfe(t) + 2Die(1) T 27 E(DYE(D))
(2.8) +2(DfE®)" 27 ME(t — h) + 2Die(t) " 2 A(DYE(t — h)) = 0.

By applying the Cauchy matrix inequality again, we can obtain the following rela-
tionships:

2(DIE()" 2 EE(t) <es(DIEW) 27271 (DIE(H))

(2.9) +e5 el () ETEE(),
2(DIE(t)T 27 ME(t — ) <eatT(t — h)MTME(t — h)
(2.10) +e; {(Dfe() " 271 271 (Die(L)),
2(DIE(H)T Z L A(DIE(t — h)) <es(DIE(t — h)T AT A(DIE(t — h))
(2.11) +e5 {(De(1) 21 Z 1 (D).

Combining the relationships (2.5)-(2.11), we get
D}V (&(t)) €T (1)Qe(t) + (DfE(t)" @(DIE(t))
+ &0t — h)[exMTM + e, MTME(t — h)
+ (Dg(t — h)T[e1 AT A + e, AT AJ(DJE(t — ),
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where
V=2 B+ BTz 1 elz7 27 v glz 7z ¢ eglﬁTE,
d=-2Z' vz ' 77 vtz 2 r etz 2
By applying conditions (2.3) and (2.4), we can obtain the following relationships:
€7t — ) [eaMTM + exMTM)E(t — h) < e€T(t — B)Z7E(t — h),
(DY&(t — ) [er A" A + es AT A|(DIE(t — b)) < er(DYE(t — h)" 27 H(DIE(t — b)),
and thus
DYV (&(t)) <€T (1)Qe(t) + (DIE(1) T @(DIE(t))
€7t~ h)eoZ e (t — ) + (DIE(t — ) er 271 (De(t — 1)),

From Lemma 1.5, for any ¢ > 0 and p = e+ 1 > 1 and Vs € [—h,0],t > 0, we
have

Nt + )27t +5) < peT () Z7E()
and
(DIE(t +5))" ZH(Die(t + 5)) < p(DfE(t) 271 (DE()).
Then, it is clear that
D}V (&(t)) <€"()Q%(t) + (Dfe(t) @(DJe())
+eap’ () Z7HE(t) + ep(DIE)) T Z7H(DIE())

(2.12) <" (OME() + (DIE(H)" @1 (DIE()),
where

W =Z'E+ETZ 4 27 27 4 G 2 27 G ETE 4 eg(e + 1) 271,

O =-2Z"vaaZ ' 2 v 1727 2 v 2T T (e 1) 2
Since € is a positive definite arbitrary parameter and the both sides DV (£(¢)) does

not depend on €, then taking ¢ — 0, we can write the inequality (2.12) as the
following form

(2.13) DIV(£(1) < €7 (1)20€(t) + (DIE()) T 22(DYE(1)),

where
W =Z'E+E"Z '+ §' 27 27 4 G 27 27+ G ETE v 6627,
by=-27"ve3Z7 ' 2 v 2 2 v 2 2 ez

Now, pre- and post- multiplying Q9 and ®9 by Z, we can write the inequality (2.13)
as:

(2.14) DIV(£(1) < €1 (1)QsE(t) + (DFE()) T 23(DYE(1)),
where
O3 =EZ + ZET + T+ ' + G ZETEZ + &2,
Py =—2Z7+ el +e;' T +e5' T+ erZ.
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Here, Let us not forget that 29 < 0 is equivalent to Q23 < 0. Similarly, ®5 < 0 is
equivalent to ®3 < 0. By applying the Schur complement lemma (see [10]), we get
Q3 < 0 is equivalent to O, the linear matrix inequality (2.1). Hence, in the light of
conditions (2.1), (2.14) and (2.2), we obtain

3A > 0, DIV (E(L)) < =A[[€(®)]1%,t > 0.

Therefore, the condition (ii) of Lemma 1.5 holds. Thus, system (1.6) is asymptoti-
cally stable. Then system (1.1) is asymptotically admissible as it is regular, impulse
free and asymptotically stable. This results completes the proof of Theorem 2.1. [J

Example 2.2. Consider the following linear Caputo fractional singular system with
constant delay:
ND!z(t) = Ex(t) + Mz(t — 2),
where
0<g< 1,ZIJ(t) = (l‘l(t),l‘g(t)) S R2,
8 0 0 -1 0.24 0.02
N:[O o]’E:[—zx 0.5]’M:[0.08 —0.01]'

In the light of Definition 1.1, it can easily be shown that the pair (IV, E) or the given
system (1.1) is regular and impulse-free. Thus, there exist two invertible matrices

12 0125 0
S‘[o 4]’F—[ 1 0.5}

such that

SNF:FO -1 0

0 0 0 1

Therefore, in the light of Lemma 1.2, we obtain
E:[_l 0 ]’M\:[O.OE) 0 ]’2:[0.02 0 ]’

]’SEF:[ 0 —0.02

s[5 L]

0 -1 0 0.02 0 0.03
and Z = diag(14.5,14.6),e; = 0.4,e0 = 0.2,e3 = 15,4 = 0.1,e5 = 0.8, 66 = 0.4, ¢7 =
0.3. By applying Theorem 2.1, we find that the following LMIs hold for the given

particular case:
—8.75 0
s = [ 0 —8.92 ] <0,

—p= g 0.0109 0 04 0
(eoM* M + e,M* M) Z < egl = [ 0 0.0018 < 0 04 |
o g 0.0070 0 03 0
[ —23.2 0 —145 0 1 0 1 0
0 -2336 0 —146 0 1 0 1
145 0 ~15 0 0 0 0 0
0 —14.6 0 ~15 0 0 0 0
©= 1 0 0 o -04 0 o0 o |=©
0 1 0 0 0 —04 0 0
1 0 0 0 0 0 -02 0
0 1 0 0 0 0 0 02
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In view of Theorem 2.1, the system given in Example 2.2 is asymptotically stable.
At the end, the system given in the Example 2.2, is asymptotically admissible as it
is regular, impulse free and asymptotically stable.

<
S~

-

FI1GURE 1. Trajectories of the system given by Example 2.2

Example 2.3. Now, let us consider the following example, which demonstrates the
practical applicability of our theoretical result:

ND!z(t) = Ex(t) + Mx(t — 4),

where
O0<g< 1,1’(t) = (xl(t),lfg(t),l‘g(t)) S R3,
2 00 —2.2 0 0 0.1 0 0
N=|[0 2 0|, ,F= 0 -16 0 |,M= 0 0.04 0
0 0 0 0 0 2 0 0 —0.02

In the light of Definition 1.1, it can easily be shown that the pair (N, E) or the given
system (1.1) is regular and impulse-free. Thus, there exist two invertible matrices

1 00 05 0 0
S=10 2 0|, ,F= 0 0.25 0
0 0 4 0 0 0.125
such that
1 00 -1.1 0 0 005 0 0
SNF=|01 0]|,SEF= 0 -0.8 0 |,SMF = 0 0.02 0
0 00 0 0 1 0 0 -0.01
Therefore, in the light of Lemma 1.2, we can obtain
R —-1.1 0 0 - 005 0 0 R 002 0 0
E = 0 —-0.8 0 M = 0 002 O A= 0 003 O ,
0 0 -1 0 0 0.01 0 0 0.04

and Z = diag(14.6,14.7,14.8),¢; = 0.4,e2 = 0.2,e3 = 15,¢4 = 0.1,e5 = 0.8,¢6 =
0.4,e7 = 0.3. By applying Theorem 2.1, we found that the linear matrix inequality
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conditions (2.1)-(2.4) are satisfied as

-8.92 0 0
d3=| 0 —909 0 |<0,
0 0 —9.26
N N 0.0110 0 0 04 0 0
(eaMTM +e,MTM)Z < eI = 0  0.0018 0 <| 0 04 0 |,
0 0 0.0004 0 0 04
~ R 0.0070 0 0 0.3 0
(L ATA+ s ATAZ < 7] = 0 00159 0 <!l o0 03 0 |,
0 0  0.0284 0 0 03
[ Oq1 0 0 O1a 0 0 1 0 0 1 0 0
0 O 0 0 ©s 0 0 1 0 0 1 0
0 0 ©3 0 0 O 0 0 1 0 0 1
© 0 0 -1 0 0 0 0 0 0 0 0
0 © 0 0 —-15 0 0 0 0 0 0 0
o_| 0 0 © 0 0 -15 0 0 0 0 0 0
1 0 0 0O O 0 -04 O O O O 0
o 1 0 0O 0 0O 0 —-04 0 0 0 0
o 0o 1 0 0 0 0 0 —04 0 0 0
1 0 0 0O O 0 0 0 0 -—02 0 0
o 1 0o O O 0 0 0 0 0 -02 0
.o 0o 1 0 O O 0 0 0 0 0 -—02
<0,
where

011 = —26.28,014 = 041 = —16.06,022 = —17.64, 095 = O50 = —11.76,
B33 = —23.68,035 = Og3 = —14.8.
In view of Theorem 2.1, the system given in Example 2.3 is asymptotically stable.

At the end, the system given in the Example 2.3, is asymptotically admissible since
it is regular, impulse free and asymptotically stable.

)

FIGURE 2. Trajectories of the system given by Example 2.3
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3. CONCLUSION

In this paper, we have investigated the problem of asymptotic admissibility of
a Caputo fractional-order singular sistem with constant delay using Razumikhin
approach. We have transformed the considered system to a non-singular delayed
fractional-order neutral system. In light of fractional Razumikhin stability theorem
and matrix inequality technique, we have proved the new sufficient criteria for as-
ymptotic stability of transformed singular system. Thus, we have proved that the
considered singular system is asymptotically admissible since it is regular, impulse-
free and asymptotically stable. Finally, we have presented some numerical examples
to show applications of our result.
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