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ON A MULTI-TERM FUNCTIONAL DIFFERENTIAL EQUATION
WITH PARAMETERS SUBJECT TO A QUADRATIC
INTEGRO-DIFFERENTIAL CONDITION

AHMED M. A. EL-SAYED, MOAMEN OSAMA RADWAN,
AND HANAA REZQALLA EBEAD

ABSTRACT. Here, we study a problem of a multi-term functional-differential
equation with parameters subject to a quadratic integro-differential condition.
The existence and the uniqueness of the solution will be proved. The Hyers-Ulam
stability will be studied. The continuous dependence of the unique solution on
some parameters will be studied. Special cases and examples will be given.

1. INTRODUCTION

Functional and differential equations serve as the essential building blocks for
modeling complex real-world processes in a variety of disciplines, including physics,
engineering, biology, and economics [4, 14, 15]. Particularly, the complex mathe-
matical models that are crucial in many different scientific domains are produced
by multi-term functional-differential equations, whose variables depend not only on
their current state but also on their previous and future values [10,16,18,20]. As a
key tenet of stability theory, the concepts of Hyers-Ulam stability and continuous
dependency emphasize how modest changes in the mathematical problem and its pa-
rameters cause only a slight change in the solution of the problem [5,12,13,17,21].
These equations get even more complex when the nonlocal integral condition is
present, complicating their analysis in a way that is known as nonlocal problems
which has been discussed by numerous authors (see [1,2,8,9,19,22]).

In light of the aforementioned results, we investigate the nonlocal solvability of the
multi-term functional-differential equation with parameters.

dz(t) d d d
1.1 = — — — T
) B (o Setnt) despa(rat) o dpa(ont) ) £ € (0.7

with the nonlocal quadratic integral condition

(1.2) z(0) = x0 + /OTg<s,x(3)dZ—?>ds,

where A; > 0 and ~; € (0, 1] are parameters, i = 1,2, ...... k.

Our aim in this paper is to study the existence of solution of the problem (1.1)-(1.2)
under suitable conditions, then we study the uniqueness of the solution. Addition-
ally, we study the Hyers-Ulam stability of the problem. Moreover, we investigate
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the continuous dependence of the unique solution on the initial data zg, the func-
tions g and f, and parameters \; and ~;. Finally, we introduce some examples and
special cases to illustrate our results.

2. EXISTENCE OF SOLUTIONS

In this section, we prove the existence of at least one continuous solution of
(1.1)-(1.2), for this aim, we assume that:
(¢7) f:[0,T] x R™ — R is continuous and satisfy the lipschitz condition in
x € R™ such that

n
lf(t,x1, 2,y xn) — [t Y1, Y2, oy Yn)| < Z/{:Z\mz — y;| with constants k; > 0.
i=1
(”) SUP¢e(o,T] ‘f(ta 0,0,... 0)’ <M.
(i) S, ki < 1.
(tv) g :[0,T] x R — R satisfies Carathéodory condition, i.e. it is measurable in
t € [0,7T] for all x € R and continuous in z € R for almost all ¢ € [0, T].
(v) There exist a function a € L'[0,7] and constant b > 0 such that

lg(t, 2)] < la(t)| + blx].
(vi) bT'ry < 1.

Lemma 2.1. Let x be a solution of (1.1)-(1.2), then it can be given by the integral
equation

T t
(2.1) x(t) = xo —l—/ 9(s,z(s)y(s))ds +/ y(s)ds, t € [0,T7,
0 0
where y(t) is the solution of the functional equation
(2.2) y(t) = f(t; any(nt), Aarey(y2t), s A1y (1)), ¢ € [0,T].
dx(t)

Proof. Let x be a solution of (1.1)-(1.2) and =~ =y € C[0,T7], then

using (1.2), we obtain (2.1)

T t
z(t) = g —i—/o g(s,z(s)y(s))ds —i—/o y(s)ds € C[0,T7,

and
T it
2(9it) = w0 + /0 g(s,(5)y(s))ds + /0 y(s)ds,
hence
d
(2.3) —x(yit) = viy(yit)-

dt
Using (2.3) in (1.1), we obtain (2.2)

y(t) = f(t, Aimy(nt), Aeyey(vat), - Anmy(mt)), t € [0, 7).
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Also, we can get back to (1.1)-(1.2) by differentiating (2.1) and using (2.2) and (2.3)
as follows

dx(t)
dt

= y(t)v te (O¢T]
= f(t. Mmy(nt), A2y (2t)s ooy Ay (nt))
d d d
_ f<t M (ont), Athmw,...,Andtwmt)),

and the nonlocal integral condition holds when substituting ¢ = 0 and

y =20 50 (2.1). 0

Theorem 2.2. Let the assumptions (i) — (iii) be satisfied, then (2.2) has a unique
solution y € C10,T].

Proof. Define the set @, and the operator F; associated with (2.2) by

M

ry = {y €R:|ylle < rl} C C[0,T], where r; = mv

and
Fly(t) = f(ta )‘lr71y(’ylt)v )‘272?/(7275)’ ceey )‘nryny(’ynt))a te [07 T]
Using assumption (i), we obtain

n
|f(ta Y1,Y2, ,yn)| < |f(t’0707 ’O)| + Zkl‘yl‘

Let y € Q,, then for t € [0,T], we get

Fy(t)] = [ £ Amy(nt), Aev2y(v2t), s A ¥ny () |
< 1f(,0,0,.,0) + 3 ki Ay (i)
=1
< supeppmlf(t, H‘Zk)\ sup |y(vit)]
7:t€[0,T7]

< M+ Hyﬂczkw\z
i=1

Then, we have

n
HFlyHC’ < M‘|‘lek‘i}\i =1.

i=1
This proves that F; : Qr, = Q,,. Now let u,v € @), then
|Fiu(t) — Fro(t)] = | f(t AMvu(nt), Aeyeu(yat), ... n’YnU (nt))
— [t Mmv(t), Aer2v(Y2t), -y Ay (nt)) |

< Z ki| Aviu(rit) — Niviv(vit) |



18 A. M. A. EL-SAYED, MOAMEN O. RADWAN, AND H. R. EBEAD

< E kidilu(vit) — v(vit)|.
i=1
Thus

n
|Fiu — Fiolle < [Z m] llu — vl|c-
i=1
Since Z?:l k;\; < 1, then F} is a contraction. Now all conditions of Banach fixed
point Theorem [11] are satisfied, then Fj has a unique fixed point y € @Q,,, hence
(2.2) has a unique solution y € C[0,T. O

Theorem 2.3. Let the assumptions (i) — (vi) be satisfied, then (2.1) has at least
one solution x € C[0,T]. Consequently, (1.1)-(1.2) has at least one solution x €
cto,T).

Proof. Define the set @, and the operator F» associated with (2.1) by

|(E()‘ + HaHLl +rT
1 —bTTl ’

Qr, == {z € R:||z]lc <12} C C[0,T], where ry =

and
T t
Fox(t) = xo —|—/0 g(s,z(s)y(s))ds —1—/0 y(s)ds, t €10,T].

It clear that @, is nonempty, closed, bounded and convex subset of C|0,T].
Let z € Q,,, then for ¢t € [0,T], we get

T t
x0+/0 g(s,x(s)y(s))ds—i—/o y(s)ds

T t
20| + / g (s, 2(s)y(s)) |ds + / ly(s)|ds

T
< |x0|+/ [|a( )| + blz(s) ds+/ ly(s)|ds
0

|xo|+/ |ds+b/ s)||y(s |ds+/ ly(s)|ds
0

ol + [lal[ L + 0T (|zllc|lyllc + [lyllcT:

[Fax(t)] =

IN

IA

IA

Then, we have
||FQ$HC < |I0’ + HaHLl + bTrirg + 11T = re.

This proves that Fy : @, — Q,, and the class {F5z(t)} is uniformly bounded on
Qr,. Let x € Qp, and t1,ty € [0,T], where ty > t; and |to — t1| < 4, thus

T to
a:o—i-/o g(s,ac(s)y(s))ds—i—/O y(s)ds
T t1
— xo—/o g(s,x(s)y(s))ds—/o y(s)ds

/ y(s)lds

S 7“1‘152 —t1’ S 7“1(5 = €.

|F2$(t2) — ng(t1)| =

IN
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This shows that the class {Fbx(t)} is equi-continuous on @,,. Thus, by Arzela-
Ascoli Theorem [3], {Faxz(t)} is relatively compact, hence Fj is compact operator.
Let {z,} C Qr, s.t. x,, — x, then

T t
Fazal®) =20+ [ a(san(s)u(s))ds + [ yls)ds, 0 =012,
0 0
and
T t
nh_)ngo Foxy,(t) = xo + nh—>nolo/0 g(s,zn(s)y(s))ds —I—/O y(s)ds.

Using the Lebesgue dominated convergence Theorem [7] and assumption (iv), we
have

T ¢
lim Fha,(t) = xo—i-/o lim g(s,xn(s)y(s))ds—i-/o y(s)ds

n—oo n—oo
T t
= g:0+/ g(s,y(s) lim xn(s))ds+/ y(s)ds
0 n—oo 0

T t
= 29 +/ g(s,x(s)y(s))ds +/ y(s)ds
0 0
= Fgl'(t).
Thus, F3 is continuous operator. Then by applying Schauder fixed point Theorem
[6], F» has at least one fixed point z € @,, hence (2.1) has at least one solution

x € C[0,T]. Consequently, by Lemma 2.1, it follows that (1.1)-(1.2) has at least one
solution = € C*[0, T). O

3. UNIQUENESS OF SOLUTION

Here, we prove the existence of a unique solution of (1.1)-(1.2), for this aim, we
assume that:

(7)) g : [0,T] x R — R is measurable in ¢ € [0,7] and satisfy the lipschitz

condition in € R such that
lg(t,x) — g(t,y)| < blx —y| with constant b > 0.

(ii)" g(t,0) € L0, T).
Theorem 3.1. Let the assumptions (i) — (iii) and (vi) of Theorem 2.3 and (i)'-(i)’
be satisfied, then the solution of (1.1)-(1.2), x € C'[0,T), is unique.
Proof. Assumptions (iv)-(v) of Theorem 2.3 can be deduced from assumptions ()’
and (77)" as follows, putting y = 0 in (z)’, we obtain

lg(t, )] < [g(t,0)] + blz],

where a(t) = g(t,0) € L'[0,T).
Hence, we deduce that all assumptions of Theorem 2.3 are satisfied and (2.1) has
at least one solution z € C[0,T]. Now let x1, z2 be two solutions of (2.1), then

T t
wa(t) — ()] = M+AQEM®M%%+Ay@%
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T t
- xo—/o g(s,ml(s)y(s))ds—/o y(s)ds

IA

T
/0 |9(s,22()y(s)) — g(s, 21(s)y(s)) |ds

IN

T
b / wa(s)y(s) — 21 ()y(s)|ds
T
— /O y(s)llaa(s) — 1(s)lds.

Thus

lz2 — z1llo < bTr1lwe — 21|c-
Since bTry < 1, hence 1 = x2 and the solution of (2.1), z € C[0,T], is unique.
Consequently, the solution of (1.1)-(1.2), x € C*[0, T, is unique. O

4. HYERS-ULAM STABILITY

Here, we investigate the concept of Hyers-Ulam stability of the problem (1.1)-
(1.2) associated with (2.1) and (2.2).
Definition 4.1. Let the solution of (1.1)-(1.2) be exists. The problem (1.1)-(1.2) is
Hyers-Ulam stable, if V e > 0 3 6(e) > 0 such that for any solution x of (1.1)-(1.2)
satisfying
dxs(t)
dt

d d d
—f (t’ /\1%%8(7175)7 /\2axs(’72t>v e )‘ndtxs(%zt)> ' <9,

then
||z — zs[|lc < e

Theorem 4.2. Let the assumptions of Theorem 3.1 be satisfied, then the problem
(1.1)-(1.2) is Hyers-Ulam stable.

Proof. Let |40 _ f (t, ML (11), g (), . Angtxsmt)) ‘ <6, then
dz4(t) dzs(71t) dzs(vat) dzs(ynt)
5< T WA A kAN LP N W NI A2 I |
>~ dt f<7 171 d('}/lt) y A27Y2 d(,yzt) 3 ey 8t d('ynt)
then
=0 < ys(t) — [t Myys(1t), Aoevays(at), s Annys(nt)) < 6.
Now
ly(t) — ys(t)]

= | (& Mmny(nt), s ATy (mt)) — s (t)]
= | £ (&, Myy(nt), oo Ay (Ynt)) — s (t)
— F(t6 M Ys (1), oo An s (Yt)) + £ (8 Mv1ys (Y1), -, Anyns (V) |
<Ay (), o Ay (mt)) — (£ My1ys(18); - An Vs (Ynt)) |
+ £t Mmys(11t), -y Annys(nt)) — ys(t)]
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< Z ki‘)\i%y(%t) — )\z‘%ys(%t)‘ +9
i=1

< D kihily(it) = ys(rit)| + 6.
=1

Thus .
ly —wslle <> kidilly — wslle + 6,
=1
and
ly—pllo< — o=
Now
T t
() — z4(t)] = |20 + / g(s,2(s)y(s))ds + / y(s)ds
0 0
T t
—aco—/ g(s,ms(s)ys(s))ds—l—/ ys(s)ds
0 0
T T
< /0 195, 2(5)y(5)) — g(5, 2s()ys(5)) | ds + /0 ly(s) — ys(s)|ds
T T
< /0 (2(5)y(s) — s (5)ys (s)|ds + /0 Iy — ysllcds
T
<b /O 2(s)y(s) — 2s(s)y(s)|ds
T
+ b/ |zs(8)y(s) — xs(8)ys(s)|ds + €T
0
T T
—b /0 ly(s)|2(s) — za(s)|ds + b /0 25(3)|y(s) — ys(s)|ds + T
< 6T\l — zallc + Tzl lclly — wsllc + €T
Then
2 — zsllo < BTz — asllc + Gllzslle + 1T,
and (Bllalc + DT
zsl|o + 1)
— < = €.
lz = adle < == 57, ‘

5. CONTINUOUS DEPENDENCE

In this section, we study the continuous dependence of the unique solution of
(1.1)-(1.2) on the initial data x¢, the functions g and f, and parameters \; and ~;.

Definition 5.1. The solution y € C[0,T] of the functional equation (2.2) depends
continuously on the function f and parameters A\; and ~;, ¢f
Ve>036(e) >0 such that

max {[f(t, 1, ...,wn) = f*(t, 21, 20)], [N = Al v =91} <6,
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then
ly —y*lle <e
where y* is the unique solution of the functional equation
(5.1) y* () = (6 MY (1), Aon3y" (138), - Ay (1t)), ¢ € [0, 7).

Theorem 5.2. Let the assumptions of Theorem 2.2 be satisfied, then the solution
y € C[0,T] of (2.2) depends continuously on the function f and parameters \; and

Yi-
Proof. Let y and y* be the two solution of (2.2) and (5.1) respectively, then we have
ly(t) — v (0)
= | (t. My (1t), s Ay (mt)) — £ (XY (31t), s Myvay ()|
< £ My (), o Ay (3t)) — (6 My (nt), o Ay (1)) |
+ (6 My (), - Aemy(t)) — £ (6 XY (311), s My (1) |

<6+ Y kil iviy(it) — Ayt (5 )|

im1
=0+ ﬁ; ki| Ay (it) — Ny (vit) + Nivay ™ (it) — Ay (7 1))
<6+ Z: kiily(vit) — y* (it)| + Zj; kil Aiviy* (it) = Ay (7 )|
<5+ Hyy*llcikm

+ i kil Aiviy* (vit) = Niviy* (07) + Xy (1) — Ny ()|
<di+lly—y'llc Zn; kiXi + Zn; kiily* (it) — y* (77 t)|

+Zk i = Ayt ().
=1
Now y* € C[0,T] and |y; — ;| < 8, then |y*(vit) — y*(v}t)| < €1, then

0+ ||y—y*||czki>\i
i=1

—|—elzk)\ + ||y HCZk [Aivi = A7l

ly(t) =y (1)

IN

IN

0+ ||y_y*”CZki)\i

=1
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n n
* * k %k
+€1 g kidi + 11 g kil Nivi — iy + Ay — A |
i=1 i=1

< S+ lly—ylle Y ki

i=1
et 3 kohi S k[l — 7L+ I — AT
=1 i=1
and
Hy — y*HC <d+ Hy — y*HCZki)‘i + €1 Zk‘i/\z‘ +7r1 Zkio\ié—i_ 5).
i=1 i=1 i=1
Hence
. S+ er > kN +or > k(N +1
ly —y*llc < izt 7 Z,l ( ) —e.
1=>0 ki

]
Definition 5.3. The solution = € C'[0,T] of (1.1)-(1.2) depends continuously on
the initial data xy and functions g and y, if Ve > 0
3 9(e) > 0 such that

max {|zo — 25|, |g(t,x) — g*(t,2)], ly(t) —y* ()|} <4,
then
|z — 2| <,

where x* is unique solution of the integral equation

T t
(5.2) x*(t) = x; +/0 g (s,2*(s)y*(s))ds +/0 y*(s)ds, t € [0,T7.

Theorem 5.4. Let the assumptions of Theorem 3.1 be satisfied, then the solution
x € CY0,T] of (1.1)-(1.2) depends continuously on the initial data v and functions
g and y.

Proof. Let x and z* be the two solution of (2.1) and (5.2) respectively, then we have

T ¢
lz(t) — 2*(t)] = ‘xo—i-/o g(s,a:(s)y(s))ds—i—/o y(s)ds

IN
)
o
|
R
o
_l_
S
o
—
\.Cn
2
—
V)
S—
<
~—~
V)
N—
SN—
|
(S
*
—~
V)
)
—~
V)
N—
<
—
V)
S—
SN—
QL
V)

IN
[«
+
o\
S
<
—
\_CIJ
8
—~
V)
SN—
<
—
Vo)
N~—
S—
|
Q
*
—
V)
8
—~
V)
SN—
<
—~
Vo)
N—
SN—
=
V)
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T
+ / |97 (s, 2(s)y(5)) — 9" (5,27 (5)y"(5)) |ds + 6T
0

IN

T
0+ 6T + b/o |z (s)y(s) — z*(s)y*(s)|ds + 6T

IN

T
(14+2T)6 + b/o |z (s)y(s) — 2" (s)y(s)|ds
T * * *
b [ o (9)u(e) = ey (9| s
T
= (1+2T7)6 + b/o ly(s)||x(s) — x*(s)|ds

T
+¢A\ﬁ@mmg—¢@ww
< (142005 + bTlllclle — <"l + bTd] 12" .

Thus
|z —2*||c < (1+2T)6 + bTri||z — z*||c + bTors.
Hence ( T4 bTr)s
" 1+ 27T + 79
_ < — €.
|z —2*||e < 5T €

0

Corollary 5.5. Let the assumptions of Theorem 3.1 be satisfied, then the solution
x € CL0,T) of (1.1)-(1.2) depends continuously on the function f and parameters
Ai and ;.

6. SPECIAL CASES AND EXAMPLES

Corollary 6.1. 1. Let the assumptions (iv) — (v) of Theorem 2.3 be satisfied.
If 71 A2 < 1, then the problem
dr(t) ., d
1 =S N Za(y T
(6.1) 7 ;Azdtxmt), te(0,7),

with the nonlocal quadratic integral condition (1.2) has at least one solution
z € C0,T).
2. Let the assumptions (i)’ — (ii)" of Theorem 3.1 be satisfied.
If "% A2 < 1, then the solution of problem (6.1) with (1.2),
x € CY0,T], is unique.
3. If SR A2 < 1, then the solution of the initial value problem (6.1) with

2(0) = 29, x € CY0, T, is unique.

Proof. Set f<t, Alﬁx('ylt), ...,Anc‘litsv(fynt)) =>", )\i%x(%t),

using Lemma 2.1, we can obtain the functional equation

y(t) = Nviy(vit), t € [0,T],
=1
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then |f(t’ ZE) - f(t7y)| < E?:l )\’L|x - y|7 T,y € Rn> and f(t70) = 07 then k’L = >\ia
M =0, and r; = 0. Hence all assumptions of Theorem 2.3 and 3.1 are satisfied. [

Corollary 6.2. Assume that A:[0,T] — R is continuous and > i A2 < 1, then
1. Let the assumptions (iv) — (vi) of Theorem 2.3 be satisfied, then the problem

dx(t)
dt

—~ . d
6.2 = A(t Ai—x(vyt), t 0,71,
(6.2 0+ 3 Ayt L€ 0.1
with the nonlocal condition (1.2) has at least one solution xz € C*[0, T).

2. Let the assumptions (vi) and (i)' — (it) of Theorem 3.1 be satisfied, then the
solution of (6.2) with (1.2), x € C*0,T], is unique.

Corollary 6.3. Let the assumptions (i) — (ii) of Theorem 3.1 be satisfied, if k1\1 <
1, then the initial value problem

(6.3) L f(t,Aliw('nt)),tE(O,T],
(6.4) z(0) = o,

has a unique solution x € C*[0,T].

Corollary 6.4. Let the assumptions (iii), (vi) and (i) — (i7)" of Theorem 3.1 be
satisfied, if f; 1 [0,T] x R — R is continuous such that

where supyeo, )| fi(t,0)| < M, then the problem

(6.5) dZit) =3t <t, /\ijta;(%t)>,t € (0,77,
i=1

with the nonlocal condition (1.2) has a unique solution x € C1[0,T).

Example 6.5. Consider the following nonlocal problem
de(t) et 1 1.d ,1 1, 1.d 1

with the nonlocal quadratic integral condition

(6.7) 2(0) =1+ /07 ((;)2 + éx(s)dflf)>ds.

Using Lemma 2.1, z is the solution of the integral equation

T/ t
(6.8) z(t) =1 —i—/o ((3)2 + éx(s)y(s))ds —i—/o y(s)ds, t €10,7],

where y(t) is given by the functional equation
et 1 1 1

, 1. 1. 1
7 T gsin(ghu(gh) + pein(Gt)u(5t), £ € [0.7)

(6.9) y(t) =

Set
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et 1 . 1

and

We have A\ = % Agz%,'yl:i ’yg:%,xO:l,T:T
Hence, f|(£,0,0)] <1 =
and

1 1
|f(t,z1,22) — f(t,y1,92)| < §|951 — 1| + T5|$2 — 12/,

_ 1 _
|g(t,u) _g(t7u)‘ < 6|u_u‘7

then, ki = &, ko = 15, b= L, 37 | ki) ~ 0.0847222 < 1,
r1 ~ 0.1560806, and bT'r; ~ 0.1820940 < 1. Obviously, all assumptions of Theorem
3.1 are satisfied, then the solution of (6.6)-(6.7), z € C*[0, 7], is unique.

Example 6.6. Consider the following nonlocal problem

de(t) 1d 1 1d /1 ld 1
. —— t —-—x(zt), t 2
(6.10) T = (Gt + () + 5 a3, L (0,2,
with the nonlocal quadratic integral condition
2
s\3 2 dzx(s)
A1 =1 - — ds.
(6.11) z(0) —i—/o ((7) + gx(s) 2 s
Set
t 3 2
gt z(y(t) = ()" + Gz(Oy(®).
We have \; = 3, Ao = 1, A3 = ¢ ,and g(£,0) = (%) € L'0,2]. Hence
2

|g(t>u) _g(tﬂj)‘ < §|u—ﬂ|,

then b = 5, Z?Zl )\22 ~ 0.3402778 < 1. Obviously, all assumptions of Corollary 6.1.2
are satlsﬁed then the solution of (6.10)-(6.11), z € C1[0,2], is unique.

Example 6.7. The initial value problem problem (6.10) with z(0) = 1, has a unique
solution z € C'*[0, 2], by Corollary 6.1.3.

Example 6.8. Consider the nonlocal problem

de(t) 1 1d 1. 1d 1. 1d 1

= F To G+ oo a(t) + o t 2
i~ i+5 zatGY gt T gt e (02

with the nonlocal quadratic integral condition (6.11) of Example 6.6.

Here, we have from Example 6.6 that T" = 2, 2?21 /\12 ~ 0.3402778 < 1 , and
b= 3. Set A(t) = 75 € C[0,2], then |f(t,0)| < + = M, ri ~ 0.3031579, and
bTry ~ 0.1347368 < 1. Obviously, all assumptions of Corollary 6.2.2 are satisfied,

then the solution of (6.12) with (6.11), x € C1[0,2], is unique.

(6.12)
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7. CONCLUSION

This study proves the existence and uniqueness of solution = € C[0,T] of the
problem (1.1)-(1.2) emphasizing its Hyers-Ulam stability. The study carefully ex-
amines the behavior of the unique solution of the problem, revealing that it is
continuously dependent on a set of parameters. The study not only adds to theo-
retical understanding but also offers practical insights via analysis of particular cases
and examples. These results will influence future study in the area of functional-
differential equations and have relevance for a variety of scientific and engineering
applications.
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