Applied Analysis and Optimization Yokohama Publishers

Volume 8, Number 1, 2024, 115-125 ISSN 2189-1664 Online Journal
© Copyright 2024

¢-ABEL INTEGRAL EQUATION WITH n TERMS

AWAIS YOUNUS

ABSTRACT. In this paper solution of Abel’s integral equation with n terms is
discussed by using Laplace transform. Furthermore we derive the results about
the solution of g-Abel integral equation as well as g-Abel integral equation with
n-terms using different techniques.

1. INTRODUCTION AND BASIC RESULTS

Abel’s integral equation is an important singular integral equation and Abel
found this equation from a problem of mechanics, namely the tautochrone problem,
which is considered to be the first application of fractional calculus to an engineer-
ing problem [2,3,12]. This equation and some variants of it found applications
in heat transfer between solids and gases under non-linear boundary conditions,
theory of superfluidity, percolation of water, subsolutions of a non-linear diffusion
problem, propagation of shock-waves in gas fields tubes, microscopy, seismology,
radio astronomy, satellite photometry of airglows, electron emission, atomic scat-
tering, radar ranging, optical fiber evaluation, X-ray radiography, flame and plasma
diagnostics [6,10]. Abel’s integral equation, is the very first integral equation which
is studied, and the relevant integral equation have never ceased to inspire mathe-
maticians to investigate and to generalize them [4,7,8]. The Abel’s integral equation
are use in different fields of physics and experimental sciences (for example scatter-
ing theory, spectroscopy, seismology, elasticity theory, plasma physics, etc) | [5,11].
One of the recently influential works on the subject of Abel integral eqation is the
monograph of Gorenflo and Vessella [13].

Abel’s integral equation is connected to the first fractional integral operator which
is defined by Riemann and Liouville

(1.1) ﬁ /w(x _ 00 (1)t = f(x), &> a,a >0, f€ Lia,b).

Let us state result about existance for solution of Abel’s integral equation (1.1).

Theorem 1.1. [12] The function fi_o defined by
1 x
_ — )" f(t)dt
e At R0

with fi—o(a) = 0 and absolutely continuous on [a,b] if and only if the Abel’s
integral equation (1.1) with 0 < a < 1 has a unique solution in Li(a,b). If the

flfa(l') =
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formar conditions are fulfilled, then the unique solution ® is given by

F(ll—a)dcglc /j(m — )" f(t)dt = %ﬁfa(:ﬂ), a.e.

If f € AC [a,b], then fi_q € AC [a,b] and from equation (1.2) we have

1 f(a) O
O(z) = ————ds]| .
") = Fi—a) [@;_a)a */a (@—ap"
Consider the cross section of a weir notch. The cross section is symmetrical with

respect to the x-axis. The flow rate through the notch per unit of time will be
determined by

h
(1.3) Q= C/o Vh—z®(x)dz,

(1.2) B(z) =

where the form of the notch is determined by y = ®(z); x > 0. From equation (1.3)
determining ®(x) so that the quantity of flow per unit of time shall be proportional
to a given power of the depth of stream; i.e., @ = kh™, m > 0. Hence we must find
®(x) from an integral equation of the form

h
(1.4) /0 Vh —x®(x)dx = kh™.

Differentiating (1.4), we have:

h
;/ (h — 2) Y20 (2)dx = mkh™ .
0

More generally, we can extend above equation as follows

(1.5) /Oh L@z o pmt

— T

and a solution of equation (1.5) will be a also solution of equation (1.4). But
equation (1.5) comes under the form of Abel’s integral equation,
T
/ M:g(z), 0<a<l).
a (‘T - y)a
This Abel’s integral equation can be converted into Riemann and Liouville fractional
integral operator. Furthermore by using (1.1) one can find its continuous solution
® as given in [6].
Let us consider the basic notions of g-calculus and g-fractional calculus from [1]:
Let g € [0,1] is fixed real number, a subset A of R is called g-geometric if gz € A
whenever z € A.

Definition 1.2. A function g which is defined on a g-geometric set A, 0 € A, is
said to be g-regular at zero if

lim g (2¢") =g¢(0) for all z € A.

n—oo
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Furthermore, if A is also ¢~ !-geometric, then we say that g is g-regular at infinity
if there exists a constant C' such that

lim g (zq_") = (C for all z € A.

n—oo
Henceforth, if A C R is ¢-geometric and g is a g-regular at zero function defined
on A, we define g (0%) and g (07) by

g (0*) = lim ¢ (a:qk> , g (0*) = lim ¢ <qu> .
n—o0, n—00,
>0 <0
Remark 1.3. Clearly, if g is ¢-regular at zero, then
9(0)=g(07) =g (07).

The ¢-regularity at zero plays the role of continuity in the classical sense in some
setting. On the other hand, continuity at zero implies g-regularity at zero, but the
converse is not necessarily true.

Example 1.4. The function w: [0,1] - R

(2) 1 x:an:ﬁ,nisprime
u(x) =
x otherwise

is g-regular at zero for rational ¢, but it is not continuous at zero.
Let us now define the fractional ¢-integral and g-derivative:

Definition 1.5. The fractional ¢-integral is

a—1

x xr
I3.9(x) = ey /c (qt/;q)a—19(t)dyt,
and the fractional g-derivative is

Dgg9(x) = DTS P g(a).

Definition 1.6. A function g defined on [0, a] is called g-absolutely continuous if g
is g-regular at zero,and there exist K > 0, such that

o0
(1.6) Z l9(tq’) — g(tg’ ") < K, for all t € (qa,a] .
j=0
If equation (1.6) holds then it can be extended through out (0,a]. To see this, it

suffices to investigate the case when = € (0, a] then there exists t € (¢qa,a] and k € N
such that 2 = t¢*. Then

> lolad?) — gled M| =Y |a(ted’) — gltg’™)|
j=0 j=k

g

< gltd) — g(tg™)| < oo.
=0

We shall use AC, [0, a] to denote the class of g-absolutely continuous function on
[0, al.
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Definition 1.7. ¢-Laplace transform of a function g can be defined as
1
oLs[g(z)] = @(s) = T4/, Eq(—qsz)g(z)dgz.
Theorem 1.8. Let g be a function on [0,a].Then ,the function g € ACy[0,a] if

and only if there exist a constant ® in L} [0,a] such that
(1.7) g€ AC,[0,a] & g(z) = c+/ ®(z)dgu, Vo € [0,q].
0

Moreover, the constant ¢ and the function ® are uniquely determined via ¢ = f(0)
and
®(z) = Dyg(z),Vz € (0,a].

2

Example 1.9. Let g : [0,a] = R ,g(x) = x* is a continuous = g € AC, [0,a].

Theorem 1.10. The gq-Abel integral equation

a—1
Lq(e)
has a unique solution ® € /Jé [0, a] if and only if
(1.9) 137 %g(x) € AC4[0,a] and I,”*g(0) = 0.
Furthermore, the unique solution ® is given by

(1.10) ®(z) = Dgoly “g(x).

(1.8) /Oz(qt/m;q)alq)(t)dqt =g(z),(0<a<l,ze(0,a])

The following example confirm the validity of the theorem.

Example 1.11. Consider for 0 < o < 1 the ¢-Abel integral equation

a—1

Ly(a)

An easy computation of I(}_O‘g(m) gives

(1.11) /Ox(qt/;v;q)aﬁb(t)dqt =22 (0<a<1,z€(0,d).

—

T z 9
- t/x:q)_ox2d,t
Lg(1— ) /0 (at/:0) —a"dy

x2—o¢

= I /0 (qt/z;q)—adgt.

Taking substitution ¢/z = u, above equation becomes
2—«

. 1
T,0_a /0 (qu; @) —azdqu
(

1,7 %(x) =

Iy %(x) =

x3—a 1
= Fl—a)/o (qu; Q)—adqu
q
:L,3—oz 1
~ i e
q
x3—a

mBq (1,1 — o)
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#= T, ()T, (1-a)
T,(l—a) T,(I+1—a)
.%'3

0, ()T, (1-a)

Ffl-a) Ty(d—a)
3 21
T 1 I,(A-a)
23—
TT,(4-a)

Then |, I;*af(O) =0 and I;*O‘f(m) € AC, [0, a]. Consequently, equation (1.11) has
unique solution given by

O(z) = Dq,xlé_af(x)

2737
=0t (1=

2 @)~ fleg)”"
Iy3—-a) r—qx

92 :ES_O‘ o x3—aq
Iy(4—-a) T —qx

9 3 (1 _ qB*O‘)
Ig(4—a) z(1—gq)

2 1:2_& (1 — qB—a)
IjB-—a)  (1-9)

3—a

Since I'y (z + 1) = %I‘q (x)

2227 T, (3—a+1)

(z) = T,d—a) T,(3—a)
22
T T,B-a)

2. THE N-TERMS ABEL’S INTEGRAL EQUATION

In this section, we discuss solution method for n-term Abel’s integral equation.
First of all we consider the general form of two terms Abel’s integral equations. For
a,8>0,suchthat 0 < f<a<1

(2.1) /Ox { @ ft)a + @ ?t)ﬂ } u(t)dt = f(z), >0
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we put F(s) = L{f(x)} and U(s) = L{u(x)}, then:

U (G o) v} = £ 1)
PL {/Om(g; - t)au(t)dt} +QL {/Ox(:c — t)ﬂu(t)dt} = F(s).

Since £(z*) = TetD or £((z — £)*) = Rt also L((x — 1)) = Fotl,

Slfaslf,b’

V) = pra—ajst 7+ ora - gse

F(s).

Divided by S'=# on numerator and denominator:

Sl-a 1
2.2 U(s) = F
( ) (S) PF(l — Oé) 14 g;g}:gg Sh-a (S)
provided that
PI'(1 - p) B—a
— 1.
ori—w|®l <

Convergence of the geometric series implies that

1+QFl s _Z (QSMY'

Pr'(1— a)

Equation (2.2) implies that

— Sl_a - n QF(l — B) B—c "
(2.3) U(s) = m <nz:(—) <PP(1a)S > ) F(s)
In more compact form:

U(s) = Z_%(‘)n ( g?l(l__af))zil SO R(s)

o~y (QL(L—p)" 1
=2 (P — ) g )

n=

Here n zﬁ((nnii)a —nf — 1. Since L(z") = % Also L(z"71) = ng,jill) = FSEZ),
S0 % - Ig‘c(n) :

=, QU =) Lz
U6) =30 orr = ey £

By using convolution theorem, we obtain:

€)= £ | S (i i ) . x(fv—t)”lf(t)dt]
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Applying Laplace inverse on both sides, we obtain,

R VIR (o] N ) KR N AP
ua) = SV e e, @ =0 o

n=0

:chD;"f(x),O<ﬁ <a<l

BT(1 _
where ¢, = <—>”(,gm<%, (@) = ey Jo e =) @t = (4 o~
nf — 1.
Now we consider the three terms Abel’s integral equation in the general form:

x P Q R B
(2.4) /O {(m—t)"‘ + @17 + (x—t)v}u(t)dt_ fl),0<y<p<a<l,
Applying Laplace transforms and putting F(s) = L{f(z)} U(s) = L{u(x)},
L(a®) = Fgar, and L((z — 1)) = TGt

Sl—a S1-8 Si=v
PI(1—a)S'PS17 + QI(1 — B)ST2S'™7 + RI(1 — 7) 512817
= ST=agi-Agi— U(s) = F(s).
It implies that
Sl—as«l—ﬂsl—w
Uls) = PT(1 —a)S'B81=7 + QI'(1 — 8)S1—aS1=7 + RI(1 — l—a 1—5F(s)'
v)St-aS
Divided by S'=#8'=7 on numerator and denominator:
Sl—a
Uls) = PI'(1—a)+ QT(1 — B)St—a~14+8 + RI'(1 — ) St-a-1+y Fs)
-«
_ 5 F(s).
PT(1—-a)+QT(1—pB)SA~2>+ RI'(1 — )57«
It follows that
SR 1
(25)  Us) = — F(s),
_— ﬁ —Q Y«
P |1+ D+ g
with
PN
I8 < 1| g Is1”
Using the geometrlc series
1 B 1
Qr(1-p) gb-a | RL(1=7) gy—a Qr(1-8 o« RO(1— o)
L+ PT(1— a)S + PT(1— )S 1 _( PFEl a§SB - PFglfl;SV )

b Qr(i - ) RI(1- )
_ — B—o -7 -
TSP i—a)” P
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then
— e QL(1—=p) ss-a  RT(1=7) o 0"
nzor _nzo< Pri—a)’ Pri—a)’

&, L (QU(L-B) e RT(A—7) oa)”
N = T

n=0
So equation (2.5)
(2.6)

Sl —, wn (QU(1=p) p—«  BRT(1=7) o, 0\"
More explicitly

Uls) =2 () ((PF(l —a)

~—

S

,)Ln (B—a)n+l-a Rr(l — V)n S(Voz)nJrla) F(S)

n=0 )l (PT(1 — a))nt!
—, (@1 -p)" 1 RT(1—y)" 1
:;}(_) <(PF(1 —a))nﬂ-lﬁ (Pr(l—a))”'H S§> F(S)7

where n = (n+1)a—nB—15= (n+ a —ny — 1.

N[ QA=) L2 | RI(L—y)" L(e5)
£ () =2 ) <<Pr<1—a>>n+1 o) era-ape g )Y

n=0

By using convolution theorem and inverse Laplace, we obtain
u(z) = CuD;"f(2) + En D7 f(2),
where C,, = (—)”M E, = (_)n CT(1—)"

(AT (1—q))nt+1> (AT (1—q))nt1 -
Similarly the solution of the following nth terms Abel’s integral equation:

€T n

P.

/ > s Judt = f(@), 2> 0,0 < appy < < LVi=1,2,...n.
o \‘o (x—1)

is

u(@) =Y C3D" f(x).
i=0

3. TWO TERM ¢-ABEL INTEGRAL EQUATION

Now consider the following two term ¢-Abel integral equation
(3.1)

L LI P
—_— Px™% (qt/z;q)_, @ (t) dgt + —— Qz" (qt/x;q) 5P (t)dgt = h(z) .
1—q/, 1—qJo
The g-convolution implies that

P %5, @ (2) + Qr P %, @ (z) = h (z).

Applying ¢g-Laplace on both sides, we have

(3.2) PyLy [27°] @ (5) + QqLs [xﬂ O (s) = H(s).
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Now
o (1-¢) Ty (1—a)
qLs ["L' } = 81—5
and
_ (1-¢) "I, (1-8)
aks [m ﬁ] - sl—g :
Substituting in equation (3.2), we can obatin the following form:
@( ) 1_aH (S)
S) =
P1—q) Ty(1—-a)+Q(1—q) "Ty(1—B)s-asi!
7 81 aH( )
P(1—-q¢)™°T ( —)+Q(1—¢q) T (1-p)sie
_ BV H (s)
PT, (1 —a)+Q(1 —q)* T, (1 - p)sbe
st (1-9"
pu— H
Pry(1—-a)q, Qu- q)a(ﬁrq()l B) B-a (5)
T'q(l-a
st (1-a)"
= H (s).
Pr,(1— QU-9)* "Ty(1-B) 5o
e (A=)

By using geometric series form, we obtain

Sl—a 0 _\a—pf _ n
D (s) = Pr,(—a) ((1 ) (-1" (Q(l qu)q 1 quf)l B)Sﬂ_a> ) H (s)

n=0

s gt (& ~ 0" QL (1= B)" oo
- P 1—a) <Z (PT,(1—a))" 7 )>H(s)'

n=0

N gy (@ (LB (1 — gD

T T ).

(1 _ q)(n-l—l)oz—nﬂ ( ) (n+1)a—np

s(ntla—np-1 - g(ntl)a—nf—2+1
_a Q)("““ M(1-g
(1 q) (n+1)a nfB—2+1
(1 _ q)(n+1)oz—n6—2

- (1 —q) 2 s(nta—ns=2+1
In g-Laplace form:
(1 _ q)(n+1)afn,8 1 x(n—&-l)a—nﬁ—?

sntDa—nf—1 = (1 _ q)*2q£5 Ly ((n+1)a—np—1)
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So equation (3.3) becomes

where n = (n+ 1)aa —np — 1.

= Qr,a-p)
2V o a1

¢Ls [® ()] =¢ Ls [

n=0

Applying inverse Laplace on both sides, we obtain

S @A) gt L
®a) =Y (1) (PF T o T ) /), 0y

n=0
RS EVFEN .
‘Z T TaG Jy /D et
& L Qr )
— q>n220< D e )

In compact form:

=(1-q) ) culyoh(z)
n=0

(Bry(1-8)"

where ¢, = (=1)" Gir G

4. n-TERMS ¢-ABEL INTEGRAL EQUATION

Now let us derive the solution of the following n-term g-Abel integral equation:

(4.1) 1—q/ Pz (qt/x;q)_,, ®(t)dgt + - -
1 €T
+ -4/, Pox™ (qt/x;q) _q, © (t) dgt = h (z).
In g-convolution form:
Pl g @ () + -+ Ppa™ %y @ (2) = h(z).
Applying Laplace transform on both sides, we obtain

(4.2) Pyl [z7] @ (s) 4+ + Pugls [x7*] @ (s) = H (s).
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Since ( ) ( )
o 1—¢q) T, (1 -
qﬁs [.'L' 1:| = Sl—aql
and
o 1—q) Ty (1—ay
o] = (L0 Ty (=)

Slfan
After some basic steps we can obtain the following solution:

O(z)=(1-q)> Cullsh(x).
n=0

v (Palg(1—ag)-Puly(1—an))"
Where €y = (1) q(Pqu(lfoél);nH '
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