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PROPERTIES OF SOLUTIONS FOR A CLASS OF NEUTRAL
DELAY DIFFERENTIAL EQUATIONS

ANES MOULAI-KHATIR, MOUSSADEK REMILI*, AND DJAMILA BELDJERD

ABSTRACT. The aim of this paper is to present new results on three classical
questions related to the asymptotic behavior of solutions to a certain kind of third
order neutral delay differential equations. Results are obtained for the asymptotic
stability, the boundedness and the square integrability of the solutions.

1. INTRODUCTION

Recently, there has been many investigations on the asymptotic behavior of non-
linear neutral delay differential equations. In this article, we consider the following
differential equations

2 (t) + o) (t — ) +h(2'(t)2"(t) + g(2' (1) + f(a(t — 1))
(1.1) =e(t,x,z(t —r),2'(t), 2 (t —r),z"),

for all t > t1 > to+r, where r > 0. We assume that the functions h(2'(t)), g(2'(t))),
f(z), ¢(t) and e(-) := e(t, z(t),x(t —r),2'(t),2'(t —r), 2" (t)) are continuous in their
respective arguments. It is also supposed that the derivatives f'(z),¢'(y), and ¢'(¢)
are continuous for all z,y with f(0) = ¢g(0) =0,0 < ¢(¢) <1 and —a < ¢'(t) < 0.

It is implicitly assumed that a solution for equation (1.1) is a continuous function
z(t) € C3([ty,00),R) satisfying equation (1.1) on [t;, c0).

Without further mention, we will assume throughout that every solution z(t) of
(1.1) under consideration here is continuable to the right and defined on some ray
[tz, 00). Moreover, we tacitly assume that (1.1) possesses such solutions.

The study of the asymptotic behavior of solutions of equations of the form (1.1)
has received much less attention, which is due mainly to the technical difficulties
arising in its analysis. In many references, authors dealt with questions related to
this kind of equations, see for example [3,4,10,15,16,18-21,23,24,28, 29].

The object of this paper is to establish sufficient conditions for the asymptotic
stability of (1.1) for the case e (-) = 0, the boundedness and the square integrability
of solutions of (1.1) for the case e(-) # 0. By the construction of suitable Lya-
punov function, this results are obtained. This technique permits us to eliminate
some restrictions that are usually imposed on the coefficients of the studied neutral
differential equations.
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2. ASSUMPTIONS AND MAIN RESULTS

This section contains the major results of the paper.

2.1. Assumptions. In this subsection, we make the assumptions and notations we
will use in the sequel. For the sake of convenience, we insert the next notation:

At) = 2"(t)+ ()" (t — ),
Y= a/(t)+ ()2’ (t — ),
Z = 2"t)+ o)t —r).

Equation (1.1) is reformulated as the equivalent system

a' =y,
21 L YT :
Z'= ¢ ()2t =) = h(y)z — g(y) — f(z) + f(x(s)y(s)ds + e(").

t—r
To arrive to the desired results, suppose that the following conditions which will be
used on the functions that appeared in equation (1.1) are satisfied
1) hO < h(y) < h17
ii) =) > M >0 (z#0), and |f'(x)] <6 for all z,
x

i@f<%§%?§%

)
iv) §<d<h0,

t
v) [ [#'(s)]ds < p,
t1
where dg, d1,d, M, d, hg, h1 and p are positive constants.

2.2. Results. Here, we state our main results.
For the case e(t,z(t), z(t — r), 2/ (t), 2’ (t — r), 2" (t)) = 0, we state

Theorem 2.1. In addition to the hypothesis (i)-(v), suppose there exist positive
constants €,m1,n2 and ¢ such that the following is also satisfied

d? 3
(2.2) —ddo+5+(1+c)2+c<21+6>+2a = —n,

1 1+d
@3) c(m-dry)+ Dt 4G re = m

where
c=¢(t1) > ¢(t) for allt > t;.
Then trivial solution of (1.1) is asymptotically stable, provided

T<gmin _m £
5 ey od e

With respect to e(t, z,y, x(t—7),y(t—7r), 2(t)) # 0, our first result goes as follows:



ASYMPTOTIC PROPERTIES OF SOME NEUTRAL DELAY DIFFERENTIAL EQUATIONS103

Theorem 2.2. Assume that all the conditions of Theorem 2.1 are satisfied and
there exist positive constants q1 and qo such that :

Il) ’e(ttax7y7x(t - T)ay(t - T),Z(t))| < q(t) <41,
1) /0 q(s)ds' < q2,

then, there exists a positive constant D, such that any solution x(t) of (1.1)
satisfies

(2.4) ()| < D, |y(t)| < D, |Z(t)| < D.

In the following Theorem, we are concerned with the square integrability of so-
lutions to equation (1.1).

Theorem 2.3. If conditions (i)—(v), (I) and (Iz) hold, then for any solution = of
(1.1)

/OO (a:"2(s) +2%(s) + :c2(s))ds < 0.

to

3. PROOFS AND EXAMPLES

Now, we will firstly focus our interest into proving the stated results. Next, we
will give an example showing the applicability of the obtained results.

3.1. Proofs.

Proof of Theorem 2.1. The proof of this theorem depends on properties of the con-
tinuously differentiable function W = W (¢, xy, y¢, 2¢), defined by

(3.1) W(t) =V -Qt),

where

1 t
—— '(s)] ds
Q(t) = e w/t; }Qb( )‘ s

0yt
(3.2) Vo= V1+V2+A/ / y*(€)deds,
—r Jt+s
(3.3) Vi = dF(z)+ f(z)Y +Y?,
(3.4) Vo = 1Z2 +dyZ + /y ( g(u) + dh(u)u) du
2 0

+ / (119%(5) + p22(s)) ds,

T

)= | " fu)du,

w, A, u1 and po are positive constants to be specified later in the proof.
By noting that

I/ _ 2x
2 /0 £ () f (u)du = f2(x).
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and using (iv), we have

i = d/zf(u)du+(Y+;f(g;))2 21

@)

T 1 T y
> d i f(u)du—2/0 fH(u) f(u)du

/O (d— g) Fu)du

<d - g) F(x).
Condition (ii) implies

F(x) = /Oz f(u)du = /Orr fSL)udu > %Ma:Z.

v

v

Hence v 5
Wi > o (d - 2) =T2a
Since .
| o)+ ) ds =0
t—r
then

1 y

Vo > 522 +dyZ —i—/ ( g(u) + dh(u)u) du.
0

It follows from (iv) that

/Oy( g(u) + dh(u)u) du > (Cg) + d2h°> Y2,

and from (iii) also, that
1 d d_\* (1 dh 1 d?
v, > 4(dy+Z)2+40<y+Z> +<(do—d2)+0>y2+4<1—>z2
1 dhg 1 d?
> (S (do—d*)+——)v*+-(1--—) 2%
2 (=@ )5 (1-5)
2

1 d, d
Since 1 (dy + Z)2 + =2 <y + Z) > 0, we can exhibit a positive kg which satisfy

the following
Va > ko(y” + 2°),

where )
dhg 1 oy 1 d
ko—mln{7+1(d —d ),4<1do>}
Thus,
(3.5) V> k(2 + 9%+ 2°),
where
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At last, from (v), there exists a positive constant Ky, which proves the positivity
(3.6) W > Ko(2? + % + Z?).
From (2.1), one can remark the equalities
Y' = Z+¢' )yt —r),
Z'— ¢ )zt —1) = A(t).
Now, the time derivative of the functional (3.1) along the system (2.1), leads to

(3.7 W =a)- (v - L)

where
‘/’(/2.1) =U; + Us + Us,

Ui = [f'(®) 4 p+ M)y = dg(y)y + [pz + (d — h(y))] 2°
—pa P (t — 1) — p22®(t — 1) + ¢(t) [d — h(y)] z(t — )z
+o(t) ' (@)yy(t —r) +20(t)y2(t — ) +20()y(t — )2
+2yz — ¢(t)z(t — r)g(y) + 207 (H)y(t — r)z(t — ),

Uy = ¢'(t) [f(x)y(t —r)+2yy(t —r) +20()y*(t —7)]
+¢'(t) [2(t — 1)z + ¢(t)22(t — ) + dz(t —1)y]

and
t

Us =y + =+ 002t =) [ Falueds =) [ 52

t—r
Apply the assumption |f(x)| < §|z| and the inequality 2uv < u? + v?, to get
cd cd?
U < [—dd0+1+2+0+5+21+M1+A7’:|y2

[ cd
+ —m+c+2+c1 Y (t—1)

[ hy —d
+ u2+1—(h0—d)+c< 12 +1>]22

[ 3 hi—d
+ —u2+c<c++ ! )}22(15—7").

2 2
In the same spirit and by the fact that ¢'(¢t) < 0 and ¢(t) < ¢, we obtain
3 1+d
Uy < %zQ + 5 y2(t —r)+ a(;)zz(t —r)

ool (5o [+ 4] v).

t
Us _ddr 2+5l 2+C(S—r 2(t—r)+[5(1+c+d)—)\]/ Y (s)ds.
2 2 2 2 .

and
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So, after rearrangement
dy o dé
V< [ dd0+5—|—1+c<1+ +2>+u1+<2 —I—)\>r]y2
dy @ 01
AU E
[ 5 3a] ,
+ |- +ce|(l+-+c - y (t—r)

: >+au+@+d4£@—w
(

2
ay
2
+M2+1* (ho —d <
+

—i--— +c c—i—hl_d 3 I e—
s 2 2 2

5+
s .

+ 2(1+c+d)—/\]/ y?
L t—r

ool (ot + |1+ 5] 7).

+c —1—3—a
27
d

3 a(l+d
M2 = C(C+ 9 +2>+(2)

s)ds

Choose

+e,

and

A=

With this choice of constants, we get
d2

1+5>+%§+ﬁﬂ1+c+mm;]f

V< Ld%+5+ﬂ+wf+c<2

1 1+d
+[c<h1d+2>+a(2+)+(1+c)2(hod)+;‘+s+52’“] 2

+{—&+?4z%t—ﬂ

—|—|¢()|(52$ +[1+§]y2>.

Combining (2.2) and (2.3) with the previous formula, we obtain

Vi< om0 et 2d)] L] P+ [—m - 61] 22
+ [—5 +05§} 2t —1)+ ¢ )] (fﬁ + [1 + ;i] y2> .

If

r<gmin _m £
) P eyod e’
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then

Vi< _F (2 2 / AR |¢,(t)\52 2

1) < —K1 (v () +2°(1) + @' ()] |1+ 5 )Y (t) + 5 z°(t),
where
K;{ = min {7]1 — —6(1 +C+2d)r,7]2 — 57"} .
2 2
From (3.7), we observe
¢'(t
W = (v - ) o

< (-mbro+ 2]+ oo (1+5) #0) 2

+ (W;t)’(s%ﬁ(t) — W(ﬂ +y°+ ZQ)) Q(t)

< (-m BP0+ 0] + Kl o] @+ - IO 424 22 ) 0

d &2
where Ko = max ¢ 1+ NEEE
By the use of (v), we obtain

p

e w< Qt) < 1.
Choosing w = %, we conclude that

p
(3.8) Wiy < —Kie w [y(t) + 22(t)] .

_Pr
From (3.8), W5(||X||) = Kie w [y*(t) + 22(t)] is positive definite function. The
above discussion guarantees that the trivial solution of equation (1.1) is asymptot-
ically stable and completes the proof of Theorem 2.1. O

Proof of Theorem 2.2. For the case e(t,z,y,z(t — r),y(t —r),2(t)) = e(-) # 0,
equation (1.1) is equivalent to the system

a’ =y,
39) 4 Y= .
Z' = ¢ ()2t =) = h(y)z — g(y) — f(z) +e() + f'(z(s)y(s)ds.

t—r
On differentiating (3.1) along the system (3.9), we obtain
1
Wis.o) = Wiaay + (Ze () +dye () e
With the usage of condition (I;), and ( 3.8) we have
Wisg) < a(t)|Z] + dg(t)]yl,

oo as
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Now, the inequality |u| < w2+ 1, lead

Wiey < Ksq(t) [y> + 2% +2]
(3.10) < Ksqt) [2* +y*+ 2% +2],

where K3 = max{1, d}.
In view of ( 3.6), the above estimates imply

K.
(3.11) Wisg) < fg’q(t)W + Kaq(t),
0
with Ky = 2K3. Integrating both sides of (3.11) from ¢; to ¢, we easily obtain

W) - W(t) < Ky / “a)ds+ 5 [ W ()a(s)ds.

t1 Ky t1
Thus
K3 [1
W(t) <as+— [ W(s)a(s)ds,
KO tl
where
(3.12) q3 = W (t1) + Kago.
By using Gronwall inequality, it follows
K3 [!
(3.13) W(t) <gsexp | — [ q(s)ds | < qu,
KO t1

where g4 = g3 exp (%qg) . This result implies that there exists a constant D such
that

lz(t)] < D, ly(t)| < D,|Z(t)| < D.
This completes the proof of Theorem 2.2. Il

Proof of Theorem 2.3. Define the functionnal
t
(3.14) Ht)=WEt)+£& [ (2%(s) +42(s))ds.
t1
where £ > 0 is a constant to be specified later.
By differentiating H(¢) and using (3.11), we obtain

p
— K.
H'(t) < ¢~ Kie w] (%(s) + () + g aOW + Kaa(t).
0
_P
If we Choose £ — K1e w < 0, then from (3.13), we get
(3.15) H'(t) < Ksq(t),

K
where K5 = —3q4 + K.
Ky

Integrating (3.15) from ¢; to t and using condition (I3) of Theorem 2.2, we obtain
t
H(t) - H(tl) == H'(s)ds S K5(]2.
t1
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Using (3.14) and equality H(t1) = W (t1), we get
H(t) < K5q2 + g3 — Kaqa.
We can conclude by (3.14) that

¢ K - K
[ 6+ g < RELD T
t1

which imply the existence of positive constants o1 and o9 such that

t t
/ y*(s)ds < oy and / 22(s)ds < 0.

t1 t1

Hence

t t
(3.16) / .%'IQ(S)dS < 01,/ :U”Q(s)ds < o9.

t1 t1

+oo
Finally, we show that / 2%(s)ds < oo. If we multiply both sides of (1.1) by
x(t — r), we obtain "
(3.17)
[2"(t) + ¢(t)2" (t — )] @t — ) + h(2 ()" ()2 (t — 1) + g2’ (t))2(t — 7)
+f(x(t —r)x(t —r)=e(t,z,x(t —7r), 2" (t), 2 (t —r), 2" )x(t — 7).

Integrating (3.17) from ¢; to ¢, gives
t
(3.18) f(x(s —7r))x(s —r)ds = L1(t) + La(t) + Ls(t) + Ly(t),
t1
where

Li(t) = —/ (2" (s) + ¢(s)a" (s — r)] x(s — r)ds,

t1

L)) = = [ bl ()" (s)as = s,

t1

and
Ly(t) = / e(s,z,z(s—r),2'(t),2' (s —r),2")x(s — r)ds.

t1

We have
Ly(t) = —/t 2" (s)x(s —r)ds — t #(s)x" (s — r)z(s — r)ds.
Integrating by parts and using (3.16), we obtain
Li(t) = —[z(t—r)a"(t) —z(ty —r)a"(t1)]
— [op()z(t — )" (t — ) — ¢(t1)x(t1 — r)a" (t1 —1)]

t t
+ /1;1 " (s)x' (s —r)ds + . ¢'(s)x(s —r)z" (s —r)ds
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+ t #(s)2' (s — )z’ (s — r)ds

< a(ty — )2 (t)| + D + |ex(ty — r)a” (t — 1)
+1 /t [22(s) + 2% (s — 1)] ds
2 Jy

o [0 mds)% ([ #6- r)dsf

—|—§ /tl [x”Q(s —r) 42 (s — r)] ds.

Consequently

=

t 2
Li(t) <l + ay/oo </ 2% (s — r)ds) ,
t1
where
. 2 1+C _ " "
li=L+ D"+ 5 [0 + 01] and L = |z(t1 — 7)] (‘m (tl)‘ + ‘cm (t1 — 7“)|) .

In the same way, after using (i)-(iii), (1), ({2) and (3.16), one arrives at

Lo(t) < |h(2(s))2" (s)x(s — )| ds

t1

(/tlt [h (a'(s)) 2"(5)] ds)é </tlt 22(s - r)ds)é

<
Co([ona)

L) < [l ats - ds
< ([ [g<ac’<s>>]2ds)é ([ - r>als)é
(e ) ([ )
Co([ons)

Lalt) [ el yats =)' 1), (9)als — )] ds
< » [ lds <

t1

lQ = \/h%UQ, l3 = \/d%Ul, and l4 = qu.

where
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In the other hand from condition (ii), we have
¢

t
/ (s —r)f(z(s —7))ds > M [ 2*(s—r)ds.

t1 t1
Hence, by (3.18), we obtain

1
t t 2 t 2
M | 2%(s—r)ds < Iy ++/a2oy </ 22 (s — r)ds) + 1o </ 2% (s — r)ds)
t1 t1

t1

1
t 2
(3.19) +l3 (/ 2% (s — r)ds) + ly.
t1
If

t
/xQ(s—r)ds%oo as t— oo,
t1

then dividing both sides of (3.19) by (fttl 22(s — r)ds) * we immediately obtain a

t +o0
contradiction. Hence, we deduce that / z%(s—r)ds < oo, then / 2% (s)ds < oc.
t t
This fact completes the proof of Theorelm 2.3. ' U

3.2. Example. As a particular case of (1.1), consider the following third order
neutral differential equation

1 10 11 1
" =2ty il Rt S "
(x (t) + g€ ° % (t 1")) + (2 +251nm(t)>x (t)
91 , 1, , [19 x(t —r)
+ —2'(t)+ —x'(t)cosz'(t) + | —x(t —r) +
B 1
L2 4 x|+ |yl + 2|

The conditions over the functions appearing in the example are as below

11 1
5:h0§h(y):—+§siny§h1:6,

2
4:d2<d0:4.5<M:%+icosy<d1:4.6,
Ty 20 20 -
1 10 1
0<¢(t):ﬁe 3t§T:C,
/ — 10y / 1 1, 1
¢'(t)=—ze 3" <0and }qb(t)‘: —3¢ ° §§:oz,

and 5
1.25:§<d:2<h0:5.

From the formula of the function

F(x) 19 n T
)= —x+ ———.
10 V10+ | x|
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it is clear that, f(0) = 0, and since 0 < < 1 for all z, we have that

1
V10+ | z |

for all z # 0. Moreover

;o (19 V10 B
|f'(z)] = EJF—(\@H:E\)? <25 =4.

We also have

d? 3o
) 1+d 1
c<c+h1—d+2>—i-a(;)+1—(h0—d)+3+€:—0.57:—n2, forszﬁ.

The function
1 1

= <
T+82+ x|+ |yl +1z] — 1+¢2

+oo
/ lg(t)]dt < oo,
0

for all ¢,z,y,z. All assumptions of Theorem 2.3 hold true, thus, the conclusions
also follow.

= q(t),

e(t? ‘/1:7 y7 Z)

and
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