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PERIODIC MILD SOLUTIONS OF INFINITE DELAY
INTEGRO-DIFFERENTIAL INCLUSIONS WITH NON
INSTANTANEOUS IMPULSES

SADIA MESLEM, ABDELKRIM SALIM, SAID ABBAS, AND MOUFFAK BENCHOHRA

ABSTRACT. In this paper, we investigates the existence of periodic mild solutions
for a class of impulsive Integro-differential inclusions. We base our arguments on
fixed point theory paired with the approach of measure of noncompactness using
the resolvent operator. Finally, an illustration of our results is presented.

1. INTRODUCTION

In recent years, there has been substantial progress in functional evolution equa-
tions; see, for example, the papers [2,3,30]. In [1], an iterative approach is utilized
to find mild solutions of evolution equations. Olszowy and Wcedrychowicz [23] ex-
amined a class of evolution equations over unbounded intervals using Tichonov’s
fixed point theorem. Liang et al. [20] investigated the existence of periodic mild
solutions in Banach spaces to a class of impulsive differential equations with infinite
delay. Although, in prior publications, several constraints were assumed. Various
researchers have recently gotten further results by using the approach of measure
of noncompactness; see [4,5,29], and the sources within.

In recent years, impulsive differential inclusions have gained much importance in
several mathematical models of real phenomena, particularly in biological or medical
fields, as well as in control theory. Recent researches and results on impulsive
differential inclusions and equations can be found in the monographs [7-9,15], and
the papers [26,28].

In [25,27], the authors investigated several types of impulsive differential equa-
tions with non-instantaneous impulses.

Motivated by the preceding articles, in this paper, we consider the following
problem:
(1.1)
P (0) = Zp(0) — [ N0 — 0)p(0)do € T, p(V),py); ¥ €O, j=0,...,
p(l?) = (I)J(197p(19]_))7 NS @j7 j = 17 ceey
p(0) = V(9); if 9 € R = (—o0,0],

Where @0 = [0,’[91], @j = (ﬁj,@j], ®j = (Qj,’l9j+ﬂ; ]: 1,...,0:
Ug <02 < <01 <V <o <Vup1 =6 < o1 < Vpyo <o < Foo, U
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O xExx = u(E); j=0,..., is ¢—periodic compact multivalued map, ¥, ¢ > 0, is
the family of subsets of Z is denoted by p(Z), x is a phase space given in the sequel,
;- (:)j X Z — Z are given functions, and ¢—periodic in ¥, ¢ > 0,9 : R_ —» Zis a
given function, and (Z, || - ||) is a Banach space, p'(¥) := %, Z:D2)CE—Z
generates a Cp—semigroup on the Banach space =, 91(1) is a closed linear operator
on E, and ¢—periodic in ¢, ¢ > 0, with D(Z) C D(M). For each continuous function
p and any ¥ € R, py is the element of x given by py(e) = p(¥ +¢) for e € R_.

The following is an outline of the paper’s structure. Section 2 presents some
preliminary results. Section 3 introduces the main results, which are proved by
applying Darbo fixed point theorem, Poincaré operator and the notion of measure
of noncompactness in Banach spaces, while Section 4 provides an illustration.

2. PRELIMINARIES

Let © :=[0,¢], ¢ > 0, and Y(Z) the Banach space of the bounded linear operators
from = into =, with the norm

1€l = sup [IT(p)I]-
lpll=1

By L'(©, =), we denotes the Banach space of measurable functions p : © — = which
are Bochner integrable with the norm

Ipllzr = /@ |p(9)]|do.

Let §(©) := C(O, E) be the Banach space of all continuous functions from © := [0, ]
into = with the norm

Iplloc = sup [[p(9)]-
9€0

Let L>°(©) be the Banach space of measurable functions v : ® — R that are
essentially bounded with the norm
IpllLe = inf{e > 0:|p(I)| < e, a.e. ¥ € OF}.
Consider the space
%((—OO, 0]’ E)
= {p:(—00,0] = = : p is continuous and there exist 7; € (—o0,0);
j=1,...,v, where p(r;) and ]J(Tj+) exist with p(7;7) = p(r5)}-
Consider the space
Pc :{p : <_OO7§] _>E:p|R_ € X, p’(:)] :(P]’ j: ]-)"'7V7 p’@j; j = 17"')7/

is continuous and there exist p(o;), p(gj), p(?¥;) and p(ﬁ;)

with p(o7) = ®;(05,p(07)) and p(d7) = B0, p(97)},
with the norm

[pllp. = max{lpfloo, 4[|y}
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Consider the space

Pe={p:R—>E:ple €x, Plo, =Pj3 J=1,...; plojs J=1,..;
is continuous and there exist p(g; ), p(gj), p(d;) and p(ﬁj)
with p(o;) = ®;(0j, p(e;)) and p(d;) = (95, p(9;))}-
A semigroup of bounded linear operators &(19) is uniformly continuous if

li ) —1I||lz =
lim [[6(9) — 1]}z = 0,

where I is the identity operator in =.
Note that if a semigroup &(19) is of class (Cp) then it verifies the growth condition

16(9)|lyz) < ke, for 0 < ¥ < oo with some constants > 0 and & > 0.

If, for instance x = 1 and & = 0, i.e; |&(V)[|y=) < 1, for ¥ > 0, then the semigroup
S(9) is called a contraction semigroup.

Let (20, - ||) be a Banach space. let uq(20) = {A € u(20) : Aclosed}, up(20) =
{A € p(2) : Abounded}, pep(W) = {A € pu(W) : A compact}, piep (W) = {A €
1(20) : A compact and convex}.

Definition 2.1. A multivalued map & : 20 — p(20) is convex(closed) valued if
S() is convex (closed) for all o € 20. & is bounded on bounded sets if &(Q2) =
Uneq® () is bounded in 2 for all Q € 1,(2) (i.e. suppeo{sup{|A|: A € S(w)}} <
00). G is called upper semi-continuous (u.s.c.) on 27 if for each tog € 20, the set
S(top) is a nonempty closed subset of 20, and if for each open set Q of 20 containing
S(tvg), there exists an open neighborhood Qg of g where G(€p) € Q. A map
S : W — (W) has a fixed point if there is w € W where tv € S(). We denoted
by FixG the fixed point set of &.

Definition 2.2. The map & : ©; — uy(2); 7 =0,1,---, is measurable if for all
p € =2, the function

U —d(p,&(9)) = inf{llp —p| : p € S(V)}
is measurable.

Definition 2.3. The map ¥ : ©; x E x x — u(Z); j = 0,1,---; is called L'-
Carathéodory if

(a) ¥ — W(J,p,p) is measurable for each (p,p) € E x x;
(b) p+— U(I,p,p) and p — ¥ (Y, p,p) are u.s.c. for almost all ¥ € ©;.
(c) for each § > 0, there exists 75 € L'(©;,R;) where

W, b, p)llu = sup{[IAll : A € W (I, p,p)} < ns (1)),

for all [|p|| <0, ||p|ly < dand for a.e. ¥ € ©;.

U is Carathéodory if (a) and (b) are met.
For p € §(©;); 7 =0,1,---, the set of selections of ¥ is given by

Syop = {p € L1(0,,E) : p(¥) € U(I,p(V), py) a.e. ¥ € O;}.
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Let (20,d) be a metric space induced from the normed space 2J. Consider € :
w(2W) x u(W) — R4 U {oo} given by

04(Q, Q) = max {sup d(t,Q),sup d(L, Z)} ,
€ e

where d(Q,7) = inf,eq d(:,7), d(:,Q) = inf,cq d(t, 7).

Let (x| - |ly) be a seminormed linear space of functions from R_ into =, and
meeting the following essential assumptions:
(Cda,): If p € P, and pg € ¥, then for all ¥ € © the requirements that follows
are met:
() po € x5 i
(ii) [[pollx < €(9)supyepon [IP(2)]l + EW)I% ]l
(iii) [[p(D) < €lpolly; )
where € > 0, € : © — R, is continuous; € : Ry — R, is locally bounded,
and €, ¢, €, are independent of p(-).
(Cda,): For the function p(-) in (Cdy,), py is a x-valued continuous function
on ©.

(Cda,): The space x is complete.
Denote €5 = sup{€(¥) : ¥ € O} and €z = sup{€(¥) : ¥ € O}. (See [19] for more
details).

Remark 2.4. Axiom (Cd,)(ii) is equivalent to [[1(0)|| < &l¢]ly, for all ¢ € x. As
consequence, we have for all 9, ¢ € x such that ||¢) — |, =0, thus ¥(0) = 1(0).

Lemma 2.5 ([21]). Let ap > 1 such that

1 ap—1
<2> k<1,

where k = supy)ee | R(V)[lv=) and there exists a function § on R_ where £(0) =
1, &(—o00) = +o0, & is decreasing on R_, and for d > [y := = one has

£(0) o
1
SUP e (—00,0] §(g£d) >3-

Example 2.6. We define the spaces:

Ce = {w € F(R_,=Z) : 12’8

is bounded on R_},

and

C’g = {@ZJ € Ce: Eggloo ?((z—)) = 0},

ll2]] :sup{hg((z)”:&?SO}.

with the norm
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Therefore, the spaces C¢ and Cg verify the condition (Cda,). As well as conditions
(Cda,) and (Cda,) if
U

sup  sup v +e) < 00.

9€0 —co<e<—v  §(€)
Example 2.7. For any o € (0,00), we define the space

Cy = {¢ € F((—0,0]),E) : Em e’ Y(e) exist in =},
E——0OQ

with the norm
1] = sup{e™ |y (e)] : £ < O}
The axioms (Cda,) — (Cda,) are therefore satisfied in the space C,.

In everything that follows, we take into account the phase space

e (ol s @I _
v={U e 0.2): sy SgA <oof.

Therefore, x verifies the assumption (Cda,). As well as (Cda,) and (Cda,) if
9
sup  sup v +e) < 00
PEO —co<e<—1 5(6)
The space x equipped with the norm

_ L vl
W= sup TSN

QG(—O0,0}
is a Banach space [11].
Definition 2.8 ([6]). Let 20 be a Banach space and Qgy the bounded subsets of
2. The Kuratowski measure of noncompactness is the map w : Qgy — [0, c0] given
by
w() =inf{e >0: Q CUL,Q; and diam(€;) < €}, here Q € Qz,
where
diam(€;) = sup{|lp — pllz : p,p € %}
Lemma 2.9 ([18]). Let P C F(O) be a bounded and equicontinuous set. Therefore:
(i) the function 9 — w(P(V)) is continuous on O, and

we(P) = sup w(P(1)).

Y€O

(i) w (fg p(o)do:p € B) < [5 w(B(o))do,
where
PB@) ={p(?):peP}; YO

Lemma 2.10 ([22]). Let {p;}32; C LY(©) be uniformly integrable. Thus, w({p;}521)
s measurable and

v ({ [ m(g)dg}:ol) <2 [ utrste)zie



6 S. MESLEM, A. SALIM, S. ABBAS, AND M. BENCHOHRA

Lemma 2.11 ([10]). If A is a bounded subset of a Banach space 20, then for each
€ > 0, there is a sequence {)\;}32, C A such that

w(A) < 2({N)32) +e.

Definition 2.12. The mapiy) : [0,00) — [0,00), is a dominating function (D—
function) if it is an u.s.c. and monotonic nondecreasing function verifying 1 (0) = 0.

Definition 2.13. Let 20 be a Banach space. A multivalued mapping & : 20 €
tivd et (20) is called D—set-Lipschitz if there exists a continuous nondecreasing func-

tion ¢ : Ry — R4, such that wy(S(2)) < Y (ww(Q)), for all Q € ppg (W) and
$(0) =0.

Remark 2.14. If ¢(5) = jB; j > 0, then & is called a j—set-Lipschitz mapping.
Moreover, if j < 1, then & is called a j—set-contraction on E. If ¥(8) < g, for
B >0, then & is called a nonlinear D—set-contraction on 2.

Definition 2.15. Let 20 be a Banach space and wyy be a measure of noncompact-
ness on 2. An operator & : Q0 — 20 is called condensing if & is continuous takes
bounded sets into bounded sets, and wy(S(Q)) < w(2) for every bounded set 2
of A with wey(2) > 0.

Theorem 2.16 ([12]). Let Q) be a nonempty, bounded, closed and convex subset
of a Banach space = and & : Y — pa,e(2) be a closed and nonlinear D— set
contraction, Then & has at least a fized point.

Theorem 2.17 ([21]). Let & : 20 — 20 be a condensing operator where 20 a Banach
space. If S(V) C V for a bounded,closed and convex set V of 20, then & admit a
fized point in V.

3. EXISTENCE RESULTS

Definition 3.1 ([13,17]). A resolvent operator for the problem

{wm = Zp(0) + g N — o)p(e)do. ¥ € [0, 00).
p(0) =po € E,
is a bounded linear operator-valued function R(¢) € Y(Z); ¥ > 0, verifying the
following assumptions:

(i) R(0) = I and ||R(Y)|| < Ne*? for some constants N > 0, and v € R.

(ii) For each p € E, R(¥)p is strongly continuous for ¥ > 0.

(iii) R(¥) is bounded for ¥ > 0. For p € D(Z), R(-)p € C(R4, D(Z))NCY{R4, =)
and

(3.1)

IV IV
R(0)p = ZR()p+ /0 N(0—0)R(o)pdo = R(I)Zp+ /0 R(9—0)N(o)pd; 9 € [0, 00).

The hypotheses:

(Cdp,) The operator Z is the infinitesimal generator of a uniformly continuous
semigroup (S(¥))g>o0-
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(Cdp,) For all ¥ > 0, 9(¥) is a closed linear operator from D(Z) to E and N(VY) €
Y (Z). For any p € =, the map ¢ — 91(9¥)p is bounded, differentiable and the
derivative ¥ — 97 (9)p is bounded and uniformly continuous on R.

Theorem 3.2 ([13,17]). Assume that (Cdp,) and (Cdp,) hold. Then there exists a
unique uniformly continuous resolvent operator for the problem (5.1).

Definition 3.3. A ¢-periodic function p € 75; is a periodic mild solution of problem
(1.1) if there exists £ € Syop, for a.e. ¥ € Ry, such that

R(W)4(0) + fy (0 — 0)é(e)do, 0 € Oo,

R(9 = 05)®j(0j:p(e;)) + Jy RO = 0)é(0)do, 9 €6y, j=1,...,
%(ﬁ,p(ﬁj_)), RS @j, j=1...,

P(0), if¥eR._.

p(v) =

The hypotheses:

(Cdc,) The multivalued map ¥(d,p,p) is L' —Carathéodory, and has compact and
convex values and maps bounded sets into bounded sets.

(Cdc,) The continuous functions ®;, j =1,2,...; map bounded sets into bounded
sets.

(Cdcy) For ¢ > 0, U(J +¢,p,p) = V(I p,p), ZW0 +<) = Z(9), ¥ € ©;, j =
0,...,v, ppeEx Y, ®j(W+¢,2)=9;0,2), €0, j=1,...,v,z € E,
and ¢(o0 + <) = ¥(0), 0 € (—0o0,0].

(Cdc,) There exist continuous function [; € L*(0), such that

19,9, 2)||l= <L)+ |2]), for ae. ¥ €O;, and each z €E, j=0,...,v.

(Cdc,) For bounded sets 2 C E and Qy C x, ¥ € Ry, such that
Qo = {ps 1 po € x},

we have
w=(V(9,9Q,Q9)) < ns(Vw=(B), forae V9B, j=0,...,v,
and
w=(P;(9, Q) < 1j(D)w=(Q), forae. 9€O;, j=1,...,v,
where 15 € L'(0,), and w= is a measure of noncompactness on the Banach
space Z.
Set
5 = nsllzie,) :/e ns(9)dd,
j
"= max |[ljflre, = sup|R(D)[r():
v ¥€O

=VU,...,

Theorem 3.4. Assume that the hypotheses (Cdpg,), (Cdp,), and (Cdc,)— (Cdcy) are
met. If

(3.2) 6 := max{l", drcns, £(I" +<n5)} < 1,

then the problem (1.1) has at least one mild solution.
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Proof. Consider the problem

(3.3)
p'(9) - ~ [/ (0)do € (D, p(¥),pg), 9 E€O;, j=0,...,v,
p(vd) = (ﬁvp(ﬂj ) 29 € @J, i=1...,v,
p(¥) =(9), if ¥ eR_ = (—00,0],

Part 1. We start by demonstrating that (3.3) has a mild solution p € P,,
Transform the problem (3.3) into a fixed point problem. Consider the multivalued
map %1 : P. — p(P.) defined by
(3.4)

)+ fo £(p)do; VY € Oy,
R(ﬁﬁ— Qj)q) (Q{,p(gj ))
Ti(p) = § € Pe: E(0) = 4 + [, RV — 0){(0)de, D €Oj, j=1,....v,
(I)](’lg,p(ﬁ;)), 19 c @jv ] = ]_, Lo, U
(), if ¥ eR_ = (—00,0],

where f_ € Swop- B
Let £ € T1(p). Thus, there exists £ € Syop where

R@)(0) + fy R(9 = 0)&(e )d@, e @o,

R(ﬁf QJ)<I> (Q], )+ [, R (0)do, ¥ €0, j=1,...,1,
(I)J(ﬂap(ﬁ;))a 196@]7 J=1. v,

Y(9), ifYeR_ = (—oo,o],

£(0) =

Let v > 0 be, such that

v > max { [l ., £BO)| +53), B2 L
1 l 1 Kl

and consider the ball ., := Q(0,v) = {¢ € P : ||{|lp. <~}
For any p € €2, and each ¥ € @0, we have

AN

19 —
@ < AlpO)] + 5 /O 1€(0)1de

Rl[PO)]| + w5
-

IN A

Next, for each ¥ € ©;, j =1,...,v, we have

J

el < we)+x [ IEIde
Qj

KU(1+ ) + kns

’)/.

Also, for each ¥ € éj, j=1,...,v, we have

€@ < FA+7) <,
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and for each ¥ € R_, we have

1@ = Nl <.
Hence,

1T1(p)[lpc < 7.

As consequence, the operator T; transforms the ball ., := {p € P. : [|p|lp. < 7}
into p(£2,). Now, we will demonstrate that the operator T; : ., — u(£,) verifies
all the requirements of Theorem 2.16.

Step 1. Ti(p) € pei(Pe) for each p € €2,
Let (pn)n>0 € Ti(p) such that p, — p in P.. Then, p € P. and there exists
&n € Swop such that

+f0 £.(0)do, if ¥ € Oy,
R(ﬂ—eg) (QJ,Pn(QJ ))
Pa(®) = { + [} RO — 0) &ul0)do, if0 €O, j=1,...,v
®;(0,pa(97)), f9 €6, j=1,...,v
(Y(0), ifdeR_.

Given that ¥ contains compact values and by (Cd¢, ), we can pass to a subsequence
if required get that &, converges to & in L'(©,Z), and therefore £ € Swop- Then

+f0 ( )do, if ¥ € Oy,
R(ﬁ @g)@ (QJ,P(QJ ))
pa(9) = p(0) = < + [ R( — 0) E(0)do, D €O;, j=1,....,v
®;(0,p(0;)), it €O, j=1,...,v
V(9), if9eR_.

SO, ]Zl St (p)

Step 2. Ty : Qy = e e0(2y) is D—set-contraction.
Using Lemmas 2.11 and 2.10, for any € C €2, and any € > 0, there exists a sequence
{pj}320 C €, where for every ¥ € O, we obtam

we(T0)(0) = we ({R(ﬁ)w(o) ; /0 " R0 - ) E(0)de: €€ Suep. p € 9})

< 2wz ({/ 0)do; £€Sq;opj}j1)+e

< / = (1R ~ o)l {E(0): € € Sup, )7, ) dot ¢
o

< 4/-;/0 wz ({£(0); € € Swop,}321) do+ €
5

< 4x /0 ns(o)w ({p;()}2,) do+ €
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IN

9
o /0 we ({3 (0)}32) do+ ¢
< drenwe, () + e,

and, for all v € ©;, 7 =1,...,v, we get
ws((T)W) = w= ({RO - 0)®i(e5,p(c7))

19 — —
+ / R(V — o) £(0)do; & € Swyop, p € Q})

95

< 2ws ({/019 R(V — 0)é(0)do; € € S\popj}i) +e

J:
< Arenswe, () + €.
Since € > 0 is arbitrary, then for all ¥ € ©;, 7 =0,...,v, we get

wz((T12)(9)) < Q(wp, (€)),
where (1 : Ry = Ry, (i(to) = 4kenjo.
Also, for all ¥ € (:)j, j=1,...,v, we get
w=((F192)(7)) Li(0)wp. (),
Fwp, ()

Ca(wp, (),

IN AN A

where (2 : Ry — Ry, (a(to) = I*10.
Hence, for all ¥ € (—o0, <] we obtain

wz((F1)(9)) < ((wr.(92)),
where ( : Ry — Ry defined by

C(9) = G(v), f¥€6;; j=1,2,....

As a result, we may deduce that Ty admit a fixed point in p € €2,.

Part 2. Periodic mild solutions.
A common method for obtaining ¢— periodic solutions is to define the Poincaré
operator o : x — x by

To(¥) = ps(¥) + where (T21))(0) = ps(0,%) = p(s + 0,7%), 0 € R,

which translates a starting function ¢ along the single mild solution p(t)) to our
problem (1.1) by ¢— units. We prove that Ty is condensing in . Thus, the provided
assumptions indicate that Theorem 2.17 may be used to obtain fixed points for the
Poincaré operator, resulting in periodic solutions.

Step 1. The fized points of To provide a periodic mild solutions of (1.1).
Let ¢ € x where To(¢)) = 1. Then for the solution p(-) = p(-, ) with po(-,¥) = 1,
we can define p(¢) = p(¥ 4+ ¢). And, for ¥ > 0, We can make advantage of the
properties of R(¢9), and the knowledge that & and ®; are ¢-periodic functions in 4,
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to get that p is also a solution with po(-,%) = pc(¥) = p(-, 7). Indeed, let § € T (p).
Then there exists § € Syop such that

/

RW)(0) + fy R(W — o) &(e)do, if ¥ € Op, € € Suop
R(V — 0j)®;(05,p(0;))

B) =+ [} RO - 0) E(o)do, it €O, j=1,...,v, € Suop
®;(0,p(0)), ifY €O, j=1,...,v

(), if¥eR_.

Then the uniqueness of R(¢}) implies that p(¢) = p(¥#), so that p(¥) = p(¥ +¢) is a
¢-periodic solution.

Step 2. %, is condensing.
Let ©Q C x be bounded with w, (€2) > 0. If pg is the unique solution with po (1)) = v,

we define Jo(Q2) = {po(¥) : ¥ € Q} and Jig, 5,)(2) = {p[s,,8,)(¥) : ¥ € Q}. Same as
the proof of Theorem 4.1 in [21], we get

ap—1
o (T2(Q)) < (;) ko () < wy (52).

Therefore, Theorem 2.17 implies that To admit a fixed point.

4. AN EXAMPLE

Let us investigate the following problem of impulsive integro-differential inclu-
sions:

% (9,0) — 28 (9,0)

— 2 b(0 — 0) 25B(0,0)do € W(D,5(D,0),pa(-,0)),

0O :=[0,7], V€O, j=0,---,
(4.1)

]3(19,9):@]-(19’9)7 96@,79€éj,j:1,--~,
]5(’(9,0) - ﬁ(ﬁ,ﬂ) =0, 9 e R+.
ﬁ(o>9) = g(9)7 0 € 0O,
p(d,0) = (0,0); VeER_, €0,

where ¥ : Ry xRx Ce = R, G:0 — Rand ¢ : R_ x© — R are continuous
functions such that G(6) = 1(0,0), 6 € ©, and C¢ is the phase space given in
Example 2.6.

Take Let

Z:=L*0) = {p 10 > R: /07r Ip(0)2dx < oo}
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be the Hilbert space with the scalar product < p,p >= fo )p(0)dz. Tt is known
that = is a Banach space with the norm

Iill2 = ( I now)\?da:)é |

and define Z : D(Z) C 2 — Z by 2\ = " with domain
D(Z)={N e E,\,\ are absolutely continuous, \" € =, \(0) = \(7) = 0}.
Then -
ZA=) n*(A\M)An, A€ D(2)

n=1

where (-,-) is the inner product in L? and \,(0) = \/gsinns, n=12,...1s

the orthogonal set of eigenvectors in Z. It is well known (see [24]) that Z is the
infinitesimal generator of an analytic semigroup &(¢), ¢ > 0 in E and is defined by

I\ = Zemp DA, An)An, A€ E.

Since the analytic semigroup 6(19) is compact, there exists a constant x > 1 such
that

16@)lr) < .

For 6 € ©, we have
p(9)(0) =p(?,0); ¥ € Ry,
U, p(0),p9) = V(9,p(d,0),pu(-,0)); U €Ry,
NW) =b(V)Z
po(0) =G(0); 0€O,
p(ﬁ)(@) =(0,0); 0 € 0,9 cR_.
Therefore, by the definitions of &, pg and Z, the system (4.1) can be represented
by (1.1). Moreover, more relevant assumptions on ¥ guarantee that (Cdp, ), (Cdp,)

and (Cdc,) — (Cdcy) are met. As consequence, By Theorem 3.4, we can deduce
that problem (4.1) has at least one mild solution on R.
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