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Θj×Ξ×χ→ µ(Ξ); j = 0, . . . , is ς−periodic compact multivalued map, ϑ, ς > 0, is
the family of subsets of Ξ is denoted by µ(Ξ), χ is a phase space given in the sequel,

Φj : Θ̃j × Ξ → Ξ are given functions, and ς−periodic in ϑ, ς > 0, ψ : R− → Ξ is a

given function, and (Ξ, ‖ · ‖) is a Banach space, p′(ϑ) := dp
dϑ , Z : D(Z) ⊂ Ξ → Ξ

generates a C0−semigroup on the Banach space Ξ, N(ϑ) is a closed linear operator
on Ξ, and ς−periodic in ϑ, ς > 0, with D(Z) ⊂ D(N). For each continuous function
p and any ϑ ∈ R+, pϑ is the element of χ given by pϑ(ε) = p(ϑ+ ε) for ε ∈ R−.

The following is an outline of the paper’s structure. Section 2 presents some
preliminary results. Section 3 introduces the main results, which are proved by
applying Darbo fixed point theorem, Poincaré operator and the notion of measure
of noncompactness in Banach spaces, while Section 4 provides an illustration.

2. Preliminaries

Let Θ := [0, ς], ς > 0, and Υ(Ξ) the Banach space of the bounded linear operators
from Ξ into Ξ, with the norm

‖T‖Υ(Ξ) = sup
∥p∥=1

‖T(p)‖.

By L1(Θ,Ξ), we denotes the Banach space of measurable functions p : Θ → Ξ which
are Bochner integrable with the norm

‖p‖L1 =

∫
Θ
‖p(ϑ)‖dϑ.

Let F(Θ) := C(Θ,Ξ) be the Banach space of all continuous functions from Θ := [0, ς]
into Ξ with the norm

‖p‖∞ = sup
ϑ∈Θ

‖p(ϑ)‖.

Let L∞(Θ) be the Banach space of measurable functions v : Θ → R that are
essentially bounded with the norm

‖p‖L∞ = inf{ε > 0 : |p(ϑ)| ≤ ε, a.e. ϑ ∈ Θ}.

Consider the space

F̃((−∞, 0],Ξ)

= {p : (−∞, 0] → Ξ : p is continuous and there exist τj ∈ (−∞, 0);

j = 1, . . . , ν, where p(τ−j ) and p(τ+j ) exist with p(τ−j ) = p(τj)
}
.

Consider the space

Pc =
{
p : (−∞, ς] → Ξ : p|R− ∈ χ, p|Θ̃j

= Φj ; j = 1, . . . , ν, p|Θj ; j = 1, . . . , ν

is continuous and there exist p(ϱ−j ), p(ϱ
+
j ), p(ϑ

−
j ) and p(ϑ+j )

with p(ϱ+j ) = Φj(ϱj , p(ϱ
−
j )) and p(ϑ−j ) = Φj(ϑj , p(ϑ

−
j ))
}
,

with the norm

‖p‖Pc = max{‖p‖∞, ‖ψ‖χ}.
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Consider the space

P̃c =
{
p : R → Ξ : p|R− ∈ χ, p|Θ̃j

= Φj ; j = 1, . . . ; p|Θj ; j = 1, . . . ;

is continuous and there exist p(ϱ−j ), p(ϱ
+
j ), p(ϑ

−
j ) and p(ϑ+j )

with p(ϱ+j ) = Φj(ϱj , p(ϱ
−
j )) and p(ϑ−j ) = Φj(ϑj , p(ϑ

−
j ))
}
.

A semigroup of bounded linear operators S(ϑ) is uniformly continuous if

lim
ϑ→0

‖S(ϑ)− I‖Ξ = 0,

where I is the identity operator in Ξ.
Note that if a semigroup S(ϑ) is of class (C0) then it verifies the growth condition

‖S(ϑ)‖Υ(Ξ) ≤ κeκ̄ϑ, for 0 ≤ ϑ <∞ with some constants κ > 0 and κ̄ ≥ 0.

If, for instance κ = 1 and κ̄ = 0, i.e,̇ ‖S(ϑ)‖Υ(Ξ) ≤ 1, for ϑ ≥ 0, then the semigroup
S(ϑ) is called a contraction semigroup.

Let (W, ‖ · ‖) be a Banach space. let µcl(W) = {Λ ∈ µ(W) : Λ closed}, µb(W) =
{Λ ∈ µ(W) : Λ bounded}, µcp(W) = {Λ ∈ µ(W) : Λ compact}, µcp,cv(W) = {Λ ∈
µ(W) : Λ compact and convex}.

Definition 2.1. A multivalued map S : W → µ(W) is convex(closed) valued if
S(w) is convex (closed) for all w ∈ W. S is bounded on bounded sets if S(Ω) =
∪w∈ΩS(w) is bounded in W for all Ω ∈ µb(W) (i.e. supw∈Ω{sup{|λ| : λ ∈ S(w)}} <
∞). S is called upper semi-continuous (u.s.c.) on W if for each w0 ∈ W, the set

S(w0) is a nonempty closed subset of W, and if for each open set Ω̃ of W containing

S(w0), there exists an open neighborhood Ω̃0 of w0 where S(Ω̃0) ⊆ Ω̃. A map
S : W → µ(W) has a fixed point if there is w ∈ W where w ∈ S(w). We denoted
by FixS the fixed point set of S.

Definition 2.2. The map S : Θj → µcl(Ξ); j = 0, 1, · · · , is measurable if for all
p ∈ Ξ, the function

ϑ 7−→ d(p,S(ϑ)) = inf{‖p− p̄‖ : p̄ ∈ S(ϑ)}

is measurable.

Definition 2.3. The map Ψ : Θj × Ξ × χ → µ(Ξ); j = 0, 1, · · · ; is called L1-
Carathéodory if

(a) ϑ 7−→ Ψ(ϑ, p, p̄) is measurable for each (p, p̄) ∈ Ξ× χ;
(b) p 7−→ Ψ(ϑ, p, p̄) and p̄ 7−→ Ψ(ϑ, p, p̄) are u.s.c. for almost all ϑ ∈ Θj .
(c) for each δ > 0, there exists ηδ ∈ L1(Θj ,R+) where

‖Ψ(ϑ, p, p̄)‖µ = sup{‖λ‖ : λ ∈ Ψ(ϑ, p, p̄)} ≤ ηδ(ϑ),

for all ‖p‖ ≤ δ, ‖p̄‖χ ≤ δ and for a.e. ϑ ∈ Θj .

Ψ is Carathéodory if (a) and (b) are met.
For p ∈ F(Θj); j = 0, 1, · · · , the set of selections of Ψ is given by

SΨ◦p = {p̄ ∈ L1(Θj ,Ξ) : p̄(ϑ) ∈ Ψ(ϑ, p(ϑ), pϑ) a.e. ϑ ∈ Θj}.
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Let (W, d) be a metric space induced from the normed space W. Consider Ωd :
µ(W)× µ(W) −→ R+ ∪ {∞} given by

Ωd(Q, Q̄) = max

{
sup
ι∈Q

d(ι, Q̄), sup
ῑ∈Q̄

d(Q, ῑ)

}
,

where d(Q, ῑ) = infι∈Q d(ι, ῑ), d(ι, Q̄) = inf ῑ∈Q̄ d(ι, ῑ).

Let (χ, ‖ · ‖χ) be a seminormed linear space of functions from R− into Ξ, and
meeting the following essential assumptions:

(CdA1): If p ∈ Pc and p0 ∈ χ, then for all ϑ ∈ Θ the requirements that follows
are met:
(i) pϑ ∈ χ;

(ii) ‖pϑ‖χ ≤ E(ϑ) supϱ∈[0,ϑ] ‖p(ϱ)‖+ Ẽ(ϑ)‖ψ‖χ;
(iii) ‖p(ϑ)‖ ≤ Ē‖pϑ‖χ;
where Ē ≥ 0, E : Θ → R+ is continuous; Ẽ : R+ → R+ is locally bounded,
and Ē,E, Ẽ, are independent of p(·).

(CdA2): For the function p(·) in (CdA1), pϑ is a χ-valued continuous function
on Θ.

(CdA3): The space χ is complete.

Denote Eβ = sup{E(ϑ) : ϑ ∈ Θ} and Ẽβ = sup{Ẽ(ϑ) : ϑ ∈ Θ}. (See [19] for more
details).

Remark 2.4. Axiom (CdA1)(ii) is equivalent to ‖ψ(0)‖ ≤ Ē‖ψ‖χ, for all ψ ∈ χ. As
consequence, we have for all ψ, ψ̄ ∈ χ such that ‖ψ − ψ̄‖χ = 0, thus ψ(0) = ψ̄(0).

Lemma 2.5 ([21]). Let α0 > 1 such that(
1

2

)α0−1

κ < 1,

where κ = sup(ϑ)∈Θ ‖R(ϑ)‖Υ(Ξ) and there exists a function ξ on R− where ξ(0) =

1, ξ(−∞) = +∞, ξ is decreasing on R−, and for d ≥ β0 := ς
α0

one has

supϱ∈(−∞,0]
ξ(ϱ)

ξ(ϱ−d) ≤
1
2 .

Example 2.6. We define the spaces:

Cξ :=
{
ψ ∈ F̃(R−,Ξ) :

ψ(ε)

ξ(ε)
is bounded on R−

}
,

and

C0
ξ :=

{
ψ ∈ Cξ : lim

ε→−∞

ψ(ε)

ξ(ε)
= 0
}
,

with the norm

‖ψ‖ = sup

{
|ψ(ε)|
ξ(ε)

: ε ≤ 0

}
.



INFINITE DELAY IMPULSIVE INTEGRO-DIFFERENTIAL INCLUSIONS 5

Therefore, the spaces Cξ and C0
ξ verify the condition (CdA3). As well as conditions

(CdA1) and (CdA2) if

sup
ϑ∈Θ

sup
−∞<ε≤−ϑ

ψ(ϑ+ ε)

ξ(ε)
<∞.

Example 2.7. For any σ ∈ (0,∞), we define the space

Cσ := {ψ ∈ F̃((−∞, 0]),Ξ) : lim
ε→−∞

eσεψ(ε) exist in Ξ},

with the norm

‖ψ‖ = sup{eσε|ψ(ε)| : ε ≤ 0}.
The axioms (CdA1)− (CdA3) are therefore satisfied in the space Cσ.

In everything that follows, we take into account the phase space

χ :=
{
ψ ∈ F̃((−∞, 0]),Ξ) : sup

ϱ∈(−∞,0]

‖ψ(ϱ)‖
ξ(ϱ)

<∞
}
.

Therefore, χ verifies the assumption (CdA3). As well as (CdA1) and (CdA2) if

sup
ϑ∈Θ

sup
−∞<ε≤−ϑ

ψ(ϑ+ ε)

ξ(ε)
<∞.

The space χ equipped with the norm

‖ψ‖χ = sup
ϱ∈(−∞,0]

‖ψ(ϱ)‖
ξ(ϱ)

,

is a Banach space [11].

Definition 2.8 ([6]). Let W be a Banach space and ΩW the bounded subsets of
W. The Kuratowski measure of noncompactness is the map ω : ΩW → [0,∞] given
by

ω(Ω) = inf{ϵ > 0 : Ω ⊆ ∪n
i=1Ωi and diam(Ωi) ≤ ϵ}, here Ω ∈ ΩΞ,

where

diam(Ωi) = sup{‖p− p̄‖Ξ : p, p̄ ∈ Ωi}.

Lemma 2.9 ([18]). Let P ⊂ F(Θ) be a bounded and equicontinuous set. Therefore:

(i) the function ϑ→ ω(P(ϑ)) is continuous on Θ, and

ωc(P) = sup
ϑ∈Θ

ω(P(ϑ)).

(ii) ω
(∫ ς

0 p(ϱ)dϱ : p ∈ P
)
≤
∫ ς
0 ω(P(ϱ))dϱ,

where

P(ϑ) = {p(ϑ) : p ∈ P}; ϑ ∈ Θ.

Lemma 2.10 ([22]). Let {pj}∞j=1 ⊂ L1(Θ) be uniformly integrable. Thus, ω({pj}∞j=1)
is measurable and

ω

({∫ ϑ

0
pj(ϱ)dϱ

}∞

j=1

)
≤ 2

∫ ϑ

0
ω({pj(ϱ)}∞j=1)dϱ.
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Lemma 2.11 ([10]). If Λ is a bounded subset of a Banach space W, then for each
ϵ > 0, there is a sequence {λj}∞j=1 ⊂ Λ such that

ω(Λ) ≤ 2ω({λj}∞j=1) + ϵ.

Definition 2.12. The mapψ : [0,∞) → [0,∞), is a dominating function (D−
function) if it is an u.s.c. and monotonic nondecreasing function verifying ψ(0) = 0.

Definition 2.13. Let W be a Banach space. A multivalued mapping S : W ∈
µbd,cl(W) is called D−set-Lipschitz if there exists a continuous nondecreasing func-
tion ψ : R+ → R+, such that ωW(S(Ω)) ≤ ψ(ωW(Ω)), for all Ω ∈ µbd,cl(W) and
ψ(0) = 0.

Remark 2.14. If ψ(β) = jβ; j > 0, then S is called a j−set-Lipschitz mapping.
Moreover, if j < 1, then S is called a j−set-contraction on Ξ. If ψ(β) < β, for
β > 0, then S is called a nonlinear D−set-contraction on W.

Definition 2.15. Let W be a Banach space and ωW be a measure of noncompact-
ness on W. An operator S : W → W is called condensing if S is continuous takes
bounded sets into bounded sets, and ωW(S(Ω)) < ωW(Ω) for every bounded set Ω
of W with ωW(Ω) > 0.

Theorem 2.16 ([12]). Let Y be a nonempty, bounded, closed and convex subset
of a Banach space Ξ and S : Y → µcl,cv(Y) be a closed and nonlinear D− set
contraction, Then S has at least a fixed point.

Theorem 2.17 ([21]). Let S : W → W be a condensing operator where W a Banach
space. If S(V ) ⊂ V for a bounded,closed and convex set V of W, then S admit a
fixed point in V.

3. Existence results

Definition 3.1 ([13,17]). A resolvent operator for the problem

(3.1)

{
p′(ϑ) = Zp(ϑ) +

∫ ϑ
0 N(ϑ− ϱ)p(ϱ)dϱ, ϑ ∈ [0,∞),

p(0) = p0 ∈ Ξ,

is a bounded linear operator-valued function R(ϑ) ∈ Υ(Ξ); ϑ ≥ 0, verifying the
following assumptions:

(i) R(0) = I and ‖R(ϑ)‖ ≤ Neνϑ for some constants N > 0, and ν ∈ R.
(ii) For each p ∈ Ξ, R(ϑ)p is strongly continuous for ϑ ≥ 0.
(iii) R(ϑ) is bounded for ϑ ≥ 0. For p ∈ D(Z), R(·)p ∈ C(R+, D(Z))∩C1(R+,Ξ)

and

R′(ϑ)p = ZR(ϑ)p+
∫ ϑ

0
N(ϑ−ϱ)R(ϱ)pdϱ = R(ϑ)Zp+

∫ ϑ

0
R(ϑ−ϱ)N(ϱ)pdϱ; ϑ ∈ [0,∞).

The hypotheses:

(CdB1) The operator Z is the infinitesimal generator of a uniformly continuous
semigroup (S(ϑ))ϑ≥0.
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(CdB2) For all ϑ ≥ 0, N(ϑ) is a closed linear operator from D(Z) to Ξ and N(ϑ) ∈
Υ(Ξ). For any p ∈ Ξ, the map ϑ 7→ N(ϑ)p is bounded, differentiable and the
derivative ϑ 7→ N′(ϑ)p is bounded and uniformly continuous on R+.

Theorem 3.2 ([13,17]). Assume that (CdB1) and (CdB2) hold. Then there exists a
unique uniformly continuous resolvent operator for the problem (3.1).

Definition 3.3. A ς-periodic function p ∈ P̃c is a periodic mild solution of problem
(1.1) if there exists ξ̄ ∈ SΨ◦p, for a.e. ϑ ∈ R+, such that

p(ϑ) =


R(ϑ)ψ(0) +

∫ ϑ
0 R(ϑ− ϱ)ξ̄(ϱ)dϱ, ϑ ∈ Θ0,

R(ϑ− ϱj)Φj(ϱj , p(ϱ
−
j )) +

∫ ϑ
ϱj
R(ϑ− ϱ)ξ̄(ϱ)dϱ, ϑ ∈ Θj , j = 1, . . . ,

Φj(ϑ, p(ϑ
−
j )), ϑ ∈ Θ̃j , j = 1, . . . ,

ψ(ϑ), if ϑ ∈ R−.

The hypotheses:

(CdC1) The multivalued map Ψ(ϑ, p, p̄) is L1−Carathéodory, and has compact and
convex values and maps bounded sets into bounded sets.

(CdC2) The continuous functions Φj , j = 1, 2, . . . ; map bounded sets into bounded
sets.

(CdC3) For ς > 0, Ψ(ϑ + ς, p, p̄) = Ψ(ϑ, p, p̄), Z(ϑ + ς) = Z(ϑ), ϑ ∈ Θj , j =

0, . . . , ν, p, p̄ ∈ Ξ× χ, Φj(ϑ+ ς, z) = Φj(ϑ, z), ϑ ∈ Θ̃j , j = 1, . . . , ν, z ∈ Ξ,
and ψ(ϱ+ ς) = ψ(ϱ), ϱ ∈ (−∞, 0].

(CdC4) There exist continuous function lj ∈ L∞(Θ), such that

‖Φj(ϑ, z)‖Ξ ≤ lj(ϑ)(1 + ‖z‖), for a.e. ϑ ∈ Θ̃j , and each z ∈ Ξ, j = 0, . . . , ν.

(CdC5) For bounded sets Ω ⊂ Ξ and Ωϑ ⊂ χ, ϑ ∈ R+, such that

Ωϑ = {pϑ : pϑ ∈ χ},
we have

ωΞ(Ψ(ϑ,Ω,Ωϑ)) ≤ ηδ(ϑ)ωΞ(B), for a.e. ϑ ∈ Θj , j = 0, . . . , ν,

and

ωΞ(Φj(ϑ,Ω)) ≤ lj(ϑ)ωΞ(Ω), for a.e. ϑ ∈ Θ̃j , j = 1, . . . , ν,

where ηδ ∈ L1(Θj), and ωΞ is a measure of noncompactness on the Banach
space Ξ.

Set

η∗δ := ‖ηδ‖L1(Θj) =

∫
Θj

ηδ(ϑ)dϑ,

l∗ = max
j=0,...,ν

‖lj‖L∞ , κ = sup
ϑ∈Θ

‖R(ϑ)‖Υ(Ξ).

Theorem 3.4. Assume that the hypotheses (CdB1), (CdB2), and (CdC1)−(CdC5) are
met. If

(3.2) δ := max{l∗, 4κςη∗δ , κ(l∗ + ςη∗δ )} < 1,

then the problem (1.1) has at least one mild solution.
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Proof. Consider the problem
(3.3)

p′(ϑ)−Zp(ϑ)−
∫ ϑ
0 N(ϑ− ϱ)p(ϱ)dϱ ∈ Ψ(ϑ, p(ϑ), pϑ), ϑ ∈ Θj , j = 0, . . . , ν,

p(ϑ) = Φj(ϑ, p(ϑ
−
j )), ϑ ∈ Θ̃j , j = 1, . . . , ν,

p(ϑ) = ψ(ϑ), if ϑ ∈ R− := (−∞, 0],

Part 1. We start by demonstrating that (3.3) has a mild solution p ∈ Pc,
Transform the problem (3.3) into a fixed point problem. Consider the multivalued
map T1 : Pc → µ(Pc) defined by
(3.4)

T1(p) =


ξ ∈ Pc : ξ(ϑ) =



R(ϑ)ψ(0) +
∫ ϑ
0 R(ϑ− ϱ)ξ̄(ϱ)dϱ; ϑ ∈ Θ0,

R(ϑ− ϱj)Φj(ϱj , p(ϱ
−
j ))

+
∫ ϑ
ϱj
R(ϑ− ϱ)ξ̄(ϱ)dϱ, ϑ ∈ Θj , j = 1, . . . , ν,

Φj(ϑ, p(ϑ
−
j )), ϑ ∈ Θ̃j , j = 1, . . . , ν,

ψ(ϑ), if ϑ ∈ R− := (−∞, 0],


where ξ̄ ∈ SΨ◦p.
Let ξ ∈ T1(p). Thus, there exists ξ̄ ∈ SΨ◦p where

ξ(ϑ) =


R(ϑ)ψ(0) +

∫ ϑ
0 R(ϑ− ϱ)ξ̄(ϱ)dϱ, ϑ ∈ Θ0,

R(ϑ− ϱj)Φj(ϱj , p(ϱ
−
j )) +

∫ ϑ
ϱj
R(ϑ− ϱ)ξ̄(ϱ)dϱ, ϑ ∈ Θj , j = 1, . . . , ν,

Φj(ϑ, p(ϑ
−
j )), ϑ ∈ Θ̃j , j = 1, . . . , ν,

ψ(ϑ), if ϑ ∈ R− := (−∞, 0],

Let γ > 0 be, such that

γ ≥ max

{
‖ψ‖χ,

l∗

1− l∗
, κ(‖ψ(0)‖+ η∗δ ),

κ(l∗ + η∗δ )

1− κl∗

}
,

and consider the ball Ωγ := Ω(0, γ) = {ℓ ∈ Pc : ‖ℓ‖Pc ≤ γ}.
For any p ∈ Ωγ and each ϑ ∈ Θ0, we have

‖ξ(ϑ)‖ ≤ κ‖ψ(0)‖+ κ

∫ ϑ

0
‖ξ̄(ϱ)‖dϱ

≤ κ‖ψ(0)‖+ κη∗δ
≤ γ.

Next, for each ϑ ∈ Θj , j = 1, . . . , ν, we have

‖ξ(ϑ)‖ ≤ κl∗(1 + γ) + κ

∫ ϑ

ϱj

‖ξ̄(ϱ)‖dϱ

≤ κl∗(1 + γ) + κη∗δ
≤ γ.

Also, for each ϑ ∈ Θ̃j , j = 1, . . . , ν, we have

‖ξ(ϑ)‖ ≤ l∗(1 + γ) ≤ γ,
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and for each ϑ ∈ R−, we have

‖ξ(ϑ)‖ = ‖ψ‖χ ≤ γ.

Hence,

‖T1(p)‖PC ≤ γ.

As consequence, the operator T1 transforms the ball Ωγ := {p ∈ Pc : ‖p‖Pc ≤ γ}
into µ(Ωγ). Now, we will demonstrate that the operator T1 : Ωγ → µ(Ωγ) verifies
all the requirements of Theorem 2.16.

Step 1. T1(p) ∈ µcl(Pc) for each p ∈ Ωγ .
Let (pn)n≥0 ∈ T1(p) such that pn −→ p̃ in Pc. Then, p̃ ∈ Pc and there exists
ξ̄n ∈ SΨ◦p such that

pn(ϑ) =



R(ϑ)ψ(0) +
∫ ϑ
0 R(ϑ− ϱ) ξ̄n(ϱ)dϱ, if ϑ ∈ Θ0,

R(ϑ− ϱj)Φj(ϱj , pn(ϱ
−
j ))

+
∫ ϑ
ϱj
R(ϑ− ϱ) ξ̄n(ϱ)dϱ, if ϑ ∈ Θj , j = 1, . . . , ν

Φj(ϑ, pn(ϑ
−
j )), if ϑ ∈ Θ̃j , j = 1, . . . , ν

ψ(ϑ), if ϑ ∈ R−.

Given that Ψ contains compact values and by (CdC1), we can pass to a subsequence
if required get that ξ̄n converges to ξ̄ in L1(Θ,Ξ), and therefore ξ̄ ∈ SΨ◦p. Then

pn(ϑ) → p(ϑ) =



R(ϑ)ψ(0) +
∫ ϑ
0 R(ϑ− ϱ) ξ̄(ϱ)dϱ, if ϑ ∈ Θ0,

R(ϑ− ϱj)Φj(ϱj , p(ϱ
−
j ))

+
∫ ϑ
ϱj
R(ϑ− ϱ) ξ̄(ϱ)dϱ, if ϑ ∈ Θj , j = 1, . . . , ν

Φj(ϑ, p(ϑ
−
j )), if ϑ ∈ Θ̃j , j = 1, . . . , ν

ψ(ϑ), if ϑ ∈ R−.

So, p̃ ∈ T1(p).
Step 2. T1 : Ωγ → µcl,cv(Ωγ) is D−set-contraction.

Using Lemmas 2.11 and 2.10, for any Ω ⊂ Ωγ and any ϵ > 0, there exists a sequence
{pj}∞j=0 ⊂ Ω, where for every ϑ ∈ Θ0, we obtain

ωΞ((T1Ω)(ϑ)) = ωΞ

({
R(ϑ)ψ(0) +

∫ ϑ

0
R(ϑ− ϱ) ξ̄(ϱ)dϱ; ξ̄ ∈ SΨ◦p, p ∈ Ω

})
≤ 2ωΞ

({∫ ϑ

0
R(ϑ− ϱ)ξ̄(ϱ)dϱ; ξ̄ ∈ SΨ◦pj

}∞

j=1

)
+ ϵ

≤ 4

∫ ϑ

0
ωΞ

(∥∥R(ϑ− ϱ)‖Υ(Ξ){ξ̄(ϱ); ξ̄ ∈ SΨ◦pj
}∞
j=1

)
dϱ+ ϵ

≤ 4κ

∫ ϑ

0
ωΞ

(
{ξ̄(ϱ); ξ̄ ∈ SΨ◦pj}∞j=1

)
dϱ+ ϵ

≤ 4κ

∫ ϑ

0
ηδ(ϱ)ω

(
{pj(ϱ)}∞j=1

)
dϱ+ ϵ
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≤ 4κη∗δ

∫ ϑ

0
ωΞ

(
{pj(ϱ)}∞j=1

)
dϱ+ ϵ

≤ 4κςη∗δωPc(Ω) + ϵ,

and, for all ϑ ∈ Θj , j = 1, . . . , ν, we get

ωΞ((T1Ω)(ϑ)) = ωΞ

({
R(ϑ− ϱj)Φj(ϱj , p(ϱ

−
j ))

+

∫ ϑ

ϱj

R(ϑ− ϱ) ξ̄(ϱ)dϱ; ξ̄ ∈ SΨ◦p, p ∈ Ω

})

≤ 2ωΞ

({∫ ϑ

0
R(ϑ− ϱ)ξ̄(ϱ)dϱ; ξ̄ ∈ SΨ◦pj

}∞

j=1

)
+ ϵ

≤ 4κςη∗δωPc(Ω) + ϵ.

Since ϵ > 0 is arbitrary, then for all ϑ ∈ Θj , j = 0, . . . , ν, we get

ωΞ((T1Ω)(ϑ)) ≤ ζ1(ωPc(Ω)),

where ζ1 : R+ → R+, ζ1(w) = 4κςη∗δw.

Also, for all ϑ ∈ Θ̃j , j = 1, . . . , ν, we get

ωΞ((T1Ω)(ϑ)) ≤ lj(ϑ)ωPc(Ω),

≤ l∗ωPc(Ω)

≤ ζ2(ωPc(Ω)),

where ζ2 : R+ → R+, ζ2(w) = l∗w.
Hence, for all ϑ ∈ (−∞, ς] we obtain

ωΞ((T1Ω)(ϑ)) ≤ ζ(ωPc(Ω)),

where ζ : R+ → R+ defined by{
ζ(ϑ) = ζ1(ϑ), if ϑ ∈ Θj ; j = 0, 1, . . . ,

ζ(ϑ) = ζ2(ϑ), if ϑ ∈ Θ̃j ; j = 1, 2, . . . .

As a result, we may deduce that T1 admit a fixed point in p ∈ Ωγ .

Part 2. Periodic mild solutions.
A common method for obtaining ς− periodic solutions is to define the Poincaré
operator T2 : χ→ χ by

T2(ψ) = pς(ψ) : where (T2ψ)(ϱ) = pς(ϱ, ψ) = p(ς + ϱ, ψ), ϱ ∈ R−,

which translates a starting function ψ along the single mild solution p(ψ) to our
problem (1.1) by ς− units. We prove that T2 is condensing in χ. Thus, the provided
assumptions indicate that Theorem 2.17 may be used to obtain fixed points for the
Poincaré operator, resulting in periodic solutions.

Step 1. The fixed points of T2 provide a periodic mild solutions of (1.1).
Let ψ ∈ χ where T2(ψ) = ψ. Then for the solution p(·) = p(·, ψ) with p0(·, ψ) = ψ,
we can define p̄(ϑ) = p(ϑ + ς). And, for ϑ > 0, We can make advantage of the
properties of R(ϑ), and the knowledge that ξ̄ and Φj are ς-periodic functions in ϑ,



INFINITE DELAY IMPULSIVE INTEGRO-DIFFERENTIAL INCLUSIONS 11

to get that p̄ is also a solution with p̄0(·, ψ) = pς(ψ) = p(·, ψ). Indeed, let ξ ∈ T1(p).
Then there exists ξ̄ ∈ SΨ◦p such that

p̄(ϑ) =



R(ϑ)ψ(0) +
∫ ϑ
0 R(ϑ− ϱ) ξ̄(ϱ)dϱ, if ϑ ∈ Θ0, ξ̄ ∈ SΨ◦p

R(ϑ− ϱj)Φj(ϱj , p̄(ϱ
−
j ))

+
∫ ϑ
ϱj
R(ϑ− ϱ) ξ̄(ϱ)dϱ, if ϑ ∈ Θj , j = 1, . . . , ν, ξ̄ ∈ SΨ◦p

Φj(ϑ, p̄(ϑ
−
j )), if ϑ ∈ Θ̃j , j = 1, . . . , ν

ψ(ϑ), if ϑ ∈ R−.

Then the uniqueness of R(ϑ) implies that p̄(ϑ) = p(ϑ), so that p(ϑ) = p(ϑ+ ς) is a
ς-periodic solution.

Step 2. T2 is condensing.
Let Ω ⊂ χ be bounded with ωχ(Ω) > 0. If p0 is the unique solution with p0(ψ) = ψ,
we define Jϱ(Ω) = {pϱ(ψ) : ψ ∈ Ω} and J[β1,β2](Ω) = {p[β1,β2](ψ) : ψ ∈ Ω}. Same as
the proof of Theorem 4.1 in [21], we get

ωχ(T2(Ω)) ≤
(
1

2

)α0−1

κωχ(Ω) < ωχ(Ω).

Therefore, Theorem 2.17 implies that T2 admit a fixed point.

4. An example

Let us investigate the following problem of impulsive integro-differential inclu-
sions:

(4.1)



∂p̄
∂ϑ(ϑ, θ)−

∂2p̄
∂θ2

(ϑ, θ)

−
∫ ϑ
0 b(ϑ− ϱ) ∂2

∂θ2
p̄(ϱ, θ)dϱ ∈ Ψ(ϑ, p̄(ϑ, θ), p̄ϑ(·, θ)),

θ ∈ Θ := [0, π], ϑ ∈ Θj , j = 0, · · · ,

p̄(ϑ, θ) = Φj(ϑ, θ), θ ∈ Θ, ϑ ∈ Θ̃j , j = 1, · · · ,

p̄(ϑ, 0) = p̄(ϑ, π) = 0, ϑ ∈ R+.

p̄(0, θ) = G(θ), θ ∈ Θ,
p̄(ϑ, θ) = ψ(ϑ, θ); ϑ ∈ R−, θ ∈ Θ,

where Ψ : R+ × R × Cξ → R, G : Θ → R and ψ : R− × Θ → R are continuous
functions such that G(θ) = ψ(0, θ), θ ∈ Θ, and Cξ is the phase space given in
Example 2.6.

Take Let

Ξ := L2(Θ) =

{
p : Θ → R :

∫ π

0
|p(θ)|2dx <∞

}
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be the Hilbert space with the scalar product < p, p̄ >=
∫ π
0 p(θ)p̄(θ)dx. It is known

that Ξ is a Banach space with the norm

‖p‖2 =
(∫ π

0
|p(θ)|2dx

) 1
2

,

and define Z : D(Z) ⊂ Ξ → Ξ by Zλ = λ′′ with domain

D(Z) = {λ ∈ Ξ, λ, λ′ are absolutely continuous, λ′′ ∈ Ξ, λ(0) = λ(π) = 0}.
Then

Zλ =

∞∑
n=1

n2(λ, λn)λn, λ ∈ D(Z)

where (·, ·) is the inner product in L2 and λn(ϱ) =
√

2
π sin ns, n = 1, 2, . . . is

the orthogonal set of eigenvectors in Z. It is well known (see [24]) that Z is the
infinitesimal generator of an analytic semigroup S(ϑ), ϑ ≥ 0 in Ξ and is defined by

S(ϑ)λ =
∞∑
n=1

exp(−n2ϑ)(λ, λn)λn, λ ∈ Ξ.

Since the analytic semigroup S(ϑ) is compact, there exists a constant κ ≥ 1 such
that

‖S(ϑ)‖Υ(Ξ) ≤ κ.

For θ ∈ Θ, we have
p(ϑ)(θ) = p̄(ϑ, θ); ϑ ∈ R+,

Ψ(ϑ, p(ϑ), pϑ) = Ψ(ϑ, p̄(ϑ, θ), p̄ϑ(·, θ)); ϑ ∈ R+,

N(ϑ) = b(ϑ)Z
p0(θ) = G(θ); θ ∈ Θ,

p(ϑ)(θ) = ψ(ϑ, θ); θ ∈ Θ, ϑ ∈ R−.

Therefore, by the definitions of ξ̄, p0 and Z, the system (4.1) can be represented
by (1.1). Moreover, more relevant assumptions on Ψ guarantee that (CdB1), (CdB2)
and (CdC1) − (CdC5) are met. As consequence, By Theorem 3.4, we can deduce
that problem (4.1) has at least one mild solution on R.
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Birkhäuser, Basel, Boston, Berlin, 1997.



INFINITE DELAY IMPULSIVE INTEGRO-DIFFERENTIAL INCLUSIONS 13

[6] J. Banas̀ and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New
York, 1980.

[7] M. Benchohra, J. Henderson and S. K. Ntouyas, Impulsive Differential Equations and Inclu-
sions, Hindawi Publishing Corporation, Vol 2, New York, 2006.

[8] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Advanced Topics in Fractional Dif-
ferential Equations: A Fixed Point Approach, Springer, Cham, 2023.

[9] M. Benchohra, E. Karapınar, J. E. Lazreg and A. Salim, Fractional Differential Equations:
New Advancements for Generalized Fractional Derivatives, Springer, Cham, 2023.

[10] D. Bothe, Multivalued perturbation of m-accretive differential inclusions, Isr. J. Math. 108
(1998), 109–138.

[11] T. Burton, Stability and Periodic Solutions of Ordinary Differential Equations and Functional
Differential Equations, Corrected version of the 1985 original. Dover Publications, Inc., Mine-
ola, NY, 2005.

[12] B. C. Dhage, Some generalizations of multivalued version of Schauder’s fixed point theorem
with applications, Cubo 12 (2010), 139–151.

[13] M. Dieye, M. A. Diop, K. Ezzinbi and H. Hmoyed, On the existence of mild solutions for
nonlocal impulsive integro-differential equations in Banach spaces, Le Matematiche LXXIV
(1) (2019), 13–34.

[14] S. Djebali, L. Gorniewicz, and A. Ouahab, First-order periodic impulsive semilinear differential
inclusions: existence and structure of solution sets, Math. Comput. Model. 52 (2010), 683–
714.

[15] J. R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point
Approch, De Gruyter, Berlin/Boston, 2013.

[16] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[17] R. C. Grimmer, Resolvent opeators for integral equations in a Banach space, Trans. Amer.

Math. Soc. 273 (1982), 333–349.
[18] D. J. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces,

Kluwer Academic Publishers, Dordrecht, 1996.
[19] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac.

21 (1978),11–41.
[20] J. Liang, J. H. Liu, M. V. Nguyen and T. J. Xiao, Periodic mild solutions of impulsive differ-

ential equations with infinite delay in Banach spaces, J. Nonlinear Funct. Anal., 2019 (2019):
Article ID 18, 1-10.

[21] J. H. Liu, Periodic solutions of infinite delay evolution equations, J. Math. Anal. Appl., 247
(2000), 627–644.

[22] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second
order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999.
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