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TWO STRONG CONVERGENCE THEOREMS OF
NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY
MONOTONE MAPPINGS WITH ERRORS

TAO WANG AND YONGQIANG RAO

ABSTRACT. In this paper, we introduce two iterative schemes for finding a com-
mon element of the set of fixed points of a nonexpansive mapping and the set of
solutions of the variational inequality for an inverse-strongly monotone mapping
in a Hilbert space. Then we show that the sequence converges to a common
element of two sets. Further, we consider the problem finding a common element
of the set of fixed points of a nonexpansive mapping and the set of zeros of an
inverse-strongly monotone mapping. Finally, we apply the conclusions to some
feasibility problems.

1. INTRODUCTION-PRELIMINARIES

Let C be a closed convex subset in a real Hilbert space H and let Po be a metric
projection of H onto C. The variational inequality problem is to find a point u € C
about (v — u, Au) > 0 for all v € C. And we can define a self mapping f: C — C,
contraction, on C' if there is a constant k € (0,1) such that || f(z)— f(v)| < k ||lz—y]|
for all x,y € C. A mapping T of C into H is called inverse-strongly monotone if
there exists a positive real number o about (z— y, Tz — Ty) > || Tz — Ty||?, for
all z,y € C, and a mapping S of C into H is called monotone if for all z,y €
C,(x —y,Tx — Ty) > 0. Takahashi et al. [14] proposed an algorithm: z,11 =
ann + (1 — an)SPo (n, — MAxy,), where {\,} C [a,b] and {a,} is a sequence in
(0,1), 0 < a < b < 2a, S is a nonexpansive mapping. In that paper, he introduced
an iteration process of finding a common element of the set of fixed points of a
nonexpansive mapping. And he used this result, he obtained a weak convergence
theorem for a pair of a nonexpansive mapping and a strictly pseudocontractive
mapping. And then Chen [2] proposed the viscous form of the algorithm :

Tnt1 = anf () + (1 — an)SPo (x, — \yAxy,),

where {\,,} C [a,b] and {a,} is a sequence in (0,1), 0 < a < b < 2¢, f is a contrac-
tion with coefficient k(0 < k£ < 1) and S is a nonexpansive mapping. Recently, these
method has received great attention by many authors, who improved them in various
ways, we refer to [1,6-8,15] and the references therein. In particular, Xu [17] pro-
posed the algorithm with an error sequence such that y,, := (I + ch)_l (n) + en.
Tpt1 = apZo+ (1 — o) Yn. Assume that (i) o, — 05 (ii) Y, o = 005 (iii) ¢, — 005

2020 Mathematics Subject Classification. 47TH05, 90C30.
Key words and phrases. Metric projection, nonexpansive mapping; inverse-strongly monotone
mapping, viscosity approximation.



362 T. WANG AND Y. RAO

(iv) >, llen]| < co. This method is an appropriately modified proximal point al-
gorithm which guarantees strong convergence and which does not substantially in-
crease calculations. For recent results on variational inequalities and fixed points of
nonexpansive mappings via fixed point methods, we refer to [3,9,10,12,16] and the
references therein.

In this paper, we introduce two iterative schemes: One is to find a common
element about the set of fixed points of a nonexpansive mapping. And another one
is to find a common element about the set of solutions of the variational inequality
for an inversestrongly monotone mapping in a Hilbert space. Then we show that
this methods converge strongly to a common element of two sets which solves some
variational inequality.

2. PRELIMINARIES

We state the following well-known lemmas which will be used in our convergence
analysis in the sequel.

Lemma 2.1. The following well-known results in a real Hilbert space: for each
r,y,z € H and a,B,7 € [0,1] with a + B+~ = 1, we have 1. |z + y||*> <
[ +2{y,z +y). 2. oz + (1 - a)yl? = aflz[* + (1 - @)y — a(l - &)z - y|*.
Lemma 2.2. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Gwenx € H and z€ C. Then z=Pox = {(x—z,z—y) >0,VyeC.

Lemma 2.3. Let C be a closed and convex subset in a real Hilbert space H,x € H.
Then
(1) [|[Pox - Peyl* < (Pox — Poy,= —y).
(2) [|1Pox —yl* < ||z = y||* — ||z — Pox|*.
(3) |1 —Pe)a— (I — Pe)yl* < ((I—Po)z— (I — Po)y,x —y).
(4) In the context of the variational inequality problem: uw € VI(C, A) & u =
Po(u— AAu) for all X > 0.

Lemma 2.4 ([18]). Let {z,} be a sequence in H, assume x, — x, then the inequality
limy, o0 inf ||z, — || < limp o0 inf ||z, — y|| holds for evey y € H with y # x.

Lemma 2.5 ([17]). Assume that {s},—, is a sequence of nonnegative real numbers
such that sgy1 < (1 — M) sp + A\ + ¢k, where {\i},{br} and {cr} satisfy the
conditions:

(a) limkﬁoo )\k = 0, ZSLO:O /\k = o0y

(b) either limy_,o0 supby < 0 or Y2 o [Arbk| < oo;

(¢) ek >0 (k>0), > pcr <oo.
Then limy_,o s = 0.

Lemma 2.6 ([2]). Let C be a closed convex subset of a real Hilbert space H and let
T :C — C be a nonexpansive mapping such that Fiz (T) # 0. If a sequence {x,}
in C is such that x, — z and x,, — Tz, — 0, then z = Tz.

Lemma 2.7 ([13]). Let {x,} and {y,} be bounded sequences in a Banach space and
let {Bn} be a sequence of [0,1] such that 0 < lim,,_, inf 8, < lim,_osup 3, < 1.

Suppose Tni1 = (1 — Bn) Yn+Bntn, Yn € N and lim,, o sup (”yn—l-l - yn” — [|Zng1 — xn”) <
0. Then, limy, oo ||Yn — znl| = 0.
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Lemma 2.8 ([4]). Let C be a nonempty closed subset of H and let {xy}nen be a
sequence in H which is quasi-Fejer monotone with respect to C, i.e., there exists a
summable sequence {e,}nen in [0,4+00) such that (Vz € C)(Vn € N) ||zpy1 — || <
|xn, — || + en. Then
(i) The sequence {xy}nen is bounded.
(i) The sequence {xn},cn converges weakly to a point in C if and only if
w(zp),eny C O, where w(xy), . denotes the set of weak cluster points
of sequence {xy}nen-

Remark 2.9 ([5]). A mapping S of C in H is called strongly monotone and S
is also called ~v-strongly monotone if and only if there has a positive number ~
such that (z —y, Sz — Sy) > 7|z — y|* for all 2,y € C. A mapping S is 7/k*-
inverse-strongly monotone if and only if S is y-strongly monotone and k-Lipschitz
continuous, satisfied ||Sxz — Sy|| < k|lx — yl|, Vz,y € C.

Remark 2.10 ([2]). If S is an a-inverse-strongly monotone mapping of C in H,
then S is 1/a-Lipschitz continuous. We also get that Vz,y € C' and A > 0,

(I = AS)z — (I = AS)y|?
< [lz =yl + A\ = 20)|| Sz — Sy|®
So, if A < 2a, the I — AS is a nonexpansive mapping of C' into H.

Remark 2.11 ([11]). A set-valued mapping S : H — 2 is called monotone if
Vez,y € H,f € Sz and g € Sy so that (x —y, f — g) > 0. A monotone mapping
S : H — 2 is maximal if the graph G(S) of S is not properly contained in the
graph of any other monotone mapping.

It is known that a monotone mapping S is maximal if and only if V(z, f) €
HxH/{(x—y,f—g) >0, Y(y,9) € G(S) implies f € Tx. Let A be an inverse-
strongly monotone mapping of C into H and let Nov be the normal cone to C at
velC, Nev={we H: (v—u,w)>0,YVu e C}, and define

| Av+ Nev, vel
Sv—{ 0, v¢C

Thus S is maximally monotone and 0 € Sv if and only if v € VI(C, A); see [11].

3. MAIN RESULTS

In this section, according to the above remarks, we can put forward the following
two theorems.

Theorem 3.1. Let C be a closed convexr subset of a real Hilbert space H. Let A be
an a-inverse-strongly monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F(S)NVI(C,A) # @. Suppose x1 =z € C,{en}
is regard as an error sequence and e, € H and Y ", |ley]| < 400, and {x,} is given
by xg,x1 € C,

Wy = Ty + Oy (xn - xn—l) ;

yn:PC(I_)\nA)(wn_en);

Tnt1 = Ty + (1 — ap) Syn.
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For every n = 1,2....where {a,} is a sequence in [0,1) and {\,} is a sequence
in [0,2a]. Choose 60, € [0,1] and > 77 Oy ||z — Tn—1] < +o00. If {an} and {\,}
are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2, lim,_o @, = 0,
Yoo = 00, >0 |amg1 — | < 00 and Y00 A1 — An| < oo. Then {x,}
converges weakly to z € F(S)NVI(C,A).

Proof. Put y, = Po (I — A\, A) (zy, —ey). Let u e F(S)NVI(C,A). Since I — N\, A
is nonexpansive, from Lemma 2.3, we have
lyn —ull = [[Pc (I = AnA) (wn — €n) — Po (I — AnA) ul
< lwn — ull + len]]
<lzn —ull + 0n |20 — -1l + [len] -
So, we can have
[#nt1 — ull < an [lon — ull + (1 = o) [[Syn — ull
<ap llzn —ull + (1 = an) [llzn — ull + 0 |20 — 21| + [len]]]
< |l@n — ull + On |2 — 2n—1ll + [lenl| -

Since > 074 llen]l < oo, D070y |lxn —xp-1]] < +oo0, so we can have

O ||Tn, — zn—1|| — 0, so there exists a positive integer M; make sure 0, ||z, —zp—1| <
M;. By Lemma 2.8, we can get {x,} is bounded. Hence {wy,}, {yn}, {Syn}, {Az,}
are also bounded. Since I — A\, A is nonexpansive, we also have

[Yn+1 = Ynll < (T = Ans1A) (Wnt1 — eng1) — (I = AnA) (wn — )|
< = A1 A) wnsr — (I = Angr A) wal| + [An — Apga | [[Awn |
+ [An = Ans1| | Aen|| + [lent1 — enl|
< Nwng1 — wnll 4+ [An = A | [[Awn || + [An — Ana | [[Aen|
+ llent1 — eal|
< @1 — @nll + Ont1 [|Tn1 — 2ol + On (|20 — 2o |
+ [An = A [Awn| + [An = Ansa| | Aen]| + [[ens1 — enl| -
Since
[SYn+1 = Synll < lzns1 — znll + On1 |01 — znll + On |20 — 2p—1]]
+ [An = Anga| [[Awn || + [An = Ansa| [[Aen || + [lent1 — enl]-

We can obtain limy,—co sup (||Syn+1 — Synll — |[tn+1 — znl|) < 0. By Lemma 2.7,
Syn — xn — 0. Thus ||[zp41 — xn|| — 0. So we can have ||yp+1 —yn| — 0. For
ue F(S)NVI(C,A), we can obtain

|41 — qu < ay |lzn - UH2 + (1= an) [[Syn — u”z
< ag [|lzn = ul* + (1 = an) |y — ul|?
< an [|lzn — ull* + lwn — ul* + (1 = an) [len]?
+2(1 — an) [Jwn — ul| [[en]|
+ (1 —ap) a(b — 20) || Aw, — Aul?
+ (1 — ) a(b — 20) || Aey|?
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+2(1—ayp)alb—2a) ||Aw, — Au|| ||Aey|| -
Therefore, we can have
—(1—ap)a(b—2a)|Aw, — Au|?
< ap|lzn — u||2 + llzn — UH2 + 20 [|zn — ul| |zn — 01| + 0, | — xn71||2
— a1 = ul® + (1= an) leal® + 2 (1 = ag) [[wy — ull [lea]
+ (1 —ay)ad—20) ||Ae||* + 2 (1 — an) a(b — 20) ||Aw, — Aul| ||Ae,||
< anllzn = wll® + (zn — ull + 2011 — ul) x (J2n - ull = s - ul)
+ 20 ||lzn — ull lzn — zn-all + 9721 (e xn71||2 +(1—an) H€n||2
+2(1 = ag) wn — ul llen]l + (1 = an) a(b — 2a) || Ay
+2(1 —ap)alb—2a) ||Aw, — Au|| || Ae,|| .

Since o, — 0 and ||zp41 —xn|| — 0, and > 7 llen]| < +oo, we can get
|Awy, — Au|| — 0. From Lemma 2.3, we have

I = ull® < (T = XaA) (w0 = €0) = (T = Ao ) 90— )
= 5 [0 = 2) (o = 0) = (7 = XA ul® + 1 —
~ (I = An ) (wn = en) = (I = AnA)u = (g — )]

1
<5 [Hwn —ul® + 2 lwn — ull [lenl] + llenll® + llyn — wll* = wn — ynl®
+2\, (wy, — Yp, Awy, — Ae,, — Au) — po | Aw, — Ae,, — AuH2
+2 [[(wn — Yn) — An (Awy, — Aen — Au)|| |len| — H€n||2] .
Thus
2 2 2
lyn — ull® < flwn = ull® + 2 [Jwn, — ull lenl] = [Jwn — ynll
+ 20\ (W, — Y, Awy, — Au) — 20 (wy, — Yn, Aey)
— A2 | Awy, — Aul? 4 20,2 || Aw, — Aul| || Aen|| — A2 || Aen ||
+ 2 |[(wn — Yn) — An (Awy, — Aep, — Au)|| |len||
which shows that
|zt — ull®
< ap |lzn — uH2 + (1 — an) [Hwn - UH2 + 2 [Jwn — ul| [|en]] — [Jwn — ynH2
F2 (W, — Yn, Awy, — Au) — 20, (wy, — Yp, Aey)
A2 | Awy, — Aul® + 20,2 || Aw, — Aul| || Aen || — An? || Aen|)?
+2 [(wn — Yn) — An (Awy, — Aen, — Au)|| |len|]
< lwn — u”2 + 20, |77 — ul| [|2n — Tn1]| + 9n2 |2n — xn—1H2

+ 2 [Jwn, — ul| [|en]] — [Jwn — ynH2 + 2\ (wn — Yn, Aw, — Au)
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— 2 p(wy, — Yn, Aey) — )\i | Aw,, — AuH2 + 2)‘721 || Aw, — Aul| || Ae,|]
- )\ng ||Aen||2 + 2 [(wn = Yn) — A (Aw, — Aen, — Au)|| |len| .

Since ||zp41 — xn|| — 0, ||Aw, — Aul| — 0,|len]| — 0,]Aes| —, we can get

6 — gll = 0. Thus [z, — yall < o — wy | + [1n — gall = 0 and Sz, — 2, | <

|Szn, — Synll + [|SYn — nll < |2n — ynll + |SYn — zn|| — 0. We assume that there

is a sequence {z,,} of {x,} converges weakly to z. Then we can have z € F(S) N

VI(C,A). Since zp,—yn — 0, we can have y,,, — z. Let Tv = { Av +®NCU’ z ; g’ )
This prove that operator T is maximally monotone. Let (v,w) € G(T). From

w— Av € Nev and y, € C, one concludes (v — y,,w — Av) > 0. By y, =

Po (I — M\ A) (w, —ey), we have (v— yn,yn — (I — A\A) (wp, —e,)) > 0. Thus

(v — Yn, % + Aw,, — Ae,) > 0. Therefore, we can have

<’U - yn”w> Z <U - yniaAU>

. — W
2 <U - yn“AU - Ayn,> + <’U - yn“Ayni - Awnl> - <’U - yni7 w>
n;
€n,
— (v — Yn,, /\—m + Aey,).
n;
This proves (v — z,w) > 0,i — oo. Thus z € T7!0 and then z € VI(C, A).
Let us now prove z € F(S). Since ||z, — Szy| = ||Szn — xn|| — 0, we can have

z € F(S). Let {xn,} be another subsequence of {,,} such that x,, — 2’. Then,
z e F(S)NVI(C,A). We may show that z = 2/. Assume that z # 2/. From
the Opial condition, we can have a contradiction. Thus, z = z’. This implies that
Ty —2z€ F(S)NVI(C,A). O

Theorem 3.2. Let C be a closed convexr subset of a real Hilbert space H. Let
f: C — C be a contraction mapping with coefficient k(0 < k < 1). A is an
a-inverse-strongly monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F(S)NVI(C,A) # 0. Suppose {e,} is regard
as an error sequence and e, € H and > ;7 |len]| < 400, and {z,} is given by
xo,T1 € C,

Wp, = Ty, + en (Jf'n - xn—l) 5

Yn = Po (I — MA) (wp, — ep) ;

Tnt1 = anf (2n) + (1 — an) Syn.
For every n = 1,2... where {a,} is a sequence in [0,1) and {\,} is a sequence
in [0,2a]. Choose 0,, € [0,1] and > "7, Oy ||z — zp_1]| < +o0. If {an} and {\,}
are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2a, limy, 00 oy = 0,
Yoo o = 00, >0 |amg1 — ap| < 00 and Y07 [Apt1 — An| < oo. Then {z,}
converges strongly to q € F(S) N VI(C,A), which is the unique solution in the
F(S)NVI(C,A) to the following variational inequality ((I — f)q,q —p) < 0,p €
F(S)NVI(C, A).

Proof. Put y,, = Po (I — A\yA) (zn, — e,) and let uw € F(S)NVI(C, A). Since [ -\, A

is nonexpansive, from Lemma 2.3, we have

1y —ull < llzn —ull + 6n ll2n — 2ol + lleall -
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So, we can have
[#nt1 — ull < an || (2n) —ull + (1 — an) [|Syn — ul|
< ank flzn —ull + (1 — an) 20 — u
+ (1= an) On |20 — Tp1ll + (1 — an) llenl] + an | f(u) — ul|
< ank |lzn —ull + (1 — an) [|[2n — ull + On |20 — zn—1||
+ (1= an) [lenll + onl| f(u) — ]|
S (1= QA =k)an) |[zn — ul|

B | 0 - ul +

lenll + On |20 — 01|
(1-Fk)ay,

1
< ma { oy~ 1 1A — ol + 20

IN

1
< maxc{ ol 10 = ul + 2002}

llen] On |20 — Tn—1]]
My = N.
9 = max {Sup - k)an,sup (1= Fan ,n e

We can get {z,} is bounded. Since I — A\, A is nonexpansive, we also have

[Yn+1 = Ynl|

< (T = Ang1A) (Wng1 = ens1) = (I = AnA) (wn — en)||

< = A1 4) w1 — (I = A1 A) wal| + [ A = Anpa| || Awn |
+ [An = Al [[Aen | + llent1 — enl]

< Nwns1 — wnll + [An = Ansa| [[Awn || + [An — Ansa] | Aenll + [lent1 — enl|

< lzn+1 — @pll + Ons1 [Tnt1 — znll + O lzn — o1l + [An = Apga | [[Aws ||
+ [An = Anga| [[Aen|| + [[€nt1 — enll-

That yields

[Znt+1 — @

<lan — an—1l [|f (xn-1) — Syn—1l
+ (1 — o) [|Syn — Syn—1l| + ank ||xn — n-1]]

< (1= an)[llzn = zn-all + On |20 — Tn-1|| + b1 [|T0—1 — Tp—2]|
+[An—1 = An| [Awp—1 || + [An—1 = An| [|[Aen—1 ]| + [len — en—1]]
+ lan = ana| [|f (@n-1) = Syn—1l| + onk [|an — zn_1|

< (=1 =k)an)[zn = n-1ll + On [2n — Tn-all + On-1 [[Tn—1 — Tn—2]
+ (Ll + Ql) |>‘n—1 - )\n|
+ Mg |oy — ap—1| + [len — en—1]|

where
Ly = sup {[[Awn—1]|,n € N}, Q1 = sup {[|Aen_1 ,n € N},

367
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and

Ms = sup {||f (xn-1) = Syn-1l,n € N}.
By Lemma 2.5, we can get ||z, — 2n—1]| — 0, and then |z,4+1 — x,|| — 0. From
Yol A1 — An| < 00, |lent1 — en]| = 0, we can obtain [|y,+1— yn|| — 0, and then
|Yn—1 — yn|| — 0. Observe that lim,_, ||zn — Syn|| = 0. By remark 2.10, we can
obtain

2
[Znt1 — ull
< an |If (2n) — ull® + (1 = an) |Syn — ul)?
< ap ||If (zn

+(1—ay

)

) — ull?

) [l = e = ull® + An (g = 20) |4 (10 — €0) — Aul]

< o |[f (2n) = ull? + llwn — ull* + (1= an) lleal® + 2 (1 — an) lwn — ull [len]
+ (1= apn)a(b—2a) |[|[Aw, — Aul|® + (1 — an) a(b — 20) || Aey||?
+2(1—ayp)alb—2a) ||Aw, — Au|| ||Aey|| -

After simple calculations, we can have ||Aw,, — Au|| — 0. Considering ||w, — e, — u| <
|wn, — ul| + ||exn||, we can have

[wn = en = ul® < [lwn — ull® + 2 lwy — ull en]| + lleal* -
From Lemma 2.3, we have

lyn — ull?
<A = MA) (wn =€) — (I = Ay A) u, Yy, — u)

1
<3 9 [”wn — €n — u||2 + |lyn — U||2 — [[(wn — yn) — A (Awp, — Aey, — Au)||2

2 [[(wn = yn) = An (Awp — Aen, — Au)||[len ]| — ||€n\|2}
< 5 [Ihon =l + 2 o — ul ewl + llewl® + g =l e —
+ 20 (Wn — Y, Awy, — Aep, — Au) — N2 || Aw, — Ae, — Au))?
2 |[(wn = yn) = An (Awp — Aen, — Au)||[len ]| — ||6n\|2} -
So, we can obtain
lyn — ul®
< lwp = ul® + 2 flwn = ul [leall = flwn = yall?
+ 2\ (Wy, — Yn, Awy, — Au) — 2\, (wy, — Yn, Aey)
— A2 | Awy, — Aul|® + 20,2 || Aw, — Aul| || Aen|| — An? || Aen|)?
+2|[(wn = yn) = An (Awn — Aen, — Au)|| [len]] -
Hence
2nt1 — ull?

< an [If (zn) = ul® + (1 = an) [|Syn — ull?
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<o |If (@n) = ull® + llzn — ull® + 20, |20 — ull 20 — 20|
+ 00 [z — 2 |” + 2 wn — ull len]l = wn — ynl?
+ 20 (W, — Yn, Awy, — Au) — 20 (wy, — Yn, Aey)
— A2 [ Aw, — Aul)® + 20,2 || Aw, — Aul| ||Aen]|| — An?
1 Aenl” + 2 [[(wn = yn) = An (Awn — Aey — Au)]| [lenl] -

Since oy, — O, ||xpny1 — znl] — 0, ||Aw, — Aul| — 0,len]] — 0,||Aen]| — 0, we
can get |[w, — yn|| — 0. Observe |z, — wy|| = On ||2n — Tp-1]] = 0, ||xn —yn| <
[#n — wall + lwn = ynll = 0, |STn — all < |20 = yull + [|Syn — @all — 0. Next we
show that lim,,_,c sup(f(u) —u, Sy, —u) < 0, where u € F(S)NVI(C,A). To show
it, choose a subsequence {yyn, } of {y,} such that

lim sup(f(u) —u, Sy, —u) = lim sup(f(u) — u, Syn, — u).
1— 00

n—oo

As {z,} is bounded, we have that a sequence {z,,} of {x,} converges weakly to
z. Then we can have z € F(S)NVI(C,A). Since x, — y, — 0, we can have

Yn; — 2. We first show that z € VI(C, A). Let Tv = { Av g Nf]vévce c, . Then

T is maximal monotone.Let (v,w) € G(T'). Since w — Av € N¢v and y, € C,
we have (v — yp,w — Av) > 0. By y, = Po (I — MA) (w, —ey), we have (v—
YnsYn — (I — A\pA) (wy, — €,)) > 0 and hence (v — yy, y"_q)‘\’ﬂ+ Aw,, — Aey) > 0.

n

Therefore, we can obtain (v — z,w) > 0,7 — oo. Since T is maximal monotone,
we have z € T710 and hence z € VI(C, A). Let us show that z € F(S). Since
|xn — Szp|| = ||Sxn — xn|| — 0, so based on Lemma 2.6, we can have z € F(S).
Thus

lim sup(f(u) —u, Sy, —u) = (f(u) —u,z —u) <0.

n—o0

Next we can have

|1 — ul?
< (1 —2an + a?z) ln — uH2 + 20 [|on — zn—all |lzn — ull
+ 65 |z — za|* + leal® + 2 [lwn — ull lenll + @n® || () — ull?
+ 20, (1 = an) [ f (2n) = f(w)|[ |Syn — ull
+ 20, (1 — ap) (f(u) — u, Syn — u)
< [1 =20, + a® + 2kay, (1 — an)] [z — ul|* 4 20, ||2n — Tnet| |20 — ul
+ 03 llzn — zaal® + leal® + 2 lwn = ull el + @n® |1 f (@n) —
+ 20 (1 — ap) kO |2 — ul| || 2n — zn—1]|
+ 20 (1= an) k [lzn — ull llenll + 2an (1 — an) (f(u) = u, Syn — u)
< (1=a) llzn — ull® + @B + T,
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where My = sup {||z, — ul|}, M5 = sup {||w, — ul|}, &, = an[2 — @, — 2k(1 — ay)],

B =+ o ||f () — u||2 2(1 — an) kO My ||lzn — xp |
" 2 —ap —2k(1—ay) 2 —ap —2k(1—ap)
20, (1 — ) EMy |len|]  2(1 — ap) (f(u) —u, Sy, — u)
2—ap —2k(1— ay) 2 — alphay, — 2k (1 — ay,)

and
Yn = HenH2 +2Ms [len || + 20, My [|2n — 21| + ‘9712 |2n — xn—le .

By Lemma 2.5, we can get ||z, —u| — 0, so that x,, — u. Hence the proof is
complete. O

4. APPLICATIONS

In this section we prove four theorems in a Hilbert space by using Theorem 3.1
and Theorem 3.2. A mapping T : C — C is called strictly pseudocontractive if
there exists k with 0 < k£ < 1 such that

1Tz = Tyl* < |lo = ylI* + k(I = T)a — (I = Tyl

for every z,y € C. If k = 0, then T is nonexpansive. Put A = I — T, where
T :C — C is a strictly pseudocontractive mapping with k. Then A is (1 — k)/2-
inverse-strongly monotone. Actually, we have, for all z,y € C,

I(1 = Az — (I = A)yl* < [lz =y + kl| Az — Ay]|*.
On the other hand, since H is a real Hilbert space, we have
(1= Az — (I - Ay |? =||z - y||>+| Az — Ay|]® - 2(z — y, Az — Ay).

Hence we have
(x —y, Az — Ay) > 1 — k/2|| Az — Ay|?

Using Theorem 3.1 and Theorem 3.2, we prove strong convergence theorems for
finding a common fixed point of a nonexpansive mapping and a strictly pseudocon-
tractive mapping.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H, let S be
a nonexpansive mapping of C into itself and let T be a k-strictly pseudocontractive
mapping of C into itself such that F(S) N F(T) # (. Suppose 1 =x € C, {e,} is
regard as an error sequence and e, € H and > 2 | ||len|| < 400, and {z,} is given
by xp € C,

Wy, = Ty + Oy (xn - wn—l) ;

Yn = Po (I — My A) (wy, — €n) ;

Tyl = QpTy + (1 - an) Syn.

For every n = 1,2.... where {ay,} is a sequence in [0,1) and {\,} is a sequence
in [0,2a]. Choose 0,, € [0,1] and > "7, Oy ||z — zp_1]| < +oo. If {an} and {\,}
are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2a, limy,_yo0 vy, = 0,
Yoy =00, Yo |1 — an| < 00, and Y 7 | Ang1 — An| < 0o. Then {z,}
converges weakly to z € F(S)NVI(C,A).



TWO STRONG CONVERGENCE THEOREMS 371

Proof. Put A = I — T, then A is 1 — a/2-inverse strongly monotone. We have
F(T)=VI(C,A) and

Po (I — MA) (wy, —en) = (1= Ap) (W, — €n) + AT (wn, — €y) .
So by Theorem 3.1, we can have the desired result. O

Theorem 4.2. Let H be a real Hilbert space H. Let A be an « inverse-strongly
momnotone mapping of H into itself and let S be a nonexrpansive mapping of H into
itself such that F(S)N A™'0 # @. Suppose x1 = x € C,{e,} is regard as an error
sequence and e, € H and Y7 | |len|| < 400, and {z,} is given by zo € C,

Wy = Ty + en (an - xn—l) )
Yn = Po (I — MA) (w, —ep) ;
Tpt1 = nZn + (1 — ap) Syn.

For every n = 1,2..., where {ay,} is a sequence in [0,1) and {\,} is a sequence
in [0,2a]. Choose 0, € [0,1] and Y 02 Oy [|2n — Tn—1]| < +o00. If {an} and {A,}
are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2a, lim, o @, = 0,
Yoo, =00, Yo% a1 — o] < 0o, and Y o7 | Ant1 — An| < oo. Then {x,}
converges weakly to F(S) N A~10.

Proof. We have A='0 = VI(H, A), so putting Py = I, by theorem 3.1 we can get
the desired. 0

Theorem 4.3. Let C be a closed convexr subset of a real Hilbert space H. Let
f:C — C be a contraction mapping with coefficient k € (0,1),.S be a nonexpansive
mapping of C into itself and let T be a strictly pseudocontractive mapping of C
into itself with «, such that F(S) N F(T) # 0. Suppose {e,} is regard as an error
sequence and e, € H and Yo7, |len|| < +o00, and {z,} is given by zo, 21 € C,

Wy = Ty + Oy (xn - xn—l) ;
yn:PC(I_AnA)(wn_en);
Tnt+1 = anf (xn) + (1 - an) Syn

For every n = 1,2..., where {ay,} is a sequence in [0,1) and {\,} is a sequence
in [0,2a). Choose 0,, € [0,1] and > "7, Oy ||zn — zp—1] < +oo. If {an} and {\,}
are chosen so that A\, € la,b] for some a,b with 0 < a < b < 2a, limy, 00 ay, = 0,
Yoy =00, Yo7 omg1 —an| < 00, and Y 7 [Ant1 — An| < oo. Then {z,}
converges strongly to q € F(S) N F(T), which is the unique solution in the F(S) N
VI(C, A) to the following variational inequality ((I—f)q,q—p) < 0,p € F(S)NF(T).

Proof. Put A =1 —T, then A is 15%-inverse strongly monotone. We have F(T) =
VI(C,A) and

Po (I — MA) (wn —en) = (1= Ap) (wn —en) + AT (wy, —ep) .

So by Theorem 3.1, we can have the desired result. O

Theorem 4.4. Let H be a real Hilbert space H. Let f : C — C be a contraction
mapping with coefficient k € (0,1),S be a nonexpansive mapping of H into itself
and let A be a a-inverse strongly monotone mapping of H into itself, such that
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F(S)N A7'0 # (. Suppose {e,} is regard as an error sequence and e, € H and
Yoo llenll < 400, and {xy} is given by xo,x1 € C,

Wy, = Tp + Op (Jf'n - xn—l) )
Yn = Po (I — M A) (W — €n) ;
Tpy1 = anf (2n) + (1 — an) Syn.

For every n = 1,2.... where {ay,} is a sequence in [0,1) and {\,} is a sequence
in [0,2a). Choose 60, € [0,1] and > 72 O ||xn — Tp—1|| < 400 If {an} and {\,}
are chosen so that A\, € la,b] for some a,b with 0 < a < b < 2a, limy, 00 oy, = 0,
Yol =00, and Y 7 Jopyr — ol <00, Y07 [Anp1 — M| < 0o. Then {z,}
converges strongly to q € F(S) N F(T), which is the unique solution in the F(S) N
A710 to the following variational inequality (I — f)q,q —p) < 0,p € F(S)N A~10.

Proof. We can obtain VI(H, A) = A~10. Putting Py = I, by Theorem 3.1, we can
get the results. O

5. CONCLUSIONS

In this paper, we propose two different algorithms with eroor equence, and prove
the sequences converge to a common element of two sets under some proper con-
ditions. Then, we introduce some theorems under some mild conditions are still
convergent in applictions.
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