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have turned out to be a key property for enhancing the performance of the algo-
rithms, see [16, 17, 20, 27]. Nonmonotone line search methods for multiobjective
programs were first proposed by Mita et al. [20], where the authors established
global convergence of the steepest descent method and Newton methods. Other
related works [18] and [9,22] discuss the global convergence of the Newton method
and the local superlinear rate of convergence for the quasi-Newton method, respec-
tively. Due to the practical applicability of multiobjective optimization problems,
it is imperative to explore new convergent algorithms for this new and growing area
of research.

Motivated by the results described above, in this paper, building on the approach
of [9] and [22], we present a quasi-Newton method for multiobjective optimization
problems equipped with a nonmonotone line search strategy on Riemannian man-
ifolds. Under some reasonable conditions, we establish global convergence and the
superlinear local convergence rate results. Since a Riemannian manifold, in general,
does not have a linear structure, the usual techniques in the Euclidean space cannot
be applied and new techniques have to be developed. Our results are distinguished
from the following aspects: First, by utilizing a nonmonotone inexact line search
technique, we extend the Newton method presented in [9] and [22] from Rn to Rie-
mannian manifolds. Second, our results can be viewed as a generalization of results
of [1] from single objective functions to multiobjective functions on Riemannian
manifolds. Third, in this paper, we replace exponential mappings with retractions
and utilize parallel transports for isometric vector transport, respectively, enhancing
the efficiency of the method.

The remainder of our work is organized as follows: In Section 2, we provide
the necessary notations, definitions, and concepts on Riemannian manifolds. In
Section 4, we present the nonmonotone quasi-Newton method for multiobjective
optimization problems on Riemannian manifolds. In Section 5 and Section 6, un-
der certain reasonable conditions, we present global convergence results and demon-
strate the attainment of a superlinear local convergence rate for the proposed non-
monotone quasi-Newton method applied to multiobjective optimization problems
on Riemannian manifolds.

2. Preliminaries from Riemannian geometry

Throughout this paper, we assume that M is a finite-dimensional differentiable
manifold. We denote by TxM the tangent space of M at x with inner product 〈·, ·〉x
and induced norm ‖ · ‖x.

The tangent bundle ofM is denoted by TM =
⋃

x∈M TxM . We assume the reader
is familiar with the basic knowledge of Riemannian manifolds, see, e.g., [5, 13]. If
M is endowed with a Riemannian metric g, then M is a Riemannian manifold.
Given a piecewise smooth curve γ : [t0, t1] → M joining x to y, i.e., γ(t0) = x

and γ(t1) = y, we can define the length of γ by l(γ) =
∫ b
a ‖γ′(t)‖dt. Minimizing

this length functional over the set of all curves we obtain a Riemannian distance
d(x, y) which induces the original topology on M . Now, we lay out the notations and
definitions that are used throughout the paper. Let ∇ be the Levi-Civita connection
associated with M . A vector field V : M → TM along γ is said to be parallel if
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∇V
γ′ = 0. We say that γ is a geodesic when ∇γ′

γ′ = 0; in the case ‖γ′‖ = 1, γ is said

to be normalized.

Definition 2.1. Let γ : R → M be a geodesic and let P denote the parallel
transport along γ, which is defined by

Pγ(a),γ(b)(v) = V (γ(b)) ∀ a, b ∈ R, and v ∈ Tγ(a)M,

where V is the unique C∞ vector field satisfying ∇γ′(t)V = 0 and V (γ(a)) = v.

A Riemannian manifold is complete if for any x ∈ M , all geodesic emanating
from x are defined for all t ∈ R. By Hopf-Rinow theorem [25], any pair of points
x, y ∈ M can be joined by a minimal geodesic.

Definition 2.2. The exponential mapping expx : TxM → M is defined by expx v =
γv(1, x) for each v ∈ TxM , where γ(·) = γv(·, x) is the geodesic starting x with
velocity v, i.e., γ(0) = x and γ′(0) = v.

It is easy to see that expx tv = γv(t, x) for each real number t. The exponential
mapping expx provides a local parametrization of M via TxM .

Definition 2.3. Given x ∈ M , a retraction is a smooth mapping Rx : TxM → M
such that

(i) Rx(0x) = x for all x ∈ M , where 0x denotes the zero element of TxM ;
(ii) DRx(0x) = idTxM , where DRx denotes the derivative of Rx and id denotes

identity mapping.

It is well-known that exponential mapping is a special retraction and some re-
tractions are approximations of the exponential mapping.

Parallel transport is often too expensive to compute in a practical method, so we
can consider a more general vector transport (see, for example, [12, 24]), which is
built upon the retraction Rx.

Definition 2.4. A vector transport T : TM
⊕

TM → TM , (ηx, ξx) 7→ Tηxξx with
the associated retraction Rx is a smooth mapping such that, for all ηx in the domain
of Rx and ∀ ξx, ζx ∈ TxM ,

(i) Tηxξx ∈ TRx(ηx)M ,
(ii) T0xξx = ξx,
(iii) Tηx is a linear mapping.

Definition 2.5. A vector transport T is called an isometric vector transport de-
noted as TS , with an associated retraction Rx, if in addition to properties (i), (ii),
(iii) from Definition 2.4, it satisfies

(iv) g(TS(ηx)ξx, TS(ηx)ζx) = g(ξx, ζx).

In most practical cases, TS(ηx) exists for all ηx ∈ TxM , and we make this as-
sumption throughout the paper. Furthermore, let Tηx denote the derivative of the
retraction, i.e.,

Tηxξx = DRx(ηx)[ξx] =
d

dt
Rx(ηx + tξx)|t=0.
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Let L(TM,TM) denote fiber bundle with base space M × M such that the
fiber over (x, y) ∈ M × M is L(TxM,TyM), the set of all linear mappings from
TxM to TyM . From [5, Section 4], we recall that a transporter L on M is a
smooth section of the bundle L(TM, TM). Furthermore, L−1(x, y) = L(y, x) and
L(x, z) = L(y, z)L(x, y).

Remark 2.6. Given a retraction Rx, for any ηx, ξx ∈ TxM , the isometric vector
transport TS can be represented by

TS(ηx)ξx = L(x,Rx(ηx))(ξx).

In this paper, from the locking condition proposed by Huang [11], we require

Tηxξx = TS(ηx)ξx.
For the Stiefel manifold and the Grassman manifold, there always exist retractions
such that the above equality holds, see e.g., [11]. Furthermore, from the above
results, we have

‖ξx‖ = ‖TS(ηx)ξx‖ = ‖L(x,Rx(ηx))(ξx)‖ = ‖Tηxξx‖ = ‖DRx(ηx)[ξx]‖.

3. Auxillary results

In this paper, let I := {1, 2, . . . ,m}, Rm
+ =

{
x ∈ Rm

∣∣ xi ≥ 0, i ∈ I
}
and Rm

++ ={
x ∈ Rm

∣∣ xi > 0, i ∈ I
}
. For x, y ∈ Rm

+ , y � x (or x � y) means that y − x ∈ Rm
+

and y � x (or x ≺ y) means that y − x ∈ Rm
++.

In this paper, we consider the following problem:

min
x∈M

F (x),

where F : M → Rm, F (x) = (f1(x), f2(x), . . . , fm(x)) is a twice continuously
differentiable vectorial function in M . Recall that given a smooth function f defined
on M , the gradient of f at x, denoted by gradf(x), is defined as the unique element
of TxM , that satisfies

〈gradf(x), d〉 = Df(x)[d], ∀d ∈ TxM.

We denote the Riemannian jacobian of F by

gradF (x) := (gradf1(x), . . . , gradfm(x)),

and the image of the Riemannian jacobian of F at a point x ∈ M by

Im(gradF (x)) := gradF (x)v =
{
(〈gradf1(x), v〉, . . . , 〈gradfm(x), v〉)

∣∣ ∀v ∈ TxM
}
.

Definition 3.1. A point x ∈ M is a Pareto critical point of F if and only if

Im(gradF (x))
⋂

(−Rm
++) = ∅, x ∈ M.

Let x ∈ M be a point that is not Pareto critical. Then, there exists a direction
v ∈ TxM , such that

gradF (x)v = (〈gradf1(x), v〉, . . . , 〈gradfm(x), v〉) ∈ −Rm
++.

Clearly, ∀i = 1, . . . ,m, we have 〈gradfi(x), v〉 < 0.
In this case, v is called a descent direction for F at x ∈ M . In this paper, we call

v ∈ TxM the quasi-Newton’s direction if it is the optimal solution to the problem:
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min
v∈TxM

max
i=1,...,m

{〈gradfi(x), v〉+
1

2
〈Bi(x)v, v〉},(3.1)

where Bi(x) is some approximation of Hessfi(x) and Hessfi(x) is the Hessian matrix
of fi(x) for i = 1, . . . ,m. Note that Hessfi(x) is a matrix in TxM .

The solution and optimal value will be denoted by

τ(x) := min
v∈TxM

max
i=1,...,m

{〈gradfi(x), v〉+
1

2
〈Bi(x)v, v〉},(3.2)

v(x) := argmin
v∈TxM

max
i=1,...,m

{〈gradfi(x), v〉+
1

2
〈Bi(x)v, v〉}.(3.3)

If we assume that Bi(x), i = 1, . . . ,m are positive definite, then according to (3.2)
and (3.3), we have τ(x) ≥ 〈gradfi(x), v(x)〉 for all i = 1, . . . ,m and x ∈ M .

Lemma 3.2. Let Bi(x), i = 1, . . . ,m be symmetric positive definite for all x ∈ M
and consider τ as defined by (3.2). Then,

(i) For all x ∈ M , τ(x) ≤ 0;
(ii) The following conditions are equivalent:

(a) The point x ∈ M is not Pareto critical point;
(b) τ(x) < 0;
(c) v(x) 6= 0.
In particular, x ∈ M is a Pareto critical point if and only if τ(x) = 0.

Proof. For (i), observe that

τ(x) = min
v∈TxM

max
i=1,...,m

{〈gradfi(x), v〉+
1

2
〈Bi(x)v, v〉}

≤ max
i=1,...,m

{〈gradfi(x), 0〉+
1

2
〈Bi(x)0, 0〉} = 0.

For (ii), we prove (a) ⇒ (b). If x ∈ M is not a Pareto critical point, then there
exists a direction v̄ ∈ TxM such that

〈gradfi(x), v̄〉 < 0, ∀i = 1, . . . ,m,

and subsequently, we also have

max
i=1,...,m

{〈gradfi(x), v̄〉} < 0.

Note that lv̄ ∈ TxM for all l > 0. Thus,

τ(x) ≤ max
i=1,...,m

{〈gradfi(x), lv̄〉+
1

2
〈Bi(x)lv̄, lv̄〉}

= l max
i=1,...,m

{〈gradfi(x), v̄〉+
1

2
l〈Bi(x)v̄, v̄〉}.

Observing Bi(x), i = 1, . . . ,m are positive definite, we obtain 〈Bi(x)v̄, v̄〉 > 0 for all
v̄ 6= 0. When we take 0 < l < Γ where

Γ :=
−2maxi=1,...,m〈gradfi(x), v̄〉

maxi=1,...,m〈Bi(x)v̄, v̄〉
,
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we can conclude that τ(x) < 0.
(b) ⇒ (c). If v(x) = 0, we obtain that τ(x) = 0. Then, it follows from τ(x) < 0

that v(x) 6= 0.
(c) ⇒ (a). If v(x) 6= 0, then

〈gradfi(x), v(x)〉+
1

2
〈Bi(x)v(x), v(x)〉 < 0, ∀i = 1, . . . ,m.

Thus, 〈gradfi(x), v(x)〉 < 0, ∀i = 1, . . . ,m. In this case, x is not a Pareto critical
point of F . It is obvious to check that x ∈ M is a Pareto critical point if and only
if τ(x) = 0. □

In this paper, from the similar assumption in [15, Theorem 4.3] and [17, Theorem
4.4] on Riemannian manifolds, we assume the following assumptions hold.

(1) The functions Hessfi(x), i = 1, . . . ,m are uniformly continuous, i.e., for all
ϵ > 0, there exists δ > 0 such that for all x, y ∈ M , with d(x, y) < δ, we have

‖L(x, y)Hessfi(x)v −Hessfi(y)L(x, y)v‖ <
ϵ

2
‖v‖, ∀v ∈ TxM.(3.4)

(2) For all ϵ > 0, there exists δ > 0 such that for all x, y ∈ M , with d(x, y) < δ,
we have for all i = 1, . . . ,m,

‖Hessfi(y)L(x, y)v − L(x, y)Bi(x)v‖ <
ϵ

2
‖v‖, ∀v ∈ TxM.(3.5)

These assumptions also extend the assumption in [9, Lemma 4.1] and of [22, Section
4] from Rn to Riemannian manifolds.

Lemma 3.3. The function τ(x) is continuous.

Proof. We show that τ is continuous on a fixed arbitrarily chosen compact set
W ⊆ M . Due to Lemma 3.2 (i), for any x ∈ M, i = 1, . . . ,m,

1

2
〈Bi(x)v(x), v(x)〉 ≤ −〈gradfi(x), v(x)〉.(3.6)

Since F is twice continuously differentiable and Bi(x) is positive definite for all
x ∈ W and i = 1, . . . ,m, there exist K,L > 0 such that

K = max
i=1,...,m

{‖gradfi(x)‖, L} = min
i=1,...,m

〈Bi(x)e, e〉, ∀x ∈ M,

where e ∈ TxM and ‖e‖ = 1. Combining (3.6) and using Cauchy–Schwarz inequal-
ity, we get

1

2
L‖v(x)‖2 ≤ ‖gradfi(x)‖‖v(x)‖ ≤ K‖v(x)‖, ∀ x ∈ W and i = 1, . . . ,m.

Hence,

‖v(x)‖ ≤ 2(K/L), ∀x ∈ W.(3.7)

Now, define a family of functions {ϕx,i}x∈W , i = 1, . . . ,m, where

ϕx,i(z) := 〈gradfi(z), L(x, z)v(x)〉+
1

2
〈Bi(z)L(x, z)v(x), L(x, z)v(x)〉,

by adding and subtracting the term 1
2〈Hessfi(z)L(x, z)v(x), L(x, z)v(x)〉, we get

ϕx,i(z) = 〈gradfi(z), L(x, z)v(x)〉+
1

2
〈Hessfi(z)L(x, z)v(x), L(x, z)v(x)〉
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+
1

2
〈Bi(z)−Hessfi(z)L(x, z)v(x), L(x, z)v(x)〉.(3.8)

Since the first two terms of (3.8) are continuous, only the last term must be con-
sidered.

Define an open cover {B(z, δz)}z∈W with radius δz > 0. From (3.4), (3.5) and
L(w, z)L(z, w) = Id, we have for all z ∈ W and small ϵz > 0, there exists some
δz > 0 such that for all w ∈ B(z, δz),

‖L(w, z)[Bi(w)L(z, w)v]−Hessfi(z)v‖ ≤ ϵz
2
‖v‖, ∀v ∈ TzM,(3.9)

and

‖L(w, z)[Hessfi(w)L(z, w)v]−Hessfi(z)v‖ ≤ ϵz
2
‖v‖, ∀v ∈ TzM.(3.10)

Regarding the last term of (3.8), for w1, w2 ∈ B(z, δz) with d(w1, w2) < δ, where
δ > 0 is small enough, by (3.7), (3.8) and (3.9),

|1
2
〈(Bi(w1)−Hessfi(w1))L(x,w1)v(x), L(x,w1)v(x)〉

−1

2
〈(Bi(w2)−Hessfi(w2))L(x,w2)v(x), L(x,w2)v(x)〉|

≤ 1

2
‖v(x)‖‖(Bi(w1)−Hessfi(w1))L(x,w1)v(x)‖

+
1

2
‖v(x)‖‖(Bi(w2)−Hessfi(w2))L(x,w2)v(x)‖

≤ 1

2
‖v(x)‖[‖L(w1, z)[Bi(w1)L(x,w1)v(x)]−Hessfi(z)L(x, z)v(x)‖

+‖Hessfi(z)L(x, z)v(x)− L(w1, z)[Hessfi(w1)L(x,w1)v(x)]‖
+‖L(w2, z)[Bi(w2)L(x,w1)v(x)]−Hessfi(z)L(x, z)v(x)‖
+‖Hessfi(z)L(x, z)v(x)− L(w2, z)[Hessfi(w2)L(x,w2)v(x)]‖]

≤ 1

2
‖v(x)‖[ϵz

2
‖v(x)‖+ ϵz

2
‖v(x)‖+ ϵz

2
‖v(x)‖+ ϵz

2
‖v(x)‖] = ϵz‖v(x)‖2

≤ 4ϵz
K2

L2
.

Thus, ϕx,i is uniformly continuous for all x ∈ W and i = 1, . . . ,m, and so ϕx =
maxi=1,...,m ϕx,i is also uniformly continuous. Take ϵ > 0, there exists δ > 0 such
that for all y1, y2 ∈ W,d(y1, y2) < δ implies |ϕx(y1) − ϕx(y2)| < ϵ for all x ∈ W .
Thus, for d(y1, y2) < δ, we have

τ(y2) ≤ max
i=1,...,m

{〈gradfi(y2), L(y1, y2)v(y1)〉

+
1

2
〈Bi(y2)L(y1, y2)v(y1), L(y1, y2)v(y1)〉}

= ϕy1(y2) ≤ ϕy1(y1) + |ϕy1(y2)− ϕy1(y1)| < τ(y1) + ϵ.

Hence, τ(y2)−τ(y1) < ϵ. Similarly, we can obtain |τ(y2)−τ(y1)| < ϵ, which implies
the continuity of τ . □



316 X. B. LI AND M. KRISHAN LAL

4. Nonmonotone quasi-Newton’s algorithm

Now, based on the above results, we introduce the nonmonotone quasi-Newton’s
algorithm for multiobjective optimization on Riemannian manifolds, which extends
the quasi-Newton method in [9, 18, 22] from Rn to Riemannian manifolds.

Algorithm 1. (Nonmonotone quasi-Newton’s algorithm for multiobjective opti-
mization on Riemannian manifolds)

• choose σ ∈ (0, 1), β ∈ (0, 1), Q0 = 1, 0 ≤ ηmin ≤ ηmax ≤ 1, η0 ∈ [ηmin, ηmax]
and ϵ > 0. Let x0 ∈ M,C0

i = fi(x0) and symmetric positive definite matrix
Bi(x0) = I in Tx0M for i = 1, . . . ,m;

• set k = 0;
• while τ(xk) > −ϵ do, where

v(xk) = argminv∈Txk
M max

i=1,...,m
{〈gradfi(xk), v〉+

1

2
〈Bi(xk)v, v〉},

τ(xk) = min
v∈Txk

M
max

i=1,...,m
{〈gradfi(xk), v〉+

1

2
〈Bi(xk)v, v〉};

• set xk+1 = Rxk
αkv(xk), where αk is determined by the nonmonotone in-

exact line search rule: for all i = 1, . . . ,m, choose αk as the largest one in
{1, β, β2, . . .} such that

fi(xk+1) ≤ Ck
i + σαkτ(xk),

where the cost update is defined as

Ck+1
i :=

ηkQkC
k
i + fi(xk+1)

Qk+1
,

and Qk+1 := ηkQk+1. Generate ηk+1 by an adaptive formula (see [27]) and
Bi(xk+1) by using the BFGS quasi-Newton algorithm or different variants
of quasi-Newton algorithms (see [12, 14,23]);

• k = k + 1;

• end while

5. Convergence analysis

In this section, under some assumptions, we prove that every accumulation point
of the sequence produced by Algorithm 1 is a Pareto critical point of F .

Similar to the proof of in [20, Lemma 3.2], we obtain the the following result.

Lemma 5.1. Let {xk} ⊆ M be a sequence generated by Algorithm 1. Then, for
any i = 1, . . . ,m,

fi(xk) ≤ Ck
i .

Moreover, if xk is not a Pareto critical point of F , then there exists αk satisfying
the nonmonotone inexact conditions of the line search procedure such that

fi(xk+1) ≤ Ck
i + σαkτ(xk).(5.1)
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Proof. From Lemma 3.2, we obtain fi(xk) ≤ Ck
i , ∀i = 1, . . . ,m. Now, we show that

there exists αk satisfying the nonmonotone conditions. Define gki (t) := fi(Rxk
tv(xk)).

By Taylor’s theorem, we have for all i = 1, . . . ,m,

gki (t) = gki (0) + t
dgki (0)

dt
+ o(t).

That is, for all i = 1, . . . ,m,

fi(Rxk
αkv(xk)) = fi(xk) + αk〈gradfi(xk), DRxk

0v(xk)[v(xk)]〉+ o(αk)

= fi(xk) + αk〈gradfi(xk), v(xk)〉+ o(αk).

Since 〈gradfi(xk), v(xk)〉 ≤ τ(xk) and fi(xk) ≤ Ck
i , i = 1, . . . ,m, we have

fi(Rxk
αkv(xk)) ≤ Ck

i + αkτ(xk) + o(αk)

= Ck
i + αkστ(xk) + αk[(1− σ)τ(xk) +

o(αk)

αk
].

Observing that xk is not a Pareto critical point, τ(xk) < 0, and thus for αk > 0
small enough, we obtain (5.1) holds. □
Lemma 5.2. Suppose that Algorithm 1 is employed and gradfi(x), i = 1, . . . ,m

satisfying the following Lipschitz condition with Lipschitz constant L̃, that is,

‖L(x, xk)gradfi(x)− gradfi(xk)‖ ≤ L̃d(x, xk),

for all x on the segment connecting xk and Rxk
αkβ

−1v(xk) if αk ≤ β. Then

αk ≥ min{β, 2β(1− σ)

L̃

|τ(xk)|
‖v(xk)‖2

}.(5.2)

Proof. If αk ≥ β, then (5.2) trivially holds. If αk < β, then from (5.1) and
Lemma 5.1, we have for all i = 1, . . . ,m,

fi(Rxk
αkβ

−1v(xk)) > Ck
i + σαkβ

−1τ(xk)

≥ fi(xk) + σαkβ
−1τ(xk).(5.3)

Defining ϕk
i (t) := fi(Rxk

tv(xk)), since gradfi(x), i = 1, . . . ,m are Lipschitz contin-
uous, we have

ϕk
i (αkβ

−1)− ϕk
i (0) = αkβ

−1dϕ
k
i (0)

dt
+

∫ αkβ
−1

0
[
dϕk

i (t)

dt
− dϕk

i (0)

dt
]dt.

Clearly,

dϕk
i (t)

dt
= 〈gradfi(Rxk

tv(xk)), DRxk
tv(xk)[v(xk)]〉.

This implies that for all i = 1, . . . ,m,

fi(Rxk
αkβ

−1v(xk))− fi(xk)

= αkβ
−1〈gradfi(xk), DRxk

0v(xk)[v(xk)]〉

+

∫ αk
β

0
[〈gradfi(Rxk

tv(xk)), DRxk
tv(xk)[v(xk)]〉

−〈gradfi(xk), DRxk
tv(xk)[v(xk)]〉]dt
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= αkβ
−1〈gradfi(xk), v(xk)〉

+

∫ αk
β

0
〈gradfi(Rxk

tv(xk))

−L(xk, Rxk
tv(xk))gradfi(xk), L(xk, Rxk

tv(xk))v(xk)〉dt
≤ αkβ

−1〈gradfi(xk), v(xk)〉

+

∫ αk
β

0
‖gradfi(Rxk

tv(xk))

−L(xk, Rxk
tv(xk))gradfi(xk)‖‖L(xk, Rxk

tv(xk))v(xk)‖dt

≤ αkβ
−1〈gradfi(xk), v(xk)〉+

∫ αk
β

0
tL̃‖v(xk)‖2dt

≤ αkβ
−1τ(xk) +

L̃

2
[αkβ

−1]2‖v(xk)‖2.

This together with (5.3) imply (5.2). □

Theorem 5.3. Suppose that fi(x) ∀i = 1, . . . ,m are bounded from below and
ηmax < 1, then there exists c > 0 such that

|τ(xk)| ≥ c‖v(xk)‖2, k ∈ N.

Moreover, assume that the assumptions of Lemma 5.2 hold. Then, every limit point
of the sequence {xk} generalized by Algorithm 1 is a Pareto critical point of F .

Proof. We show that for all i = 1, . . . ,m,

fi(xk+1) ≤ Ck
i − ρ|τ(xk)|,(5.4)

where ρ = min{σβ, (2σβ(1− σ)c)/L̃}. The following two cases are possible.
Case 1. If αk ≥ β, then by (5.1), it follows that for all i = 1, . . . ,m,

fi(xk+1) ≤ Ck
i + σαkτ(xk)

= Ck
i − σαk|τ(xk)|

≤ Ck
i − σβ|τ(xk)|,

which implies (5.4).
Case 2. If αk < β, then by (5.2),

αk ≥ 2β(1− σ)

L̃

|τ(xk)|
‖v(xk)‖2

,

and by (5.1), we have for all i = 1, . . . ,m,

fi(xk+1) ≤ Ck
i − 2σβ(1− σ)

L̃

|τ(xk)|2

‖v(xk)‖2
.

Since |τ(xk)| ≥ c‖v(xk)‖2, this implies that for all i = 1, . . . ,m,

fi(xk+1) ≤ Ck
i − 2σβ(1− σ)c

L̃
|τ(xk)|,
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which implies (5.4). Combining the cost update relation defined in Algorithm 1 and
(5.4), we have for all i = 1, . . . ,m,

Ck+1
i =

ηkQkC
k
i + fi(xk+1)

Qk+1

≤ ηkQkC
k
i + Ck

i − ρ|τ(xk)|
Qk+1

= Ck
i − ρ|τ(xk)|

Qk+1
.(5.5)

Since fi(x) is bounded from below and fi(xk) ≤ Ck
i for all k ∈ N and i = 1, . . . ,m,

we conclude that Ck
i is bounded from below. It follows from (5.5) that

∞∑
k=0

|τ(xk)|
Qk+1

=
∞∑
k=0

1

ρ
(Ck

i − Ck+1
i ) < +∞.(5.6)

Suppose that x∗ is a limit point of {xk}. Assume that the subsequence {xk}k∈K
converges to x∗, we establish τ(x∗) = 0. By contradiction, assume that τ(x∗) < 0,
which implies that there exists ϵ > 0, δ > 0 such that for all k ∈ K, d(xk, x

∗) ≤ δ,
we have |τ(xk)| ≥ ϵ > 0. This implies that

∞∑
k=0

|τ(xk)|
Qk+1

≥
∑

k∈{k∈K|d(xk,x∗)≤δ}

ϵ

Qk+1
.(5.7)

Since ηmax < 1, from [27, Theorem 2.2] , we have

Qk+1 ≤
1

1− ηmax
.(5.8)

Consequently, following (5.8), we have
∞∑
k=0

|τ(xk)|
Qk+1

≥
∑

k∈{k∈K|d(xk,x∗)≤δ}

(1− ηmax)ϵ = +∞.

This contradicts to (5.6). Thus, we have τ(x∗) = 0. From Lemma 3.2, we obtain
x∗ is a Pareto critical point of F . □
Remark 5.4. If M = Rn and Rxη = x + η, then Theorem 5.3 can reduce to
Theorem 4.2 of [18]. Moreover, Theorem 5.3 can be regarded as a generalization
of Section 5 of [1] from single objective functions to multiobjective functions on
Riemannian manifolds.

6. Local superlinear convergence

In this section, under some assumptions, we prove that the sequence {xk} gener-
ated by Algorithm 1 converges to a Pareto critical point of F superlinearly, which
generates the results in [9, 18, 22] from Rn to Riemannian manifolds.

Observe that (3.1) is equivalent to

min g(t, v) = t

s.t. 〈gradfi(x), v〉+
1

2
〈Bi(x)[v], v〉 − t ≤ 0, ∀i = 1, . . . ,m.
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The Lagrangian of this problem is

L((t, s), λ) = t+

m∑
i=1

λi(〈gradfi(x), v〉+
1

2
〈Bi(x)[v], v〉 − t).

Direct calculation of the KKT conditions yields

m∑
i=1

λi = 1,

and
m∑
i=1

λi(gradfi(x) +Bi(x)[v]) = 0.

This implies that

m∑
i=1

λiBi(x)[v] = −
m∑
i=1

λigradfi(x).(6.1)

Similar to the proof of lemmas 4.2 and 4.3 in [22], we have the following result.

Lemma 6.1. Assume that the sequence {xk} is generated by Algorithm 1 and
a > 0 such that for all i = 1, . . . ,m and k ∈ N , we have

〈Bi(xk)z, z〉 ≥ a‖z‖2, ∀z ∈ Txk
M.

Then, we have

(a) |τ(xk)| ≥ a
2‖v(xk)‖

2;

(b) |τ(xk)| < 1
2a‖

∑m
i=1 λigradfi(xk)‖2, for all λi ≥ 0, i = 1, . . . ,m with∑m

i=1 λi = 1.

In this section, similar to the assumptions in theorem 4.4 of [17] on Riemannian
manifolds, we assume the following assumptions hold,

lim
k→∞

‖Hessfi(x∗)L(xk, x∗)v(xk)− L(xk, x
∗)[Bi(xk)v(xk)‖]

‖v(xk)‖
= 0,(6.2)

where x∗ is a Pareto critical point of F , {xk} is the sequence generated by Algorithm 1.
From the similar proof of proposition 4.4 in [18], we have the the following result.

Lemma 6.2. Assume that the sequence {xk} is generated by Algorithm 1 and
a > 0 such that for all i = 1, . . . ,m and k ∈ N , we have

〈Bi(xk)z, z〉 ≥ a‖z‖2, ∀z ∈ Txk
M.

Then, we have

lim
k→∞

τ(xk) = 0,(6.3)

lim
k→∞

‖v(xk)‖ = 0.(6.4)

In order to prove the superlinear convergence, we need the following results.
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Lemma 6.3. [24] Let S ⊂ M be an open set and the retraction Rx : TxM →
M,x ∈ S has equicontinuous derivatives at x in the sense that

∀ϵ > 0, ∃δ > 0, ∀x ∈ S : ‖v‖ < δ ⇒ ‖Pγ[x,Rx(v)]DRx(0)−DRx(v)‖ < ϵ.

Then, for any ϵ > 0, there exists an ϵ′ > 0 such that, for all x ∈ S and v, w ∈ TxM
with ‖v‖, ‖w‖ < ϵ′,

(1− ϵ)‖w − v‖ ≤ d(Rx(v), Rx(w)) ≤ (1 + ϵ)‖w − v‖.

Theorem 6.4. Let {xk} be a sequence generated by Algorithm 1. Assume that
a > 0 such that for all k ∈ N and i = 1, . . . ,m,

〈Bi(xk)z, z〉 ≥ a‖z‖2, ∀z ∈ Txk
M.(6.5)

Also, assume that

D

dt
DRxk

(tz)[z] = 0, ∀z ∈ Txk
M,

where D/dt denotes the covariant derivative along the curve t → Rx(tz), and all
the assumptions of Theorem 5.3 and Lemma 6.3 hold. Then, for sufficiently large k,
αk = 1, and the sequence {xk} converges to a Pareto critical point x∗, superlinearly.

Proof. First, by Lemma 6.2, we have

lim
k→∞

τ(xk) = 0,(6.6)

and

lim
k→∞

v(xk) = 0.(6.7)

By Theorem 5.3, we have limk→∞ xk = x∗, which together with (6.7) and the con-
tinuity of Rxk

(·) imply that limk→∞ d(Rxk
tv(xk), x

∗) = 0, where t ∈ [0, 1]. Then,
(6.2) implies that

〈L(xk, x∗)[Bi(xk)v(xk)]−Hessfi(x
∗)L(xk, x

∗)v(xk), L(xk, x
∗)v(xk)〉

≤ ‖L(xk, x∗)[Bi(xk)v(xk)]−Hessfi(x
∗)L(xk, x

∗)v(xk)‖‖v(xk)‖
= o(‖v(xk)‖2).(6.8)

Second, we show that for k sufficiently large, we have αk = 1.
Defining ϕk

i (t) := fi(Rxk
tv(xk)), t ∈ [0, 1]. Clearly,

d2ϕk
i (t)

dt2
= 〈Hessfi(Rxk

tv(xk))DRxk
tv(xk)[v(xk)], DRxk

tv(xk)[v(xk)]〉

+ 〈gradfi(Rxk
tv(xk)),

D

dt
DRxk

(tv(xk))[v(xk)]〉.

Since D
dtDRxk

(tv(xk))[v(xk)] = 0, we have for all i = 1, . . . ,m,

d2ϕk
i (t)

dt2
= 〈Hessfi(Rxk

tv(xk))DRxk
tv(xk)[v(xk)], DRxk

tv(xk)[v(xk)]〉

= 〈Hessfi(Rxk
tv(xk))L(xk, Rxk

tv(xk))v(xk), L(xk, Rxk
tv(xk))v(xk)〉.
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By mean value theorem, (3.4), (6.2) and (6.8), we have for k sufficiently large,
σ ∈ (0, 1) and ϵ > 0,

ϕk
i (1)− ϕk

i (0)

=
dϕk

i (0)

dt
(1− 0) +

∫ 1

0
(1− t)

d2ϕk
i (t)

dt2
dt

= 〈gradfi(xk), v(xk)〉

+

∫ 1

0
(1− t)〈Hessfi(Rxk

tv(xk))L(xk, Rxk
tv(xk))v(xk), L(xk, Rxk

tv(xk))v(xk)〉dt

= 〈gradfi(xk), v(xk)〉+
1

2
〈Bi(xk)v(xk), v(xk)〉

+

∫ 1

0
(1− t)[〈Hessfi(Rxk

tv(xk))L(xk, Rxk
tv(xk))v(xk), L(xk, Rxk

tv(xk))v(xk)〉

− 〈Hessfi(x∗)L(xk, x∗)v(xk), L(xk, x∗)v(xk)〉]dt

+
1

2
〈Hessfi(x∗)L(xk, x∗)v(xk)− L(xk, x

∗)[Bi(xk)v(xk)], L(xk, x
∗)v(xk)〉

≤ [〈gradfi(xk), v(xk)〉+
1

2
〈Bi(xk)v(xk), v(xk)〉] +

1

2
ϵ‖v(xk)‖2 + o(‖v(xk)‖2)

≤ στ(xk).

That is, for all i = 1, . . . ,m,

fi(Rxk
v(xk)) ≤ fi(xk) + στ(xk) ≤ Ck

i + στ(xk).

Therefore, for k sufficiently large, αk = 1.
Based on the above results, there exists k0 ∈ N such that for all k ≥ k0,

xk+1 = Rxk
v(xk).

Define q(xk+1) :=
∑m

i=1 λi(xk)gradfi(xk+1), where λi(xk), i = 1, . . . ,m are defined
by the KKT condition in Section 3 of [22]. Note that λi(xk) ≥ 0, i = 1, . . . ,m and∑m

i=1 λi(xk) = 1. By Lemma 6.1(b), we have

τ(xk+1) ≤
1

2a
‖q(xk+1)‖2.(6.9)

Next, define

G(xk) :=

m∑
i=1

λi(xk)fi(xk),(6.10)

and

H(xk) :=
m∑
i=1

λi(xk)Bi(xk).

We have q(xk+1) = gradG(xk+1) and from (6.1), we have

H(xk)[v(xk)] = −gradG(xk).(6.11)
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By (3.4), for all ϵ > 0, there exists δ > 0 such that for all x, y ∈ M with d(x, y) < δ,
it is easily shown that

‖L(x, y)[HessG(x)L(y, x)v]−HessG(y)v‖ ≤ ϵ

2
‖v‖, ∀v ∈ TyM,(6.12)

and by (3.5), it is easily shown that for all ϵ > 0, and for all k ≥ k0, we have for all
i = 1, . . . ,m,

‖H(xk)v(xk)−HessG(xk)v(xk)‖ <
ϵ

2
‖v(xk)‖.(6.13)

Thus, using (6.12), (6.13) and Taylor’s theorem, for k sufficiently large, we have

‖L(Rxk
v(xk), xk)gradG(Rxk

v(xk))− (gradG(xk) +H(xk)v(xk))‖
≤ ‖L(Rxk

v(xk), xk)gradG(Rxk
v(xk))− gradG(xk)−HessG(xk)v(xk)‖

+ ‖HessG(xk)v(xk)−H(xk)v(xk)‖

=

∫ 1

0
[L(Rxk

tv(xk), xk)[HessG(Rxk
tv(xk))DRxk

tv(xk)[v(xk)]]

−HessG(xk)v(xk)]dt+ ‖HessG(xk)v(xk)−H(xk)v(xk)‖

=

∫ 1

0
[L(Rxk

tv(xk), xk)[HessG(Rxk
tv(xk))L(xk, Rxk

tv(xk))v(xk)]

−HessG(xk)v(xk)]dt+ ‖HessG(xk)v(xk)−H(xk)v(xk)‖

≤ ϵ

2
‖v(xk)‖+

ϵ

2
‖v(xk)‖

= ϵ‖v(xk)‖.

Since q(xk+1) = gradG(xk+1), from (6.11) and (6.12), we have

‖q(xk+1)‖ = ‖gradG(xk+1)‖
= ‖gradG(Rxk

v(xk))‖
= ‖L(Rxk

v(xk), xk)gradG(Rxk
v(xk))‖

≤ ϵ‖v(xk)‖.(6.14)

This, together with (6.9) imply that

|τ(xk+1)| <
ϵ2

2a
‖v(xk)‖2.

By Lemma 6.1(a), we have

a

2
‖v(xk+1)‖2 <

ϵ2

2a
‖v(xk)‖2.

Thus, we obtain

‖v(xk+1)‖ <
ϵ

a
‖v(xk)‖,(6.15)

and then

‖v(xk+1)‖ < (ϵ/a)k+1−k0‖v(xk0)‖.(6.16)
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For all k > l ≥ k0 and k0 sufficiently large, from Lemma 6.3, let ϵ = 1, we obtain

d(xk, xl) ≤
k−1∑
i=l

d(xi+1, xi)

=
k−1∑
i=l

d(Rxi(v(xi)), Rxi0) ≤
k−1∑
i=l

2‖v(xi)‖

≤
k−1∑
i=l

2(ϵ/a)i−k0‖v(xk0)‖ ≤ 2‖v(xk0)‖
∞∑
i=0

(ϵ/a)i = 2
‖v(xk0)‖
1− ϵ/a

.(6.17)

For k0 sufficiently large, we obtain ‖v(xk0)‖ < ϵ
2(1−ϵ/a) , and so

‖v(xk0)‖
1− ϵ/a

<
ϵ(1− ϵ/a)

2(1− ϵ/a)
=

ϵ

2
.

Therefore, for all ϵ > 0 and k0 sufficiently large, d(xk, xl) < ϵ. Hence, {xk} is a
Cauchy sequence and there exists x∗ ∈ M such that limk→∞ xk = x∗. Since τ(x)
is continuous by Lemma 3.3, we have limk→∞ τ(xk) = τ(x∗). Hence, x∗ is a Pareto
critical point of F .

Now, we establish the superlinear convergence rate of {xk}. Choose t > 0 and
define ϵ̃ = (at/1 + 2t), note that ϵ̃/a < 1. By (6.17), for k0 sufficiently large and

k > k0, d(xk, xk0) ≤
2∥v(xk0

)∥
1−ϵ̃/a . Letting k → ∞, we get d(x∗, xk0) ≤

2∥v(xk0
)∥

1−ϵ̃/a . Note

that for all k ≥ k0, we have

d(x∗, xl+1) ≤
2‖v(xl+1)‖
1− ϵ̃/a

≤ 2ϵ̃/a

1− ϵ̃/a
‖v(xl)‖.(6.18)

By the triangular inequality and Lemma 6.3, let ϵ = 1
2 , we have

d(x∗, xl) ≥ d(xl+1, xl)− d(x∗, xl+1)

= d(Rxl+1
(v(xl)), Rxl

(0))− d(x∗, xl+1)

≥ 1

2
‖v(xl)‖ −

2ϵ̃/a

1− ϵ̃/a
‖v(xl)‖

=
1− 3ϵ̃/a

2(1− ϵ̃/a)
‖v(xl)‖.(6.19)

By (6.18) and (6.19), we have

d(x∗, xl+1) ≤
2ϵ̃/a

1− 3ϵ̃/a
d(x∗, xl).(6.20)

Then, the sequence {xk} converges to x∗ superlinearly. □

Remark 6.5. If M = Rn and Rxη = x + η, then Theorem 6.4 can reduce to
[9, Theorem 5.1] and to [22, Theorem 7] by using nonmonotone inexact search
technique.

Next, we apply the nonmonotone quasi-Newton method to Stiefel manifolds and
sphere Sn−1, we also obtain the local convergence rate of the proposed method.
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Example 6.6. Let St(p, n)(p ≤ n) denote the set of all n×p orthonormal matrices,
that is

St(p, n)(p ≤ n) :=
{
X ∈ Rn×p

∣∣ XTX = Ip
}
,

where Ip denotes the p×p identity matrix. The set St(p, n) is called Stiefel manifold.
The tangent space at x and the associated orthogonal projection are given by

TXSt(p, n) =
{
Z ∈ Rn×p

∣∣ XTZ + ZTX = 0
}
,

PXξX = (I −XXT )ξX +Xskew(XT ξX),

where skew(A) = A−AT

2 . The canonical product is given by

g(Z1, Z2) = 〈Z1, Z2〉 = tr(ZT
1 Z2), ∀Z1, Z2 ∈ TXSt(p, n).

From [1], we use the retraction given by

RX(ηX) = qf(X + ηX),

where qf(A) denotes the Q factor of decomposition of A ∈ Rn×p
∗ as A = QR, where

Rn×p
∗ denotes the set of all nonsingular n × p matrixes, Q ∈ St(p, n), and R is an

upper triangular n× p matrix with strictly positive diagonal elements. Moreover,

TηX ξX = PRX(ηX)ξX = (I − Y TY )ξX + Y skew(Y T ξX),

where Y := RX(ηX).
Consider the multiobjective optimization F : M → Rm, F (X) = (f1(X), f2(X),

. . . , fm(X)), where

fi(X) = −‖diag(XTAiX)‖2, i = 1, 2, . . . ,m,

where Ai = iIn×n, i = 1, 2, . . . ,m, and ‖diag(X)‖2 returns the sum of the squared
diagonal elements of X. This problem has applications in independent component
analysis for blind source separation. From [26, Section 2], the gradient of fi is

gradfi(X) = PXgradf̄i(X), i = 1, 2, . . . ,m,

where

f̄i : Rn×p → R : X 7→ f̄i(X) = −‖diag(XTAiX)‖2, i = 1, 2, . . . ,m.

Moreover,

Hessfi(X)[ξX ] = PX(Dgradf̄i(X)[ξX ])− ξXsym(XT gradf̄i(X)), i = 1, 2, . . . ,m,

where sym(U) = U+UT

2 . By [1], if the columns of X are eigenvectors of A, we get X
as a Pareto critical point of f . We choose Hessfi(X) = Bi(X) for i = 1, 2, . . . ,m,
ηk = 1

2 , we can check all the assumptions of Theorem 6.4 hold. Assume that x∗

is a Pareto critical point F , using Theorem 6.4, the sequence {Xk} generated by
Algorithm 1 converges to x∗, superlinearly.

Example 6.7. On the unit sphere Sn−1 considered as a Riemannian manifold of
Rn, the inner product inherited from Rn is given by

〈ξ, η〉 = ξT η,

and the projections are given by

Pxξx = (I − xxT )ξx.
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From [1, Section 4], we obtain the retraction on Sn−1 is

Tx(S
n−1) =

{
ξ ∈ Rn

∣∣ xT ξ = 0
}
.

and

Tx(ηx) =
x+ ηx
‖x+ ηx‖

, ∀ηx ∈ TxS
n−1,

Moreover,

Tηxξx = (I − (x+ ηx)(x+ ηx)
T

‖x+ ηx‖2
)ξx,

and

T −1
ηx y = (I −

(xk + ηx)x
T
k

xTk (xk + ηx)
)y, ∀y ∈ Txk+1

Sn−1.

Consider the multiobjective optimization F : M → Rm, F (x) = (f1(x), f2(x), . . . ,
fm(x)), where

fi(x) = xTAix, i = 1, 2, . . . ,m,

where Ai = iIn×n, i = 1, 2, . . . ,m. By Section 4 in [1], we get

gradfi(x) = 2Px(Aix) = 2(Aix− xxTAix), i = 1, 2, . . . ,m,

where Px is the orthogonal projector onto TxS
n−1, i.e.,

Pxz = z − xxT z.

Moreover, the affine connection is given by

∇ηξ = Px(Dξ(x)η), ∀ξ ∈ Sn−1, η ∈ TxS
n−1,

and so

Hessfi(x)[η] = ∇ηgradfi(x) = 2Px(Dgradfi(x)[η]) = 2Px(Aiη − ηxTAix).

If we choose Hessfi(xk) = Bi(xk) for i = 1, 2, . . . ,m, ηk = 1
2 , we can check all the

assumptions of Theorem 6.4 hold. Assume that x∗ is a Pareto critical point of F ,
using Theorem 6.4, the sequence {xk} generated by Algorithm 1 converges to x∗,
superlinearly.
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