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converges to a point x∗ ∈ EP (f, C). In recent years, the various modified extra-
gradient methods for solving the problem (1.1) involved the Lipschitz-type contin-
uous bifunction have been intensively studied and extended to Hilbert spaces; see,
e.g., [3, 9–13,15,16,22,25].

The methods in the above mentioned literature are proposed for solving the equi-
libirum problems with Lipschitz-type continuous bifunctions. However, when the
Lipschitz constants c1 and c2 may be unknown or hard to compute, the methods can
be applied. For overcoming the difficulty, some authors investigated the equilibrium
problems with non-Lipschitz-type continuous bifunctions. For example, Santos and
Scheimberg [23] proposed the following inexact projected subgradient method :

(1.3)


x0 ∈ C,

vk ∈ ∂f(xk, ·)(xk),

xk+1 = PC

(
xk −

βk
max{ρk, ∥vk∥}

vk

)
,

where ∂f(x, ·)(x) is the subdiffential at x, {βk} ⊂ (0, 1) satisfies the conditions that∑∞
k=0 βk = ∞ and

∑∞
k=0 β

2
k < ∞, and f is a pseudomonotone and non-Lipschitz-

type continuous bifunction. The authors proved that the sequence {xk} generate by
(1.3) converges weakly to the solution of the problem (1.1). On other methods for
solving the equilibrium problems with non-Lipschitz-type continuous bifunctions,
the readers may refer to [2, 8].

Another interesting problem is to find a common element of set of solutions of
the equilibrium problem and set of fixed points of a nonlinear mapping. Anh [1]
proposed the following iterative algorithm: x0 ∈ C and

(1.4)


yn = argmin{λnf(xn, y) +

1

2
∥y − xn∥2 : y ∈ C},

tn = argmin{λnf(yn, y) +
1

2
∥y − xn∥2 : y ∈ C},

xn+1 = αnx0 + (1− αn)Ttn,

where T : C → C is a nonexpansive mapping and {αn}, {λn} ⊂ (0, 1). The author
proved the strong convergence of {xn} generated by (1.4) provided limn→∞ ∥xn+1−
xn∥ = 0 and some other assumptions on {αn} and {λn}. For the more methods on
equilibrium problems and fixed points problems, the interested readers many refer
to [24].

In this paper, inspired by the method (1.3) of Santos and Scheimberg [23], we
introduce a method for solving a non-monotone and non-Lipschitz equilibrium prob-
lem over the set of fixed point problem of a quasi-nonexpansive non-self mapping
in Hilbert space. Under some mixed conditions, the weak convergence is proved
for the proposed algorithm. Finally, a numerical example is given to illustrate our
algorithm.

2. Preliminaries and notation

Let C be a nonempty closed convex subset of a real Hilbert space H. For a
sequence {xk} ⊂ C, we use xk ⇀ x to denote that {xk} converges weakly to x as
k → ∞. Let T : C → H be a mapping and Fix(T ) denote the set of fixed points
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of T . Let I be the identity mapping on H. The mapping T : C → H is said to be
nonexpansive mapping if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C

and quasi-nonexpansive if Fix(T ) ̸= ∅ and

∥Tx− y∥ ≤ ∥x− y∥, ∀x ∈ C, ∀y ∈ Fix(T ).

The mapping T is said to be demiclosed demiclosed at 0 if xk ⇀ x with {xk} ⊂ C
and x ∈ H and (I − T )xk → 0 implies that x = Tx. It is known that Fix(T ) is
closed and convex if T : C → H is a quasi-nonexpansive mapping and Fix(T ) ̸= ∅;
see [4].

Let g : C × C → R be a convex function. For each x ∈ C, by ∂g(x) we denote
the subdifferential of the function g(·) at x, i.e.,

∂g(x) = {w ∈ H : g(y)− g(x) ≥ ⟨y − x,w⟩, ∀y ∈ C}.
If ∂g(·) at x ∈ C is nonempty, g is said to be subdifferentiable at x. If ∂g(·) at
every x ∈ C is nonempty, g is said to be subdifferentiable on C.

For any x ∈ H, there exists a unique element z ∈ C, denoted by PC(x), such
that ∥z − x∥ = infy∈C ∥y − x∥. The mapping PC : H → C is called a metric
projection from H onto C. It is known that PC is nonexpansive. The following
lemma characterizes the part properties of PC .

Lemma 2.1 ([7]). Let C be a nonempty closed convex subset of a real Hilbert space
H. For every x ∈ H, the following hold:

(i) z = PC(x) if and only if ⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C;
(ii) ∥PC(x)− y∥2 ≤ ∥x− y∥2 − ∥x− PC(x)∥2, ∀y ∈ C.

Lemma 2.2 ([20]). Let {ak} and {bk} be two sequences of nonnegative real numbers
satisfying

ak+1 ≤ ak + bk, ∀k ≥ 1,

where
∑

bk < ∞. Then limk→∞ ak exists.

Lemma 2.3 ([5]). Let D be a nonempty set of H and {xk} be a sequence in H such
that the following two conditions hold:

(i) for all x ∈ D, limk→∞ ∥xk − x∥ exists;
(ii) every sequential weak cluster point of {xk} is in D.

Then the sequence {xk} converges weakly to a point in D.

3. Main results

In this section, let C be a nonempty closed convex subset of a real Hilbert space
H. Let f : C × C → R be a bifunction satisfying f(x, x) = 0 for all x ∈ C and
T : C → H be a quasi-nonexpansive mapping. We consider the following problem:
find a point x̄ ∈ Fix(T ) such that

(Γ) f(x̄, y) ≥ 0, ∀y ∈ Fix(T ).

Denote the set of solutions of the above problem by Ω.
Throughout this section, we assume that the following conditions hold:
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(A1) Λ ̸= ∅, where Λ = Fix(T ) ∩ {z ∈ C : f(y, z) ≤ 0, ∀y ∈ C}.
(A2) I − T is demiclosed at 0.

(A3) for each x ∈ C, f(x, ·) is convex and subdifferentialbe on C, and the operator
∂f(x, ·)(x) is bounded on the bounded subsets of C.

(A4) f(·, y) is weakly upper semicontinuous on C for each y ∈ C.

We present the following algorithm to approximate a solution of the problem (Γ).

Algorithm 3.1. Initialization Choose the initial point x1 ∈ C and the se-
quences {βk} ⊂ [0, β′] with β′ < 1, {γk} ⊂ (0, 1) and {αk} ⊂ (0,+∞) satisfying

(3.1)

∞∑
k=1

αkγk = ∞ and

∞∑
k=1

α2
k < ∞.

Set C0 = C and k = 1.

Step 1: For each k ≥ 1 and the current itertate xk, compute

zk = βkxk + (1− βk)Txk

and construct the subset

Ck = {z ∈ C : ∥zk − z∥ ≤ ∥xk − z∥}.
Step 2: Compute wk ∈ ∂f(xk, ·)(xk) and set

ηk = max{1, ∥wk∥}.
Compute yk = PCk−1−xk

(
−αk

ηk
wk

)
,

xk+1 = PCk
(xk + γkyk).

Step 3: If wk = 0, xk = Txk holds or yk = 0, xk = Txk holds, then the algorithm
stops and xk ∈ Ω; otherwise, set k = k + 1 and go to Step 1.

The following remark shows that the stopping criterion of Algorithm 3.1 can well
work.

Remark 3.1 Assume that yk = 0 and xk = Txk for some k ∈ N. For any y ∈
Fix(T ), since y − xk ∈ Ck−1 − xk which will be obtained by the following Lemma
3.1, by the definition of yk and Lemma 2.1 (i) we have

(3.2) −αk

ηk
⟨wk, xk − y⟩ ≥ 0

and hence ⟨wk, y − xk⟩ ≥ 0. On the other hand, by the definition of wk we have

(3.3) ⟨wk, y − xk⟩ ≤ f(xk, y)− f(xk, xk) = f(xk, y), ∀y ∈ C.

From (3.2) and (3.3) it follows f(xk, y) ≥ 0 for all y ∈ Fix(T ), which still holds
when wk = 0. Furthermore, if xk = Txk it follows that xk ∈ Fix(T ). Therefore,
xk ∈ Ω.

Assume that the stopping criterion of Algorithm 3.1 does not hold and hence
{xk} is an infinite sequence.
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Lemma 3.1. For each n ∈ N, the set Ck is nonempty closed and convex, and hence
the sequences {xk} and {yk} are well defined.

Proof. From the definition Ck it is obvious that Ck is closed and convex for each
n ∈ N. For any y ∈ Fix(T ), since T is quasi-nonexpansive, we have

∥zk − y∥ ≤ βk∥xk − y∥+ (1− βk)∥Txk − y∥ ≤ ∥xk − y∥,
which implies that y ∈ Ck. It follows that

(3.2) Fix(T ) ⊂ Ck, ∀k ∈ N.
Therefore, the sequences {xk} and {yk} are well defined. This completes the proof.

□
Lemma 3.2. The limit of {∥xk − z∥2} exists for any z ∈ Λ.

Proof. By the definition of yk we have

(3.3)

yk = PCk−1−xk

(
−αk

ηk
wk

)
= argminv∈Ck−1−xk

1

2

∥∥∥∥v − (−αk

ηk
wk)

∥∥∥∥2
= argminv∈Ck−1−xk

{
αk

ηk
⟨wk, v⟩+

1

2

(
∥v∥2 +

α2
k

η2k
∥wk∥2

)}
= argminv∈Ck−1−xk

{
αk

ηk
⟨wk, v⟩+

∥v∥2

2

}
, ∀k ∈ N.

Note that from xk ∈ Ck−1 it follows that 0 ∈ Ck−1 − xk for each k ∈ N. So by (3.3)
we get

(3.4)
αk

ηk
⟨wk, yk⟩+

∥yk∥2

2
≤ 0, ∀k ∈ N.

From (3.4) it follows that

∥yk∥2 ≤ −2αk

ηk
⟨wk, yk⟩ ≤

2αk

ηk
∥wk∥∥yk∥

≤ 2αk∥yk∥,
which implies that

(3.5) ∥yk∥ ≤ 2αk, ∀k ∈ N.
Let uk = xk + γkyk for each k ∈ N. By (3.5) it is easy to obtain that

(3.6) ∥uk − xk∥ = γk∥yk∥ ≤ 2αk, ∀k ∈ N.
For any y ∈ Fix(T ), since y − xk ∈ Ck−1 − xk, by Lemma 2.1(i) we have〈

−αk

ηk
wk − yk, y − xk − yk

〉
≤ 0

and hence

(3.7) ⟨yk, xk − y⟩ ≤ −∥yk∥2 +
αk

ηk
⟨wk, y − xk⟩ −

αk

ηk
⟨wk, yk⟩, ∀k ∈ N.



284 YITONG SHI, ZIQI ZHU, AND YUEYAO ZHANG

By (3.2), (3.5)-(3.7) we get

(3.8)

∥xk+1 − y∥2 = ∥PCk
uk − PCk

y∥2 ≤ ∥uk − y∥2

= ∥uk − xk∥2 + ∥xk − y∥2 + 2⟨uk − xk, xk − y⟩
= ∥uk − xk∥2 + ∥xk − y∥2 + 2γk⟨yk, xk − y⟩

≤ 4α2
k + ∥xk − y∥2 + 2γk

[
αk

ηk
⟨wk, y − xk⟩ −

αk

ηk
⟨wk, yk⟩

]
≤ 4α2

k + ∥xk − y∥2 + 2γkαk

ηk
⟨wk, y − xk⟩+

2γkαk

ηk
∥wk∥∥yk∥

≤ 4α2
k + ∥xk − y∥2 + 2γkαk

ηk
⟨wk, y − xk⟩+ 4γkα

2
k

≤ ∥xk − y∥2 + 2γkαk

ηk
⟨wk, y − xk⟩+ 8α2

k, ∀k ∈ N.

Note that for any z ∈ Λ, we have f(xk, z) ≤ 0. Then by the definition of wk we get

⟨wk, z − xk⟩ ≤ f(xk, z)− f(xk, xk) = f(xk, z) ≤ 0.

Substituting this inequality into (3.8) with y = z ∈ Λ we have

(3.9) ∥xk+1 − z∥2 ≤ ∥xk − z∥2 + 8α2
k, ∀k ∈ N.

Applying Lemma 2.2 and (3.1) to (3.9), we obtain that the limit of {∥xk − z∥}
exists. This completes the proof. □
Lemma 3.3. It holds that limk→∞ ∥zk − xk∥ = 0.

Proof. From Lemma 3.2 it follows that {xk} is bounded. Fix y ∈ Λ. Let M > 0
such that supk∈N ∥xk − y∥ < M . By Lemma 2.1 (ii) and (3.6) we have

∥xk+1 − y∥2 = ∥PCk
uk − y∥2

≤ ∥uk − y∥2 − ∥xk+1 − uk∥2

= ∥uk − xk∥2 + ∥xk − y∥2 + 2⟨uk − xk, xk − y⟩ − ∥xk+1 − uk∥2

≤ 4α2
k + ∥xk − y∥2 + 4Mαk − ∥xk+1 − uk∥2

and hence

(3.10) ∥xk+1 − uk∥2 ≤ 4α2
k + 4Mαk + ∥xk − y∥2 − ∥xk+1 − y∥2, ∀k ∈ N.

Note that the limit of {∥xk − y∥2} exists by Lemma 3.2. Letting k → ∞ in (3.10) ,
by (3.1) we get

(3.11) lim
k→∞

∥xk+1 − uk∥ = 0.

Furthermore, from (3.6) and (3.11) it follows that

(3.12) ∥xk+1−xk∥ ≤ ∥xk+1−uk∥+∥uk−xk∥ ≤ ∥xk+1−uk∥+2αk → 0, as k → ∞.

Since xk+1 ∈ Ck, by (3.12) we have

(3.13) ∥zk − xk+1∥ ≤ ∥xk − xk+1∥ → 0, as k → ∞.

Combining ( 3.12) and (3.13) we obtain

(3.14) ∥zk − xk∥ ≤ ∥zk − xk+1∥+ ∥xk − xk+1∥ → 0, as k → ∞.
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This completes the proof. □
Theorem 3.4. The sequence {xk} converges weakly to a point x̄ in Ω.

Proof. For any y ∈ Fix(T ), by (3.8) we have

(3.15)
2αkγk
ηk

⟨wk, xk − y⟩ ≤ ∥xk − y∥2 − ∥xk+1 − y∥2 + 8α2
k, ∀k ∈ N.

Adding with k from 1 to l in (3.15), we get

(3.16)

2

l∑
k=1

αkγk
ηk

⟨wk, xk − y⟩ ≤ ∥x1 − y∥2 − ∥xl+1 − y∥2 + 8
l∑

k=1

α2
k

≤ ∥x1 − y∥2 + 8

l∑
k=1

α2
k.

Letting l → ∞ in (3.16), by (3.1) we obtain

(3.17) 2
∞∑
k=1

αkγk
ηk

⟨wk, xk − y⟩ < ∞.

Since {xk} is bounded, from (A3) it holds that {wk} is bounded, which leads to
{ηk} is also bounded. So there exists M ′ > 0 such that supk≥1 ηk < M ′. It follows
that

∞∑
k=1

αkγk
ηk

≥
∞∑
k=1

αkγk
M ′ ,

which together with (3.1) implies that
∞∑
k=1

αkγk
ηk

= ∞.

This together with (3.17) leads to

(3.18) lim inf
k→∞

⟨wk, xk − y⟩ ≤ 0.

By the definition of wk we have −f(xk, y) = f(xk, xk) − f(xk, y) ≤ ⟨wk, xk − y⟩.
This fact with (3.18) leads to

(3.19) lim sup
k→∞

f(xk, y) ≥ 0.

Since {xk} is bounded, there exists a subsequence xkj of {xk} such that xkj ⇀ x̄
with j → ∞. Without loss of generality, we may assume that

lim sup
k→∞

f(xk, y) = lim
j→∞

f(xkj , y).

Since f(·, y) is weakly upper simicontinuous on C, by (3.19) we get

(3.20) f(x̄, y) ≥ lim sup
j→∞

f(xkj , y) = lim
j→∞

f(xkj , y) = lim sup
k→∞

f(xk, y) ≥ 0.

Next we prove that x̄ ∈ Fix(T ). By the definition of zk and (3.14) we have

(3.21) ∥xkj − Txkj∥ =
1

1− βkj
∥xkj − zkj∥ ≤ 1

1− β′ ∥xkj − zkj∥ → 0, as j → ∞.



286 YITONG SHI, ZIQI ZHU, AND YUEYAO ZHANG

From (3.21) and (A2) we get x̄ ∈ Fix(T ), which together with the arbitrariness of
y ∈ Fix(T ) and (3.21) implies that x̄ ∈ Ω.

Finally, we prove that {xk} converges weakly to x̄. In fact, by the argument
above, we have shown that every sequential weak cluster point of {xk} is in Ω.
Hence by Lemma 3.2 and Lemma 2.3 with D = Ω we obtain that {xk} converges
weakly to x̄. This completes the proof. □

4. Applications

In this section, we apply the result in last section to a variational inequality prob-
lem on the set of fixed points of a quasi-nonexpansive mapping and to a constrained
optimization problem, respectively.

The first application Let A : C → H be a mapping and T : C → H be a quasi-
nonexpansive mapping. We consider the following problem: find a point x̄ ∈ Fix(T )
such that

(4.1) ⟨Ax̄, y − x̄⟩ ≥ 0, ∀y ∈ Fix(T ).

Let f(x, y) = ⟨Ax, y − x⟩ for all x, y ∈ C. We see that ∂f(x, ·)(x) = Ax for all
x ∈ C and the set Ω is the set of solutions of the problem (4.1), where Ω is defined
as in Section 3. So by Theorem 3.4 we get the following result. Since the proof
method is similar with the one of Theorem 3.4 with f(x, y) = ⟨Ax, y − x⟩, we only
give the result without the proof process.

Theorem 4.1. Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Let A : C → H be a mapping and T : C → H be a quasi-nonexpansive
mapping. Let the sequences {γk} ⊂ (0, 1) and {αk} ⊂ (0,+∞) satisfy

∞∑
k=1

αkγk = ∞ and

∞∑
k=1

α2
k < ∞.

Set C0 = C and let {xk} be the sequence generated by the manner: x1 ∈ C and

(4.2)

yk = PCk−1−xk

(
− αk

max{1, ∥Axk∥}
Axk

)
,

xk+1 = PCk
(xk + γkyk),

If the following conditions hold:

(B1) {z ∈ C : ⟨Ay, z − y⟩ ≤ 0, ∀y ∈ C} ∩ Fix(T ) ̸= ∅;
(B2) I − T is demiclosed at 0;

(B3) if {xk} is bounded, then {Axk} is also bounded;

(B4) A is weakly upper semicontinuous on C,

then the sequence {xk} generated by (4.3) converges weakly to a solution of the
problem (4.1).

The second application Let h : C → R be a convex and differentiable function
and g : C → R be a convex function. Considering the constrained optimization
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problem:

(4.3)
min
x∈C

h(x)

s.t. g(x) ≤ 0.

Define a mapping Sg : C → H by

(4.4) Sgx =

x− g(x)

∥u∥2
u, if g(x) > 0,

x, otherwise,

where u is any vector of ∂g(x). Let T = 2Sg − I. It follows that T is a quasi-
nonexpansive mapping and Fix(T ) = {x ∈ C : g(x) ≤ 0} (see [26]). Solving the
problem (4.3) is equivalent to find a solution of the problem (4.1) with A = ∇h and
T = 2Sg − I. So Theorem 4.1 can be applied to the problem (4.3) with A = ∇h
and T = 2Sg − I.

5. Numerical experiment

In this section, we present a numerical example to illustrate the convergence of
our algorithm. The code is written by Matlab 2016b and is performed on a PC
Intel(R) Core (TM) i5-4260U CPU, 2.00 GHz, Ram 4.00 GB.

Example 5.1. Let H = R and C = [0,+∞) and f(x, y) = y(x − y)2 for all
x, y ∈ C. Clearly, f is not pseudomonotone on C. We show that f is not Lipschitz-
type continuous by a contradiction. Assume that there exist two positive constants
c1 and c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1(x− y)2 − c2(y − z)2, ∀x, y, z ∈ C.

In particular, if z = 2y = 2x, it follows that

2y − 2 ≤ c2, ∀y ∈ C.

Clearly, it is impossible. So f is not Lipschitz-type continuous.
Let Tx = (12I − PD)x for all x ∈ C, where D = [0, 1] and Ix = x for all x ∈ H.

Obviously, T : C → H is quasi-nonexpansive and Fix(T ) = {0}. It is easy to see
that the solution set Ω = {0} for the problem (Γ) with the bifunction f and T
defined in this example. Find that

(1) {0} = Fix(T ) ∩ {z ∈ C : f(y, z) ≤ 0, ∀y ∈ C};
(2) I − T is demiclosed at 0;
(3) since {0} = ∂f(x, ·)(x) for each x ∈ C, the operator ∂f(x, ·)(x) is bounded

on the bounded subsets of C;
(4) f(·, y) is continuous on C for each y ∈ C.

It follows that the conditions (A1)-(A4) holds and so Algorithm 3.1 can be applied
to this example.

Since wk = 0, ηk = 1, and 0 ∈ Ck−1−xk, when performing Algorithm 3.1 for this
example, we have yk = PCk−1−xk

(
−αk

ηk
wk

)
= PCk−1−xk

0 = 0,

xk+1 = PCk
(xk + γkyk) = PCk

xk.
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By the definition of T , we have Txk = (12I − PD)xk hence

zk = βkxk + (1− βk)Txk =

(
1

2
(1 + βk)I − (1− βk)PD

)
xk.

Finally, the sequence {xk} generated by Algorithm 3.1 for this example is{
Ck = {x ∈ C : |zk − z| ≤ |xk − z|} ,
xk+1 = PCk

xk.

We take αk = 1
2k and stop the algorithm when xk < 10−5. For this example, by

(3.8) we have

(5.1) xk+1 ≤ xk + 8α2
k, ∀k ∈ N.

Fig 1 gives the computed results on {xk+1} and {xk + 8α2
k} by Algorithm 3.1

with the different initial point x1 and the sequence {βk}. From the curves in Fig 1
we can see the convergence of {xk} and the relation (5.1).

Figure 1. Computed results by Algorithm 3.1

6. Conclusion

In this paper, we have proposed new projection algorithm for solving an equilib-
rium problem over fixed point set of a quasi-nonexpansive mapping in real Hilbert
spaces. We proved the weak convergence of the proposed algorithm. A numerical
experiment is given to illustrate the effectiveness of our algorithm.
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