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some interesting theoretical and practical studies of this method. In [13], the authors
have presented a variational formula that defines Pareto’s critical points as a solu-

tion to the min-max problem (min fp(v) +
1

2
‖v‖2 where fp(v) = max

j=1,q

(
∇fj(x)T v

)
).

It should also be stressed that the min-max solution is automatically a descent di-
rection. Here, the length of the descent step is determined by Armijo rule, and that
makes the values of the objective function decrease at each iteration. In [10,11], an
equivalent formulation for finding the descent direction is defined, which consists of
solving the following problem:

(1.1) argmin
v∈V

‖v‖

where

V =
{
v ∈ Rn : v =

q∑
j=1

αj∇fj(x0), αj ∈]0, 1[, ∀j = 1, q,

q∑
j=1

αj = 1
}
. This

formulation has the same role as in the min-max formulation [13] and can be used
whether the gradient vectors are linearly independent or not [11]. In [15,20,29], an
extension of the Armijo rule was elaborated and contains the classic Armijo rule as
a particular case.

Among these extensions of the Armijo rule, we have a modified version which
is used for single-objective optimization [15, 29]. Contrary to the initial version,
the modified version makes it easier to research the length of the descent step and
update the parameter Lk at each iteration. However, it is rare to find works in the
literature on the use of this modified version for the resolution of multiobjective
optimization problems. Furthermore, the projected gradient method has been used
with the initial version for single and multiobjective optimization, and good results
have been obtained. That is why we have proposed in this paper that combining
projected gradient and modified Armijo rule will be a perfect method in terms of
convergence and complexity. The aims of this paper are:

• first, offer a good method for approximating the Pareto front of convex
multiobjective optimization problems with boundary constraints;

• then, extend the Armijo rule to the multiple objective case;
• and finally, highlight the theoretical and numerical performance of the mod-
ified version of the Armijo rule.

The proposed method is an aggregation method that uses the weighted sum function
to solve a multiobjective optimization problem. These weights αj , j = 1, q are the
solutions of the quadratic program given by equation 1.1. The corresponding vector
v ∈ V is the direction in which all objective functions are heading. Under the
assumption that objective functions are differentiable and convex, convergence to a
Pareto optimal point is established. In addition, we have also presented numerical
experiments on some convex multiobjective test problems, showing the practical
advantages of our approach.
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The remainder of this work is organized as follows. In Section 2, we will introduce
the preliminary, which is composed of the basic concepts of multiobjective optimiza-
tion, the projected gradient method, and the modified Armijo rule. In Section 3,
we will talk about the main results of this work, which are theoretical convergence,
results from numerical simulations, and a performance study. The conclusion is in
the last section.

2. Preliminary

2.1. Notations and basic concepts.
Let us introduce some necessary notations and recall a couple of results. We will
denote K ⊂ Rn a closed, convex and pointed subset (i.e, K∩ (−K) = {0}) cone, K∗

as the positive polar cone of K, that is,

K∗ :=
{
y ∈ K : 〈y, x〉 ≥ 0, ∀x ∈ K

}
.

Let Ω ⊆ Rn be a closed and convex set. Multiobjective optimization problems,
minimization cases, are formulated mathematically by :

(2.1) min
x∈Ω

f(x) = (f1(x), f2(x), . . . , fq(x))
T

where fj : Rn → R, j = 1, 2, . . . , q, is an objective function and Ω =
{
x ∈ Rn : li ≤

xi ≤ ui, i = 1, . . . , n
}
is a feasible region. x = (x1, x2, . . . , xn) is a decision vector

and Y = f(Ω) is the objective space. For elements x, y ∈ Rn, we present the vector
inequalities as:

x = y ⇐⇒ xi = yi, ∀i = 1, 2, . . . , n,
x ≧ y ⇐⇒ xi ⩾ yi, ∀i = 1, 2, . . . , n,
x ⩾ y ⇐⇒ xi ⩾ yi, and x 6= y
x > y ⇐⇒ xi > yi, ∀i = 1, 2, . . . , n,

Definition 2.1. A point x∗∈ Ω is called Pareto optimal solution of problem (2.1)
if there is no other point x ∈ Ω such that

f(x) ≤ f(x∗) and f(x) 6= f(x∗).

In this case, f(x∗) =
(
f1(x

∗), f2(x
∗), . . . , fq(x

∗)
)
is said a non-dominated point.

That allows us to put Ps = {x∗ ∈ Ω : f(x∗)} as non-dominated Pareto optimal
solutions set and Pf = {f(x) : x ∈ Ps} Pareto front.

Definition 2.2. A point x∗ ∈ Ω is called weakly Pareto optimal solution of problem
(2.1) if there is no x ∈ Ω for which

f(x) < f(x∗).

Noting weakly Pareto optimal solutions by Ps we have Ps ⊆ Ps.
The weighted sum is a technique that transforms multiobjective optimization

problem (2.1) into a single objective optimization problem. It proceeds by an as-
signing some preference weights to each objective function. Then, if αj ∈]0, 1[, j =

1, . . . , q are preference weights we have

q∑
j=1

αj = 1. That allows us to transform the
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problem (2.1) as follows :

(Pα) min
x∈Ω

ψ(x) =

q∑
j=1

αjfj(x)

The theoretical results of the optimality of the solutions of problem (Pα) are pre-
sented in the work of R. T. Marler et al. [27]. When the functions fj are continuous,
differentiable, convex and locally lipschitzian, the following proposition gives a nec-
essary and sufficient condition for Pareto optimality.

Proposition 2.3 (See [10]). Let x∗ ∈ Ω be a Pareto optimal solution of the problem
(2.1). Then, there exists some non-negative scalars α1, α2, . . . , αq ∈]0, 1[ such as
q∑

j=1

αj = 1 and

q∑
j=1

αj∇fj(x∗) = 0.

Definition 2.4 (See [11]). Let x∗ ∈ Ω, ∀j = 1, 2, . . . , q, fj , be smooth function, and
∇fj(x∗) its gradient at the point x∗. x∗ is said Pareto-stationary if there exists a
convex combination of gradients ∇fj(x∗) which is equal to zero. In other words

∃αj ∈]0, 1[, j = 1, 2, . . . , q with

q∑
j=1

αj = 1 such as

q∑
j=1

αj∇fj(x∗) = 0.

In the rest of this work, we will consider the following quadratic problem for each
x ∈ Rn [28] :

(2.2)

min
α

∥∥∥∥∥∥
q∑

j=1

αj∇fj(x∗)

∥∥∥∥∥∥
2

2

s.t:


αj ∈]0, 1[; ∀j = 1, 2, . . . , q
q∑

j=1

αj = 1.

Now by defining the function ϑ : Rn → Rn, x 7→
q∑

j=1

α∗
j∇fj(x), where α∗ = (α∗

j ) is

a global minimum of problem (2.2). Note that if x∗ satisfies Proposition 2.3 then,
ϑ(x) = 0; otherwise −ϑ(x) is a descent direction to all objective functions.

We present by this lemma the quasi-Fejér convergence.

Lemma 2.5 (See [22], proposition 1). Let T ⊂ Rn be a non-empty set and {ak}k ⊂
Rn a sequence. Let us assume that, there exists {ϵk}, a summable positive sequence,

such as ‖ak+1 − z‖2 ≤ ‖ak − z‖2 + ϵk, ∀z ∈ T , ∀k. Then,

(i) {ak}k is bounded;
(ii) the sequence {ak}k converge to a∗, with a∗ an accumulation point of {ak}k

belonging to T .

The following propositions are extracted from Lemma 1.1 and 1.2 of [33].
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Proposition 2.6 (See [33]). Let C be a non-empty and convex set. ∀x, y ∈ K and
∀z ∈ C, the following propositions are satisfied :

(i) 〈x− PC(x), z − PC(x)〉 ≤ 0;
(ii) 〈z − y, z − PC(y)〉 ≥ ‖z − PC(y)‖.

2.2. Projected gradient and modified Armijo’s rule.
Let us recall that the projected gradient method is an iterative, which consists to de-
termine a feasible descent direction. That is defined by : δαk = PΩ (xk − ξk∇αψ(xk))−
xk ∀k = 1, 2, . . ., where PΩ is a orthogonal projector operator defined from Rn to
Ω. The iterative step of this method is given by :

δαk = arg min
δα∈Ωk

1

2
‖δα‖22 + ξk∇αψ(xk)

T δα, ∀k = 1, 2, . . . ,

xk+1 = xk + βkδ
α
k , ∀k = 1, 2, . . . ,(2.3)

where Ωk = {u− xk : u ∈ Ω}, {ξk}k ∈ R∗
++ (where R∗

++ is the set of large positive
reals) and βk ∈ (0, 1]. Like that

δαk = arg min
δα∈Ωk

1

2
‖δα‖22 + ξk∇αψ(xk)

T δα(2.4)

= arg min
δα∈Ωk

1

2
‖δα‖22 + ξk∇αψ(xk)

T δα +
1

2
ξ2k ‖∇αψ(xk)‖2

= arg min
δα∈Ωk

1

2

∥∥δα + ξk∇αψ(xk)
T
∥∥2
2

= PΩk
(−ξk∇αψ(xk)).(2.5)

For θαk = δαk +xk, we have θ
α
k = PΩk

(−ξk∇αψ(xk))+xk and equation (2.5) becomes
θαk = PΩ(xk − ξk∇αψ(xk)) and equation (2.3) becomes xk+1 = xk + βk (θ

α
k − xk)

where βk is the step length which can be determined by inexact linear research.
Now, by positing ωα : Rn → R, the function indicating the optimal value of

problem (2.4) and δα : Rn → Rn, the one indicating the optimal solution, we have a
characterization of the stationarity using the terms ωα(.) and δα(.) is given by the
following proposition.

Proposition 2.7 (See [13,17]). For all x ∈ Ω we have:

(a) ωα(x) ≤ 0;
(b) The following conditions are equivalents :

(i) x is not a critical point,
(ii) ωα(x) < 0;
(iii) δα(x) 6= 0;

(c) the function ωα : Ω → R is continuous.

The inexact linear research method that we use in this work is a modify ver-
sion of Armijo’s rule. The original version is to define a βk, the largest β ∈{
Sk, λSk, λ

2Sk, . . .
}
such as fj(xk + β(θαk − xk)) ≤ fj(xk) + σβ 〈∇αψ(xk), θ

α
k − xk〉

where Sk = −
∇ψ(xk)(θαk − xk)

L
∥∥θαk − xk

∥∥2 , λ ∈ (0, 1), σ ∈ (0,
1

2
), L > 0.

The modified version of Armijo’s rule defined by Shi and al. [30] allows to deter-
mine the step length more easily than the original version. This new version can be
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presented as follows [30]:
We determine the scalars Sk, λ, Lk, µ, σ, where

(2.6) βαk = max
{
Sk, λSk, λ

2Sk, . . .
}

and

Sk = −
∇ψ(xk)(θαk − xk)

Lk

∥∥θαk − xk
∥∥2 , λ ∈ (0, 1), σ ∈ (0,

1

2
), Lk > 0, µ ∈ [0, 2[ ,

such as

(2.7) fj(xk+β(θ
α
k−xk)) ≤ fj(xk)+σβ

[
〈∇αψ(xk), θ

α
k − xk〉+

1

2
βµLk ‖θαk − xk‖22

]
.

We notice that in the modified version of Armijo’s rule, the parameter Lk is updated
at each iteration. This parameter may be approached by te Lipschitz constant M∗

of the objective function gradient ∇αψ(xk). By posing νk−1 = xk − xk−1 and
ωk−1 = ∇αψ(xk)−∇αψ(xk−1), we can obtain an estimation of parameter Lk is the
following :

(2.8) Lk = max

{
‖ωk−i‖
‖νk−i‖

, i = 1, 2, 3, . . . ,M

}
,

where M is a fixed integer.

In the following proposition, we show that the new line search is well difined.

Proposition 2.8. Let fj : Ω → R be continuously differentiable function. Let us
suppose that the gradient function ∇fj , j ∈ {1, 2, . . . , q} is Lipschitz continuous. Let
Lk > 0 be an approximative value of the Lipschitz constant. If δαk = θαk − xk is a
descent direction of fj for all j ∈ {1, 2, . . . , q} at xk, then there is an βk > 0 in the
set

{
Sk, λSk, λ

2Sk, . . .
}
such that the following inequality holds:

fj(xk + βδαk ) ≤ fj(xk) + σβ

(
∇αψ(xk)

T δαk +
1

2
βµLk ‖δαk ‖

2
2

)
.

where λ ∈ (0, 1), σ ∈ (0,
1

2
), L > 0 are given constant scalars.

Proof In fact, we only need to prove that a step length βk is obtained in a finite
number of steps.
Then, if this is not true, for all sufficiently large positive integers m, we have:

fj(xk + λmSkδ
α
k ) > fj(xk) + σλmSk

(
∇αψ(xk)

T δαk +
1

2
λmSkµLk ‖δαk ‖

2
2

)
.

By the mean-theorem, there is a wk ∈ (0, 1) such that

λmSk∇αψ(xk + wkλ
mSkδ

α
k )

T δαk > σλmSk

(
∇αψ(xk)

T δαk +
1

2
λmSkµLk ‖δαk ‖

2
2

)
.

Thus,

∇αψ(xk + wkλ
mSkδ

α
k )

T δαk −∇αψ(xk)
T δαk > σ

(
∇αψ(xk)

T δαk −∇αψ(xk)
T δαk
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+
1

2
λmSkµLk ‖δαk ‖

2
2

)
.

⇒
(
∇αψ(xk + wkλ

mSkδ
α
k )−∇αψ(xk)

)T

δαk > (1− σ)∇αψ(xk)
T δαk +

1

2
λmSkµσLk ∥δαk ∥22 .

As, m→ +∞, it is obtained that

(1− σ)∇αψ(xk)
T δαk ≤ 0.

From σ ∈ (0,
1

2
), it follows that ∇αψ(xk)

T δαk ≥ 0. This contradicts the fact that δαk
is a descent direction. □

3. Main result

In this section, we present the algorithm of our method, the theoretical results
proving its convergence and numerical simulation results. We also present a dis-
cussion on the study of digital performance through performance indices such as
convergence and distribution.

3.1. Method.

In the following subsections, we will consider ψ(xk) =

q∑
j=1

αj∇fj(x∗) the function

whose values αj are obtained by solving problem (2.2). We define ∇αψ(xk) as the
gradient of the function ψ(xk) for a given vector α.

There are five main steps for our method. These steps are presented as follows :

Algorithm 1 Armijo’s rule with Projected Gradient (APG)

Data : σ ∈
(
0,

1

2

)
, λ ∈ (0, 1), µ ∈ [0, 2[, L0 > 0, x0 ∈ Ω, 0 ≤ ϵ∗ ≪ 1,

ξ = 1,
k=1
Step 1: define the αj values by solving equation (2.2);
Step 2: define the descent direction δαk which satisfies equation (2.5);

if ‖xk − PΩ [xk −∇αψ(xk)]‖ ≤ ϵ∗ stop
else go to Step 3;

Step 3: estimate the parameter Lk given by equation (2.8)
and go to Step 4;

Step 4: find the descent step βk by using equation (2.6)
and go to Step 5;

Step 5: put xk+1 = (1− βk)xk + βkθ
α
k ;

k = k + 1 and go to Step 1.

In practice, in Step 1 the αj ’s are defined from the initial point by solving
equation (2.2). In Step 2, at each iteration, if the stopping condition is not verified,
we have ‖xk − PΩ [xk −∇αψ(xk)]‖ > ϵ∗. As xk ∈ Ω, that involves ∇αψ(xk) 6= 0,
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hence the point xk is not Pareto-stationary. Then, move to Step 3. At this step,
we estimate the parameter Lk given by equation (2.8). The Step 4 is dedicated
to find the descent step length. In the Step 5, for each new xk+1 = xk + βkδ

α
k

computed, we go back to Step 1 to find new values αj ; which will allow us to define
a new descent direction.

3.2. Theoretical results.
As presented in the introduction, we assume that the objective functions are convex
we establish a proposition and two theorems to prove the convergence.

Proposition 3.1. The sequence {xk}k∈N generated by the Algorithm 1 is feasible,
and {fj(xk)}k∈N is monotonically decreasing.

Proof By induction. The initial iterate x0 belongs to Ω by the initialization of
the method. Assuming that xk ∈ Ω, since βk ∈ (0, 1] and δαk ∈ Ωk = Ω − xk, since
Ω is convex and xk+1 = xk + βkδ

α
k , we conclude that xk+1 belongs to Ω.

Let Kβ := {k : βk ≤ Sk}. If k ∈ Kβ then, ∀j = 1, 2, . . . , q,

fj(xk+1)− fj(xk) ≤ σβk

[
∇αψ(xk)

T (θk − xk) +
1

2
βkµLk ‖θk − xk‖22

]
≤ σSk

[
∇αψ(xk)

T (θk − xk) +
1

2
SkµLk ‖θk − xk‖22

]
≤ −σ(1− 1

2
µ)L−1

k

(
∇αψ(xk)

T (θk − xk)

‖θk − xk‖

)2

.(3.1)

Since σ ∈
(
0,

1

2

)
, µ ∈ (0, 2), and by definition, Lk is positive. Let us set E =

σ(1− 1

2
µ)L−1

k ≥ 0. From the equation (3.1), we have :

fj(xk+1)− fj(xk) ≤ −E
(
∇αψ(xk)

T (θk − xk)

‖θk − xk‖

)2

, j = 1, 2, . . . , q.

Hence the result.

Theorem 3.2. Let fj : Rn → R, for all j = 1, 2, . . . , q be continuously differentiable
functions in Ω, σ ∈ (0, 1) and {xk} a sequence generated by Algorithm 1 with
xk+1 = xk+βk(θ

α
k −xk). Let us assume that T = {x ∈ Ω; f(x) ≤ f(x0)} is bounded.

Then the sequence {xk} generated by Algorithm 1 converge to a critical point x∗ of
the problem (Pα).

Proof From the Proposition 3.1,
{
fj(xk)

}
k∈N is monotonically decreasing, that

means fj(xk) > fj(xk+1), ∀j = 1, . . . , q. By using Armijo’s rule defined in the
equation (2.7), as

{
fj(xk)

}
k∈N is bounded and the gradients of fj(xk), j = 1, . . . , q

are Lipschitzian. Let us set Kβ := {k : βk ≤ Sk}. If k ∈ Kβ , we obtain the following
inequalities :

fj(xk+1)− fj(xk) ≤ σβk

[
∇αψ(xk)

T (θk − xk) +
1

2
βkµLk ‖θk − xk‖22

]
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≤ σβk

[
∇αψ(xk)

T (θk − xk) +
1

2
SkµLk ‖θk − xk‖22

]
≤ σβk(1−

1

2
µ)∇αψ(xk)

T (θk − xk).(3.2)

Following Proposition 2.6, we have :

(3.3) 〈∇αψ(xk), xk − θk〉 ≥ ‖xk − θk‖ .
By combining equations (3.2) and (3.3), we obtain the following inequality :

σβk(1−
1

2
µ) ‖θk − xk‖ ≤ fj(xk)− fj(xk+1);

k∑
k′=0

σβk′(1−
1

2
µ) ‖θk′ − xk′‖ ≤ fj(x0)− fj(xk+1).

As the sequence {fj(xk)} is bounded and according to Armijo’s rule the sequence
{fj(xk)} is monotonically decreasing, then fj(xk) converge to fj(x

∗) when k → +∞
and x∗ is an accumulation point of {xk}. In this condition we obtain the following
inequality :

(3.4)

+∞∑
k=0

σβk(1−
1

2
µ) ‖θk − xk‖ ≤ fj(x0)− fj(x

∗) < +∞,

because σβk ‖θk − xk‖ is finite [13]. So, we obtain βk ‖θk − xk‖ → 0 when k → +∞.
From the instruction of the algorithm, the descent step βk is bounded. If βk → +∞
then, from equation (3.4), we have +∞ ≤ fj(x0) − fj(x

∗) < +∞, that means T is
not bounded, which is contradictory. If βk ∈ (0, 1], ∀k, then {θk − xk} converge to
0 when k tends to infinity. Let us note that T is bounded at least an accumulated
point. Let {y∗1, y∗2, . . . , y∗m} be the set of accumulation points of {xk}. By using the
Proposition 4 from [13], we have the function δk continuous on Ω, because y∗i is an
accumulation point for each i ∈ {1, 2, . . . ,m}, so δk(y∗i ) is a critical point of fi for
each i ∈ {1, 2, . . . ,m}. □
Theorem 3.3. Let fj : Rn → R , for all j = 1, 2, . . . , q be convex, continuous,
differentiable and locally Lipschitzian functions in Ω. Let {xk} be a sequence gen-
erated by Algorithm 1 with xk+1 = xk + βk(θ

α
k − xk). Then, the accumulation point

of {xk} is a weakly Pareto optimal solution of the problem (2.1).

Proof Let us consider x∗ an accumulation point of the sequence {xk}. We have
show in the theorem (3.2) that the sequence {xk} generated by the Algorithm 1
converge to a critical point x∗ for all fj , ∀j ∈ {1, 2, . . . , q}. From Step 5 of the
Algorithm 1, we have :

xk+1 = xk + βk(θk − xk).

Therefore, we have

‖xk+1 − x∗‖2 = ‖xk − x∗ + βk(θk − xk)‖2

= ‖xk − x∗‖2 + β2k ‖θk − xk‖2 − 2βk 〈θk − xk, x
∗ − xk〉 .(3.5)

In addition

〈θk − xk, x
∗ − xk〉 = 〈θk − xk +∇αψ(xk)−∇αψ(xk), x

∗ − xk〉
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= −〈∇αψ(xk), x
∗ − xk〉+ 〈θk − xk +∇αψ(xk), x

∗ − xk〉
= 〈∇αψ(xk), xk − x∗〉 − 〈θk − xk +∇αψ(xk), xk − x∗〉
= 〈∇αψ(xk), xk − x∗〉 − 〈θk − xk +∇αψ(xk), xk − θk〉
− 〈θk − (xk −∇αψ(xk)) , θk − x∗〉
≥ 〈∇αψ(xk), xk − x∗〉 − 〈θk − xk +∇αψ(xk), xk − θk〉 .

From the convexity of fj , we have ∇αψ(xk).(xk − x∗) ≥ ψ(xk)− ψ(x∗), and

〈θk − xk, x
∗ − xk〉 ≥ ψ(xk)− ψ(x∗)− 〈θk − xk +∇αψ(xk), xk − θk〉

≥ − 〈θk − xk +∇αψ(xk), xk − θk〉

≥ ‖θk − xk‖2 − 〈∇αψ(xk), xk − θk〉 ,
that involve that

−2βk 〈θk − xk, x
∗ − xk〉 ≤ −2βk ‖θk − xk‖2 + 2βk 〈∇αψ(xk), xk − θk〉 .(3.6)

By using the equations (3.5) and (3.6) we obtain the following inequality :

‖xk − x∗‖2 + β2k ‖θk − xk‖2 − 2βk 〈θk − xk, x
∗ − xk〉 ≤

‖xk − x∗‖2 + β2k ‖θk − xk‖2 − 2βk ‖θk − xk‖2 + 2βk 〈∇αψ(xk), xk − θk〉 ,
that gives,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + β2
k ‖θk − xk‖2 − 2βk ‖θk − xk‖2 + 2βk 〈∇αψ(xk), xk − θk〉 .

As βk ∈ (0, 1] ⇒ β2k − 2βk ≤ −βk, thus we have:

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − βk ‖θk − xk‖2 + 2βk 〈∇αψ(xk), xk − θk〉 .(3.7)

Let us remain that ∀j ∈ {1, 2, . . . , q}, fj(xk) is bounded and ∇fj(xk) are Lips-
chitzian. Let us set that Kβ := {k ∈ N : βk ≤ Sk}. Using the Armijo’s rule defined
in equation (2.7), if k ∈ Kβ , then we obtain the following inequalities :

fj(xk+1)− fj(xk) ≤ σβk

[
∇αψ(xk)

T (θk − xk) +
1

2
βkµLk ‖θk − xk‖22

]
≤ σβk

[
∇αψ(xk)

T (θk − xk) +
1

2
SkµLk ‖θk − xk‖22

]
≤ −σβk(1−

1

2
µ)∇αψ(xk)

T (xk − θk),

(3.8) ⇒ 〈∇αψ(xk), θk − xk〉 ≥
1

σβk(1−
1

2
µ)

(fj(xk+1)− fj(xk)) .

By combining the equations (3.7) and (3.8), we obtain equation (3.9) as follows :

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − βk ‖θk − xk‖2 +
2

σ(1− 1

2
µ)

(fj(xk)− fj(xk+1)) .

(3.9) ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2

σ(1− 1

2
µ)

(fj(xk)− fj(xk+1)) .
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by setting ϵk =
2

σ(1− 1

2
µ)

(fj(xk)− fj(xk+1)), equation (3.9) becomes

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + ϵk.(3.10)

And we have:
k∑

k′=0

ϵk′ =

k∑
k′=0

2

σ(1− 1

2
µ)

(fj(xk′)− fj(xk′+1)) ,

when k → +∞
+∞∑
k=0

ϵk ≤ 2

σ(1− 1

2
µ)

(fj(x0)− fj(x
∗)) < +∞.(3.11)

Regarding to the equation (3.10) and equation (3.11), the sequence {xk} generated
by the Algorithm 1 verify the conditions of Lemma 2.5 then, it is quasi-Fejér con-
vergent to the solutions set of initial problem. Moreover, according to Theorem
3.2, the sequence {xk} converges weakly to a Pareto-stationary solution of problem
(2.1). □

3.3. Numerical Results.
To implement the algorithm, we have set: ξ = 1 at each iteration; L0 = 1; µ = 1.5;
ϵ∗ = 10−12; σ = 0.38; λ = 0.87; and the initial point x0 for each problem is generated
randomly. To generate the Pareto front, we run the algorithm for all test problems
in a multi-start fashion. The test problems we used for the numerical test are all
convex problems [6–9] and are recorded in the Table 1. The Figures 1, 2, 3, 4, 5
show the Pareto front obtained for the 05 test problems with a Multi-Start execution
of 100 runs. Like any multi-objective algorithm, the study of the performance of
the solutions obtained is in itself a bi-objective problem. This study focuses, on
the one hand, on the minimization of the distance between the solutions obtained
and the solutions belonging to the true Pareto front (analytical front) and, on the
other hand, on the minimization of the distance between two consecutive solutions
obtained. There are several metrics in the literature to measure the performance of
the solutions obtained by an algorithm, in this work we will use those proposed by
Deb (2002) [7]. The first parameter measures the convergence of obtained solutions
to Pareto front, and the second parameter measures the distribution of obtained
solutions on Pareto front. Let us set by γ the convergence parameter and ∆ the
distribution parameter.

γ =

√√√√ N∑
i=1

d2i

N
and

∆ =

df + dl +
N−1∑
i=1

∣∣di − d
∣∣

df + dl + (N − 1)d
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where N is the number of solutions given by the Algorithm 1; df and dl are respec-
tively the euclidean distances between the upper extreme solutions and the lower
extreme solutions given by the Algorithm 1; the di represents the euclidean dis-
tances between two consecutive solutions obtained and d the arithmetic mean of di.

Table 1. Multiobjective problems

Figure 1. Pa reto

front of PNL1

Figure 2. Pa reto

front of PNL2

The values of the convergence and distribution are presented in the table below.

Over all the 05 test problems, it is observed that the values of the convergence
index are close to 0, which explains a good convergence, and that of the distribution
index are slightly far from 0, which shows a low distribution of solutions.
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Figure 3. Pa reto

front of PNL3

Figure 4. Pa reto

front of PNL4

Figure 5. Pa reto

front of PNL5

Table 2. Performance parameters

3.4. Comments. The numerical solutions in the figures and numerical convergence
parameters indicate that the proposed algorithm achieves good convergence of solu-
tions on the analytical front. Except for problem PLN1, the distribution of solutions
in the whole Pareto front on test problems is weak. This could be explained by the
choice of parameters and the fact that the initial points are generated in a random
way.

4. Conclusion

In this work, we combined three concepts: the projected gradient, Armijo rule,
and the weighted sum in order to solve multiobjective optimization problems. First,
we presented the scope of its different concepts before combining them to design
a new method for solving convex, nonlinear, multiobjective optimization problems.
To demonstrate convergence of methods, a proposition and two theorems were es-
tablished. Numerical experiments on five test problems were successfully performed.
Based on the numerical results, we calculated performance indices related to the
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convergence and distribution of solutions in relation to the Pareto front. All these
theoretical and numerical results demonstrate that the method is a suitable choice
for solving convex nonlinear multiobjective optimization problems.

In future research, we will start by improve the distribution performance of our
method. Then, we will investigate the solution to constrained multiobjective opti-
mization problems. In this works, a study will be done to compare our solutions to
other methods for some test problems from the literature. Finally, a convergence
study for non-convex problems will be another research topic.
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