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functions) at the same time. Such problem structures lead to vector optimization.
Moreover, most complex multi-objective problems are contaminated with uncertain
data. For instance, in traffic optimization, uncertain weather conditions, construc-
tion works, or traffic jams may influence the computed optimal solutions of a train
schedule or shortest path problems. Combining these concepts leads to an applica-
tion of set optimization problem.

In the last decade, there were some important progresses in set optimization
problem. (a) In 2010s, several investigations were performed for nonlinear scalariz-
ing technique for sets, natural generalizations of Gerstewitz’s scalarizing functions
for vector. Inspired by past studies [15, 17], the authors [2] investigated properties
of nonlinear scalarizing functions for sets (duality property, order preserving prop-
erty, sublinearity and so on). Next, we attempted to derive characterization theo-
rems of set relations yet, mistakes have been found. Gutierrez-Jimenez-Miglierina-
Molho [14] and Köbis-Köbis [23] presented full characterization theorems of set
relations. In recent years, as presented in [3], the author presented revised version
of [2] and introduced existence theorems of cone saddle-points in the framework
of set optimization problem. (b) In 2014, Ide-Köbis-Kuroiwa-Schöbel-Tammer [18]
revealed strong connections between the set optimization problem and uncertain
multi-objective optimization problem. Moreover, they clarified that finding robust
solutions to uncertain multi-objective optimization problem can be interpreted as
an application to set optimization problem. (c) In 2017, Chen-Köbis-Köbis-Yao [7]
introduced new set relations in set optimization, which includes two known set or-
der relations (l-type and u-type) as special cases. They asserted that the advantage
of this new set relation is that drawbacks that may occur when just one of the
known set order relation are balanced out. Moreover, they presented an existence
result for minimal elements with respect to the new order relation and proposed
a new numerical method for obtaining approximations of minimal elements. In
this paper, we will show new properties of the above new set relation. (d) In 2015,
Bao-Mordukhovich-Soubeyran [6] also mentioned that the set optimization problem
has strong connections not only with economics but also with behavioral sciences,
proposing minimal element theorems, variational principles and variable preferences.
In recent years, Hamel-Löhne [16] showed the following famous examples discussed
by Kreps [26]. Suppose that you want to go to a restaurant for dinner, and all
what counts for you is the quality of the meals. Suppose further that there are two
restaurants in your town, and by looking at their menus A and B on your smart-
phone you realize that for each meal on A there is one on B which you like better (or
at least as much as the one on A). In which restaurant would you reserve a dinner
table? Hamel-Löhne [16] clarified that the relation between the two menus may be
expressed as u-type set relation proposed by Kuroiwa-Tanaka-Ha [28]. They also
states that mathematics have contributed the least to the theory of set relations
and its applications for a long time, and a number of interesting new questions as
well as applications have already been under discussion or will appear in the near
future.

Convexity is one of the most important concepts in convex analysis and opti-
mization theory. A convex set is usually defined in a subset of vector space X, and
a special case of a convex set is a convex cone. It is easy to confirm that both
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definitions require a multiplication by a non-negative real number and therefore, is
appropriate to define convexity on more general spaces. The new concept, which
is called semi-vector space, and its similar concepts were already considered and
proposed by a number of researchers, [8, 11, 21, 30, 31, 35, 37, 38] and their refer-
ences therein. It is confirmed that the family of nonempty convex subsets of vector
space Y is an example of semi-vectors space. Therefore, it is appropriate to discuss
set optimization problem in the framework of semi-vector space. However, to our
knowledge, there have been only few papers on algebraic and ordinal structures of
set relations in the framework of semi-vector space so far. Therefore, we aim to
clarify algebraic and ordinal structures of the set optimization problem.

The organization of this paper is as follows. First, we recall properties of ordered
topological vector space followed by introduction of the concept of semi-vector space,
natural generalizations of vector space. Next, we investigate some properties of
semi-vector space. The last section is the main results. We introduce several types
of set relations proposed by Kuroiwa-Tanaka-Ha [28] and Jahn-Ha [20] and then
investigate algebraic and ordinal structures of the above set relations. Moreover,
we introduce several types of nonlinear scalarizing technique for sets [2] that is
generalizations of Gerstewitz’s scalarizing functions for the vector-valued case [9,
10, 12] and present characterization theorems of set relations based on nonlinear
scalarizing technique. Furthermore, we introduce weighted set relations proposed
by Chen-Köbis-Köbis-Yao [7] and investigate their algebraic and ordinal structures.

2. Preliminaries

Let Y be an ordered topological vector space and 0Y be an origin of Y . For a
set A ⊂ Y , intA and clA denote the topological interior and the topological closure,
respectively. A nonempty set A is called solid if intA ̸= ∅.

We denote V by the family of nonempty subsets of Y and conv(V) the family of
nonempty convex subsets of Y . The sum of two sets V1, V2 ∈ V and the product of
α ∈ R and V ∈ V are defined by

(OP): V1 + V2 := {v1 + v2 |v1 ∈ V1, v2 ∈ V2 }, αV := {αv |v ∈ V }.
We denote cl(V) by the family of nonempty closed subsets of Y . The sum of two
sets V1, V2 ∈ cl(V) and the product of α ∈ R and V ∈ cl(V) are defined by

(cl-OP): V1 + V2 := cl{v1 + v2 |v1 ∈ V1, v2 ∈ V2 }, αV := {αv |v ∈ V }.
see also Godini [11]. We denote int(V) by the family of nonempty open subsets of
Y . The sum of two sets V1, V2 ∈ int(V) and the product of α ∈ R and V ∈ int(V)
are defined by

(int-OP): V1 + V2 := int{v1 + v2 |v1 ∈ V1, v2 ∈ V2 }, αV := {αv |v ∈ V }.
The following proposition are fundamental properties of addition and scalar multi-
plication for sets in vector space, which is presented by fundamental methods of set
theory.

Proposition 2.1 ( [25,41]). For A,B,D ∈ V, λ, µ ∈ R and λ1, µ1 ≥ 0, the following
relations hold.

(i) A+B = B +A;
(ii) (A+B) +D = A+ (B +D);



226 YOUSUKE ARAYA

(iii) A+ {0} = A;
(iv) 0Y ∈ A+ (−A).
(v) There does not always exists Â ∈ V such that A+ Â = {0Y }.
(vi) λ · (A+B) = λ ·A+ λ ·B.
(vii) (λ1 + µ1) ·A ⊂ λ1 ·A+ µ1 ·A.

If A is convex, then (λ1 + µ1) ·A = λ1 ·A+ µ1 ·A.
(viii) λ · (µ ·A) = (λµ) ·A.
(ix) 1 ·A = A.
(x) 0 ·A = 0Y .

Lemma 2.2 ( [27]). For C ⊂ Z a closed convex cone and A,B, V ∈ V, the following
relations hold:

(i) C + C = C;
(ii) C + intC = intC;
(iii) intA+ intB ⊂ int(A+B);
(iv) clA+ clB ⊂ cl(A+B);
(v) cl(V + C) + C = cl(V + C).

Proof. The last property follows from properties (i) and (iv). □

3. Semi-vector space

In the previous section, it was confirmed in Proposition 2.1 that it is consistent
to define convexity on more general spaces. The natural framework for convexity
seems to be a semi-vector space, proposed by Löhne [31], rather than a vector space.

Definition 3.1 (semi-vector space: see also [31, 37]). A nonempty set Z equipped
with an addition + : Z × Z → Z and a multiplication ⊙ : R+ × Z → Z is said to
be a semi-vector space with the natural element θ ∈ Z if for all z, z1, z2 ∈ Z and
α, β ≥ 0 the following axioms are satisfied:

(SV1) (z1 + z2) + z = z1 + (z2 + z),
(SV2) z + θ = z,
(SV3) z1 + z2 = z2 + z1,
(SV4) α⊙ (β ⊙ z) = (αβ)⊙ z,
(SV5) 1⊙ z = z,
(SV6) 0⊙ z = θ,
(SV7) α⊙ (z1 + z2) = α⊙ z1 + α⊙ z2,
(SV8) α⊙ z + β · z = (α+ β)⊙ z

When Z is a topological space, it will be called a topological semi-vector space if +
and ⊙ are continuous.

Axiom (SV8) states that every singleton sets are convex. Prakash-Sertel [37]
called Axiom (SV8) “pointwise convex”. See also the following example [31].

Example 3.2 ( [31]). It is remarked that some singleton sets can be nonconvex.
Indeed, let Z = P(R) (the power set of R) and consider the element A := {0, 1} ∈ Z.
Then we have that 1

2A+ 1
2A = {0, 12 , 1} ̸= A.

Proposition 3.3 ( [31,37]). For every semi-vector space, the following statements
are equivalent:
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(i) Every singleton sets is convex,
(ii) (SV8) holds.

The pioneering idea of semi-vector space has been found by R̊adström [40], who
pointed out properties of addition and scalar multiplication for sets in vector space
(Proposition 2.1). Moreover, he presented question if additive semigroup can be
embedded in a group and if multiplication with scalars can be extended to this
group so that for positive scalars the new multiplication coincides with the original
one on the semigroup. Furthermore, he gave an embedding theorem in normed
vector space.

The concept of semi-vector space and its similar concepts have already been pro-
posed by a number of researchers, such as, Gähler-Gähler [8](semi vector space)
for problems of fuzzy analysis, Pap [35] for problems of measure theory, Godini
[11](almost linear space) for approximation theory, Prakash-Sertel [37,38](semivec-
tor space) for topological fixed point problems. Janyška-Modugno-Vitolo [21] pro-
posed the concept of positive spaces and their rational powers and showed that how
these concepts can be used as scale spaces in a broad class of physical theories.

Example 3.4 ( [11,30,37]). We give examples of semi-vector space.
(1) Every vector space V .
(2) R+ := {λ ∈ R |λ ≥ 0} and its one-point compactification R+ ∪ {∞}.
(3) Every convex cone C ⊂ Z of a semi-vector space with 0Z ∈ C.
(4) (conv(V),+, ·) with operation (OP).
(5) (cl(conv(V)),+, ·) with operation (cl-OP).
(6) (int(conv(V)),+, ·) with operation (int-OP).

Proposition 3.5 ( [30]). A semi-vector space having a nontrivial conical element
(that is, an element z ∈ Z with z = α · z for all α > 0) cannot be embedded into a
vector space.

Of course, a partially ordered vector space is a special case of a semi-vector space.
However, it is remarkable that most of set relations treated in the set optimization
problem do not satisfy antisymmetric properties. See Proposition 4.2 in the next
section. Thus, we introduce the following concept.

Definition 3.6 (preordered semi-vector space). Let (Z,+, ·) be a semi-vector space
and let ≤ be a preorder on the set Z. (Z,+, ·,≤) is called a preordered semi-vector
space if ≤ satisfies conditions (O1) and (O2):

(O1) x ≤ y implies x+ z ≤ y + z for every x, y, z ∈ E,
(O2) x ≤ y implies α · x ≤ α · y for every x, y ∈ E and α ≥ 0.

In a similar way as [31], let us define convex functions in the general setting of
semi-vector space.

Definition 3.7. Let W be a semi-vector space and let Z be a preordered semi-
vector space. A function f : W → Z is said to be convex if for all λ ∈ [0, 1] and
w1, w2 ∈W , one has

f(λ · w1 + (1− λ) · w2) ≤ λ · f(w1) + (1− λ) · f(w2).
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4. Algebraic and ordinal structures of set relations

In this section, let C ⊂ Y be a solid closed convex cone, that is, intC ̸= ∅,
clC = C, C + C ⊂ C and t · C ⊂ C for all t ∈ [0,∞). For a, b ∈ Y and a solid
convex cone C ⊂ Y , define what is called vector ordeing as follows

a ≤C b by b− a ∈ C a ≤intC b by b− a ∈ intC.

For a given real vector space E, there is a canonical one-to-one correspondence be-
tween the collection of order relations with properties (O1) and (O2) as described
above and the collection of pointed convex cone, see for detail, [6,12,19,32,39]. How-
ever, the situation is more complicated for the set optimization problems. In this
section, we will investigate the difference between the vector optimization problem
and the set optimization problem in terms of algebraic and ordinal structures.

4.1. l-type, u-type and l&u-type set relations. First, we recall several types
of binary relationships on V by using a solid convex cone C ⊂ Y .

Definition 4.1 (Kuroiwa-Tanaka-Ha [28], Jahn-Ha [20]). For A, B ∈ V and a solid
closed convex cone C ⊂ Y , we define

(lower type) A ≤l
C B by B ⊂ A+ C (A ≤l

intC B by B ⊂ A+ intC),

(upper type) A ≤u
C B by A ⊂ B − C (A ≤u

intC B by A ⊂ B − intC),

(lower and upper type) A ≤l&u
C B by B ⊂ A+ C and A ⊂ B − C

(A ≤l&u
intC B by B ⊂ A+ intC and A ⊂ B − intC).

Proposition 4.2 ( [3, 4]). For A, B, D ∈ V, a, b ∈ Y and α ≥ 0, the following
statements hold.

(i) A ≤l
C B implies A+D ≤l

C B +D and
A ≤u

C B implies A+D ≤u
C B +D.

(ii) A ≤l
C B implies αA ≤l

C αB and A ≤u
C B implies αA ≤u

C αB.

(iii) ≤l
C and ≤u

C are reflexive and transitive.

(iv) A ≤l&u
C B implies A ≤l

C B and A ≤l&u
C B implies A ≤u

C B.

(v) A ≤l
C B and A ≤u

C B are not comparable, that is, A ≤l
C B does not imply

A ≤u
C B and A ≤u

C B does not imply A ≤l
C B.

(vi) A ≤u
C b implies A ≤l

C b and a ≤l
C B implies a ≤u

C B.

We see by (i) and (ii) of Proposition 4.2 that (V,+, ·,≤l
C), (V,+, ·,≤u

C) and

(V,+, ·,≤l&u
C ) are preordered semi-vector spaces.

Example 4.3 (see also [20]). Let a1, a2, b1, b2 ∈ Y be arbitrarily given with a1 ≤C

a2 and b1 ≤C b2. We consider the following order intervals

A = [a1, a2] := {y ∈ Y |a1 ≤C y ≤C a2 },
B = [b1, b2] := {y ∈ Y |b1 ≤C y ≤C b2 }.

By the definition of ≤l
C , ≤u

C and ≤l&u
C , we have

[a1, a2] ≤l
C [b1, b2] ⇐⇒ a1 ≤C b1,

[a1, a2] ≤u
C [b1, b2] ⇐⇒ a2 ≤C b2,

[a1, a2] ≤l&u
C [b1, b2] ⇐⇒ a1 ≤C b1 and a2 ≤C b2.
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Proposition 4.4 (Cancelation law: see also [37,38,40]). For A, B ∈ V and C ⊂ Y
a closed convex cone, the following statements hold.

(i) If B ∈ V is bounded, then we have that B ≤l
C B +A implies 0Y ≤l

C A.
(ii) If B ∈ V is bounded, then we have that B +A ≤u

C B implies A ≤u
C 0Y .

(iii) If B ∈ V is compact, then we have that B ≤l
intC B+A implies 0Y ≤l

intC A.

(iv) If B ∈ V is compact, then we have that B+A ≤u
intC B implies A ≤u

intC 0Y .

Proof. These are immediate consequences of (i) and (ii) of Proposition 2.2 in [38].
□

Inspired by Godini [11] and Maeda [33], we define new types of set relations on
cl(V) and int(V) by using a solid convex cone C ⊂ Y .

Definition 4.5. For A, B ∈ cl(V) and a solid closed convex cone C ⊂ Y , we define
the following set relations with operation (cl-OP):

(l-closure): A ≦l
C B by B ⊂ A+ C,

(u-closure): A ≦u
C B by A ⊂ B − C,

(l&u-closure): A ≦l&u
C B by B ⊂ A+ C and A ⊂ B − C.

Definition 4.6. For A, B ∈ int(V) and a solid closed convex cone C ⊂ Y , we define
the following set relations with operation (int-OP):

(l-interior): A <l
intC B by B ⊂ A+ intC,

(u-interior): A <u
intC B by A ⊂ B − intC,

(l&u-interior): A <l&u
intC B by B ⊂ A+ intC and A ⊂ B − intC.

In a similar way as Proposition 4.2, we obtain several properties of new set
relations.

Proposition 4.7. For A, B, D ∈ V and α ≥ 0, the following statements hold.

(i) A ≦l
C B implies A+D ≦l

C B +D and A ≦u
C B implies

A+D ≦u
C B +D.

(ii) A ≦l
C B implies αA ≦l

C αB and A ≦u
C B implies αA ≦u

C αB.

(iii) ≦l
C and ≦u

C are reflexive and transitive.

(iv) A ≦l&u
C B implies A ≦l

C B and A ≦l&u
C B implies A ≦u

C B.

Proposition 4.8. For A, B, D ∈ V and α ≥ 0, the following statements hold.

(i) A <l
intC B implies A+D ≤l

intC B+D and A <u
intC B implies A+D <u

intC
B +D.

(ii) A <l
intC B implies αA <l

intC αB and A <u
intC B implies

αA <u
intC αB.

(iii) <l
intC and <u

intC are reflexive and transitive.

(iv) A <l&u
intC B implies A <l

intC B and A <l&u
intC B implies A <u

intC B.

Definition 4.9 ( [17]). It is said that A ∈ V is C-proper
[
(−C)-proper

]
if

A+ C ̸= Y [A− C ̸= Y ].

The symbol VC denotes the family of C-proper subsets of Y , V−C denotes the
family of (−C)-proper subsets of Y and V±C denotes the family of C-proper and
(−C)-proper subsets of Y , respectively.
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Definition 4.10 ( [32]). It is said that A ∈ V is

(i) C-closed
[
(−C)-closed

]
if A+ C [A− C] is a closed set,

(ii) C-bounded
[
(−C)-bounded

]
if for each neighborhood U of zero in Y there

is some positive number t > 0 such that

A ⊂ tU + C [A ⊂ tU − C],

(iii) C-compact
[
(−C)-compact

]
if any cover of A the form

{Uα + C| Uα are open} [{Uα − C| Uα are open}]
admits a finite subcover.

(iv) C-convex
[
(−C)-convex

]
if A+ C [A− C] is a convex set.

Every C-compact set is C-closed and C-bounded.

The symbol cl(VC) denotes the family of C-proper and C-closed subsets of Y ,
cl(V−C) denots the family of (−C)-proper and (−C)-closed subsets of Y , cl(V±C)
denotes the family of C-proper, (−C)-proper, C-closed and (−C)-closed subsets of
Y , conv(VC) denotes the family of C-convex subsets of Y , conv(V−C) denots the
family of (−C)-convex subsets of Y and conv(V±C) denotes the family of C-convex
and (−C)-convex subsets of Y , respectively.

Introducing the equivalence relations

A ≃l B ⇐⇒ A ≤l
C B and B ≤l

C A,

A ≃u B ⇐⇒ A ≤u
C B and B ≤u

C A,

A ≃l&u B ⇐⇒ A ≤l&u
C B and B ≤l&u

C A,

we can generate the set of equivalence classes which are denoted by [·]l, [·]u and
[·]l&u, respectively. The followings are easily confirmed.

A ∈ [B]l ⇐⇒ A+ C = B + C,

A ∈ [B]u ⇐⇒ A− C = B − C,

A ∈ [B]l&u ⇐⇒ A+ C = B + C and A− C = B − C.

Similarly, we define the following new equivalence relations

A ∼=l B ⇐⇒ A ≦l
C B and B ≦l

C A,

A ∼=u B ⇐⇒ A ≦u
C B and B ≦u

C A,

A ∼=l&u B ⇐⇒ A ≦l&u
C B and B ≦l&u

C A,

A ∼l B ⇐⇒ A <l
intC B and B <l

intC A,

A ∼u B ⇐⇒ A <u
intC B and B <u

intC A,

A ∼l&u B ⇐⇒ A <l&u
intC B and B <l&u

intC A,

we can generate a partial ordering on the set of equivalence classes which are denoted
by cl[·]l, cl[·]u, cl[·]l&u, int[·]l, int[·]u and int[·]l&u, respectively. We can easily see
that for A,B ∈ cl(V)

A ∈ cl[B]l ⇐⇒ A+ C = B + C,

A ∈ cl[B]u ⇐⇒ A− C = B − C,

A ∈ cl[B]l&u ⇐⇒ A+ C = B + C and A− C = B − C,
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and for A,B ∈ int(V)

A ∈ int[B]l ⇐⇒ A+ intC = B + intC,

A ∈ int[B]u ⇐⇒ A− intC = B − intC,

A ∈ int[B]l&u ⇐⇒ A+ intC = B + intC and A− intC = B − intC.

By the definitions of the equivalent classes described above, we obtain the fol-
lowing relationships.

Proposition 4.11. The following statements hold.

(i) [−A]l = [A]u

(ii) [−A]u = [A]l

(iii) [−A]l&u = [A]l&u

(iv) If there is some b ∈ Y such that A ∈ [b]l(A ∈ [b]u) and −A ∈ [−b]l(−A ∈
[−b]u), then we have that A−A ∈ [0Y ]

l(A−A ∈ [0Y ]
u).

(v) If there is some b ∈ Y such that A ∈ [b]l&u, then we have that A − A ∈
[0Y ]

l&u.

Lemma 4.12. We define a quotient space (V/≃l) and its operations as follows

(l+) [A]l + [B]l := [A+B]l for all A,B ∈ V,
(l⊙) α⊙ [A]l := [α⊙A]l for all A ∈ V , α ≥ 0.

(the definitions of u-type and l&u-type operations are similar to the following ones.)
Then the above operations are well-defined.

Proof. By the definition of the equivalent class [·]l and C being a convex cone, we
have

(a) A ≃l Â and B ≃l B̂ implies A+B ≃l Â+ B̂,

(b) A ≃l Â and α ≥ 0 implies αA ≃l αÂ,

and hence we obtain the conclusion. The operations of u-type and l&u-type are
similar. □
Theorem 4.13. The neutral elements are defined as follows

[0Y ]
l := {A ∈ V |A+ C = C }, [0Y ]

u := {A ∈ V |A− C = −C },

[0Y ]
l&u := {A ∈ V |A+ C = C and A− C = −C }.

Then (conv(VC)/≃l), (conv(V−C)/ ≃u) and (conv(V±C)/ ≃l&u) are semi-vector
space with the operations (l+), (l⊙), (u+), (u⊙), (l&u+), (l&u⊙), respectively.

Proof. It is easy to confirm that V satisfies the axioms of semi-vector space (SV1)–
(SV7). Let us show (SV8). By the definition of the operations, we only show

(l-SV8): λ1 ⊙A+ λ2 ⊙A ∈ [(λ1 + λ2)⊙A]l for λ1, λ2 ≥ 0.

Since C is a convex cone, we have

λ1 ⊙A+ λ2 ⊙A+ C = λ1 ⊙A+ λ2 ⊙A+ λ1 ⊙ C + λ2 ⊙ C

= λ1 ⊙ (A+ C) + λ2 ⊙ (A+ C).

Since A+ C is a convex set and C is a convex cone, we have

λ1 ⊙ (A+ C) + λ2 ⊙ (A+ C) = (λ1 + λ2)⊙ (A+ C)
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= (λ1 + λ2)⊙A+ (λ1 + λ2)⊙ C = (λ1 + λ2)⊙A+ C.

and hence (l-SV8) holds. The rest of the proof is similar as the above. □

In a similar way as the above theorem, we obtain the following results.

Theorem 4.14. We define a quotient space (cl(V)/∼=l) and its operations as follows
(the definitions of u-type and l&u-type operations are similar to the following ones.):
for A,B ∈ cl(V),

(cl−l+): cl[A]l + cl[B]l := cl[A+B]l for all A,B ∈ V,
(cl−l⊙): α⊙ cl[A]l := cl[α⊙A]l for all A ∈ V , α ≥ 0.

We also define the neutral elements as follows

cl[0Y ]
l := {A ∈ cl(V) |A+ C = C }, cl[0Y ]

u := {A ∈ cl(V) |A− C = −C },

cl[0Y ]
l&u := {A ∈ cl(V) |A+ C = C and A− C = −C }.

Then (conv(cl(VC))/∼=l), (conv(cl(V−C))/∼=u) and (conv(cl(V±C))/∼=l&u) are semi-
vector spaces.

Next, we consider the concept of minimality on preordered semi-vector space
(V, l+, l⊙,≤l

C), (V, u+, u⊙,≤u
C) and (V, l&u+, l&u⊙,≤l&u

C ), respectively.

Definition 4.15. Let S ⊂ V . We say that Ā ∈ S is a l[u, l&u]-minimal element if
for any A ∈ S,

A ≤l[u,l&u]
C Ā implies Ā ≤l[u,l&u]

C A.

Moreover, Ā ∈ S is a l[u, l&u]-weak minimal element if for any A ∈ S,

A ≤l[u,l&u]

intC Ā implies Ā ≤l[u,l&u]

intC A.

The symbol l[u, l&u]-Min(S;C) denotes the family of l[u, l&u]-minimal elements of
S and l[u, l&u]-wMin(S; intC) denotes the family of l[u, l&u]-weak minimal elements
of S.

It is easily seen that

• l[u, l&u]-Min(S;C) ⊂ l[u, l&u]-wMin(S; intC) ⊂ S.
Next, we consider the concept of the set-valued convex map on semi-vector spaces.

The following concepts plays an important role to show duality theorems in the set
optimization problem (see [4]).

Definition 4.16. Let K be a convex set in a semi-vector space X. A set-valued
map F : X → V is said to be l[u, l&u]-C-convex on K if for each x1, x2 ∈ K and
λ ∈ [0, 1], we have

F (λx1 + (1− λ)x2) ≤l[u,l&u]
C λF (x1) + (1− λ)F (x2).
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4.2. Characterizations of set relations and equivalent classes via nonlinear
scalarization technique. In 1983, Gerstewitz [9] introduced a nonlinear scalariz-
ing function in vector optimization problem. Agreeing inf ∅ = ∞ and sup ∅ = −∞,
for k0 ∈ C \ (−C) we define φC,k0 : Y → (−∞,∞]

φC,k0(y) = inf{t ∈ R
∣∣y ≤C tk0 } = inf{t ∈ R

∣∣y ∈ tk0 − C }.
Also, φC,k0 has a dual form as follows: ψC,k0 : Y → [−∞,∞),

ψC,k0(y) = sup{t ∈ R
∣∣tk0 ≤C y} = sup{t ∈ R

∣∣y ∈ tk0 + C }.
φC,k0(y) = −ψC,k0(−y).

These functions have wide applications in vector optimization (see also Luc [32],
Gerth-Weidner [10], Göpfert-Riahi-Tammer-Zălinescu [12]). After that, we inves-
tigated the properties of the following two-variable infimum type hinf : Y × Y →
(−∞,∞] and supremum type hsup : Y ×Y → [−∞,∞) of nonlinear scalarizing func-
tions for the vector optimization problem, which are generalizations of the above
scalarizing function (see [1]):

hinf(y, a) = inf{t ∈ R
∣∣y ≤C tk0 + a} = inf{t ∈ R

∣∣y ∈ tk0 + a− C },

hsup(y, a) = sup{t ∈ R
∣∣tk0 + a ≤C y} = sup{t ∈ R

∣∣y ∈ tk0 + a+ C },
(hinf(y, a) := φC,k0(y − a) for a, y ∈ Y ). We can easily show

hsup(y, a) = −hinf(−y,−a).
Next, we introduce the following nonlinear scalarizing functions for sets, which

are natural extension of hinf and hsup. Agreeing inf ∅ = ∞ and sup ∅ = −∞, we

define hlinf , h
u
inf , h

l&u
inf , h

l
sup, h

u
sup, h

l&u
sup : V × V → [−∞,∞] as follows. The functions

hlinf , h
u
inf , h

l&u
inf , h

l
sup, h

u
sup, h

l&u
sup play the role of utility functions.

hlinf(V1, V2) = inf{t ∈ R
∣∣∣V1 ≤l

C tk0 + V2 } = inf{t ∈ R
∣∣tk0 + V2 ⊂ V1 + C },

huinf(V1, V2) = inf{t ∈ R
∣∣V1 ≤u

C tk0 + V2 } = inf{t ∈ R
∣∣V1 ⊂ tk0 + V2 − C },

hl&u
inf (V1, V2) = inf{t ∈ R

∣∣∣V1 ≤l&u
C tk0 + V2 }

= inf{t ∈ R
∣∣tk0 + V2 ⊂ V1 + C and V1 ⊂ tk0 + V2 − C },

hlsup(V1, V2) = sup{t ∈ R
∣∣∣tk0 + V2 ≤l

C V1 } = sup{t ∈ R
∣∣V1 ⊂ tk0 + V2 + C },

husup(V1, V2) = sup{t ∈ R
∣∣tk0 + V2 ≤u

C V1 } = sup{t ∈ R
∣∣tk0 + V2 ⊂ V1 − C },

hl&u
sup (V1, V2) = sup{t ∈ R

∣∣∣tk0 + V2 ≤l&u
C V1 }

= sup{t ∈ R
∣∣V1 ⊂ tk0 + V2 + C and tk0 + V2 ⊂ V1 − C }.

Proposition 4.17 (see also [2, 3]). The following statements hold:

(i) hlsup(V1, V2) = −huinf(−V1,−V2) and husup(V1, V2) = −hlinf(−V1,−V2);
(ii) hl&u

sup (V1, V2) = −hl&u
inf (−V1,−V2);

(iii) hlinf(V1, V2) = huinf(−V2,−V1) and huinf(V1, V2) = hlinf(−V2,−V1);
(iv) hlinf(V1, V2) ≤ hl&u

inf (V1, V2) and h
u
inf(V1, V2) ≤ hl&u

inf (V1, V2);

(v) hl&u
sup (V1, V2) ≤ hlsup(V1, V2) and h

l&u
sup (V1, V2) ≤ husup(V1, V2).
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The above results show that l-type and u-type are dual concepts each other.

Definition 4.18. We say that the function f : V → [−∞,∞] is

(i) ≤l
C-increasing if V1 ≤l

C V2 implies f(V1) ≤ f(V2),

(ii) strictly ≤l
intC -increasing if

V1 ≤l
intC V2 with V1 ̸= V2 implies f(V1) < f(V2).

The definitions of ≤u
C-increasing, ≤l&u

C -increasing, strictly ≤u
intC -increasing and

strictly ≤l&u
intC -increasing are similar to the above ones, respectively.

Theorem 4.19 ( [2, 3]). The functions hlinf , h
u
inf , h

l&u
inf , h

l
sup, h

u
sup, h

l&u
sup have the fol-

lowing properties:

(i) hlinf(·, V ) and hlsup(·, V ) are ≤l
C-increasing for every V ∈ V;

(ii) huinf(·, V ) and husup(·, V ) are ≤u
C-increasing for every V ∈ V;

(iii) hl&u
inf (·, V ) and hl&u

sup (·, V ) are ≤l&u
C -increasing for every V ∈ V.

Proposition 4.20 ( [5, 14]). For V1, V2, V3, V4 ∈ V and α ≥ 0, the following state-
ments hold:

(i) hlinf(V1, V2) ≤ t⇐⇒ tk0 + V2 ⊂ cl(V1 + C);
(ii) huinf(V1, V2) ≤ t⇐⇒ V1 ⊂ cl(tk0 + V2 − C);

(iii) hlinf(V1 + C, V2 + C) = hlinf(V1, V2);
(iv) huinf(V1 − C, V2 − C) = huinf(V1, V2);

(v) If V2 ∈ [V1]
l, then we have that hlinf(V2, V1) = hlinf(V1, V2);

(vi) If V2 ∈ [V1]
u, then we have that huinf(V2, V1) = huinf(V1, V2);

(vii) hlinf(V1 + V2, V3 + V4) ≤ hlinf(V1, V3) + hlinf(V2, V4) and
huinf(V1 + V2, V3 + V4) ≤ huinf(V1, V3) + huinf(V2, V4);

(viii) hlinf(αV1, αV2) = αhlinf(V1, V2) and h
u
inf(αV1, αV2) = αhuinf(V1, V2).

Next theorems are characterizations of set relations and equivalent classes via
hlinf and h

u
inf . See [3, 14,23] and their references therein.

Theorem 4.21 ( [3]). Suppose that C ⊂ Y be a solid closed convex cone and
k0 ∈ intC.

(i) If if V1 ∈ VC is C-closed and V2 ∈ V, then we have

V2 ⊂ V1 + C ⇐⇒ hlinf(V1, V2) ≤ 0.

Moreover, if V1 ∈ VC and V2 ∈ V is C-compact, then we have

V2 ⊂ V1 + intC ⇐⇒ hlinf(V1, V2) < 0.

(ii) If V1 ∈ V and V2 ∈ V−C is (−C)-closed, then we have

V1 ⊂ V2 − C ⇐⇒ huinf(V1, V2) ≤ 0.

Moreover, if V1 ∈ V is (−C)-compact and V2 ∈ V−C , then we have

V1 ⊂ V2 − intC ⇐⇒ huinf(V1, V2) < 0.

(iii) If V1 ∈ VC is C-closed and V2 ∈ V−C is (−C)-closed, then we have

V2 ⊂ V1 + C and V1 ⊂ V2 − C ⇐⇒ hl&u
inf (V1, V2) ≤ 0.



ALGEBRAIC AND ORDINAL STRUCTURES OF SET RELATIONS 235

Moreover, if V1 ∈ VC is (−C)-compact and V2 ∈ V−C is C-compact, then
we have

V2 ⊂ V1 + intC and V1 ⊂ V2 − intC ⇐⇒ hl&u
inf (V1, V2) < 0.

By the definitions of equivalent classes [·]l, [·]u, [·]l&u and the above theorems, we
obtain the following results.

Corollary 4.22. Let C ⊂ Y be a solid closed convex cone and k0 ∈ intC.

(i) If V1 ∈ VC and V2 ∈ VC are C-closed, then we have

V1 ∈ [V2]
l ⇐⇒ hlinf(V1, V2) = hlinf(V2, V1) ≤ 0.

(ii) If V1 ∈ V−C and V2 ∈ V−C are (−C)-closed, then we have

V1 ∈ [V2]
u ⇐⇒ huinf(V1, V2) = huinf(V2, V1) ≤ 0.

(iii) If V1 ∈ V±C and V2 ∈ V±C are C-closed and (−C)-closed, then we have

V1 ∈ [V2]
l&u ⇐⇒ hl&u

inf (V1, V2) = hl&u
inf (V2, V1) ≤ 0.

Following the same line of the proof of the above theorems, we obtain the following
results.

Corollary 4.23. Let C ⊂ Y be a solid closed convex cone and k0 ∈ intC.

(i) If V1 ∈ cl(VC) and V2 ∈ cl(V), then we have

V1 ≦l
C V2 ⇐⇒ hlinf(V1, V2) ≤ 0.

(ii) If V1 ∈ cl(V) and V2 ∈ cl(V−C), then we have

V1 ≦u
C V2 ⇐⇒ huinf(V1, V2) ≤ 0.

(iii) If V1 ∈ cl(VC) and V2 ∈ cl(V−C), then we have

V1 ≦l&u
C V2 ⇐⇒ hl&u

inf (V1, V2) ≤ 0.

Corollary 4.24. Let C ⊂ Y be a solid closed convex cone and k0 ∈ intC.

(i) If V1 ∈ cl(VC) and V2 ∈ cl(VC), then we have

V1 ∈ cl[V2]
l ⇐⇒ hlinf(V1, V2) = hlinf(V2, V1) ≤ 0.

(ii) If V1 ∈ cl(V−C) and V2 ∈ cl(V−C), then we have

V1 ∈ cl[V2]
u ⇐⇒ huinf(V1, V2) = huinf(V2, V1) ≤ 0.

(iii) If V1 ∈ cl(V±C) and V2 ∈ cl(V±C), then we have

V1 ∈ cl[V2]
l&u ⇐⇒ hl&u

inf (V1, V2) = hl&u
inf (V2, V1) ≤ 0.
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4.3. The weighted set order relations. In this subsection, we introduce new
type set relations proposed by Chen-Köbis-Köbis-Yao in 2017 and investigate its
algebraic and ordinal structures in semi-vector space.

Definition 4.25 (Chen-Köbis-Köbis-Yao [7]). Let C ⊂ Y be a solid closed convex
cone, λ ∈ [0, 1] and k0 ∈ intC. For A, B ∈ V , we define

A ⪯λ
k0 B ⇐⇒ λhlinf(A,B) + (1− λ)huinf(A,B) ≤ 0,

A ≺λ
k0 B ⇐⇒ λhlinf(A,B) + (1− λ)huinf(A,B) < 0.

In this subsection, we investigate the set relations ⪯λ
k0 and ≺λ

k0 which are con-
tinuous research of [7].

Theorem 4.26 ( [5, 7]). Let C ⊂ Y be a solid closed convex cone, λ ∈ [0, 1] and
k0 ∈ intC. Then for A, B, D ∈ V and α ≥ 0, the following statements hold.

(i) A ⪯λ
k0 B implies A+D ⪯λ

k0 B +D.

(ii) A ⪯λ
k0 B implies αA ⪯λ

k0 αB.

(iii) ⪯λ
k0 is reflexive and transitive.

(iv) ≺λ
k0 is transitive.

(v) If A ∈ VC is C-closed and B ∈ V−C is (−C)-closed, then A ≤l&u
C B implies

A ⪯λ
k0 B.

(vi) If A ∈ VC is (−C)-compact and B ∈ V−C is C-compact, then we have that
A <l&u

intC B implies A ≺λ
k0 B.

We see by Proposition 4.26 that (V,+, ·,⪯λ
k0) is a preordered semi-vector space.

In a similar way as Section 2, we can define the following new equivalence relation

A ≃λ,k0 B ⇐⇒ A ⪯λ
k0 B and B ⪯λ

k0 A.

Hence, we can generate the set of equivalence class which is denoted by [·]λk0 .
Proposition 4.27 ( [5]). The following statement holds:

[−A]λk0 = [A]λk0 .

Lemma 4.28. We define a quotient space (V/≃λ,k0) and its operations as follows

(w-+): [A]λk0 + [B]λk0 := [A+B]λk0 for all A,B ∈ V,
(w-⊙): α⊙ [A]λk0 := [α⊙A]λk0 for all A ∈ V , α ≥ 0.

Then the above operations are well-defined.

Proof. Using (vii) and (viii) of Proposition 4.20, we obtain

(a) A ≃λ,k0 Â and B ≃λ,k0 B̂ implies A+B ≃λ,k0 Â+ B̂,

(b) A ≃λ,k0 Â and α ≥ 0 implies αA ≃λ,k0 αÂ.

□
Theorem 4.29. We define the neutral element as follows:

[0Y ]
λ
k0 :=

{
D ∈ V λhlinf(0Y , D) + (1− λ)huinf(0Y , D) ≤ 0

λhlinf(D, 0Y ) + (1− λ)huinf(D, 0Y ) ≤ 0

}
Then (conv(V±C)/≃λ,k0) is a semi-vector space with the operations (w-+) and (w-⊙)
in Lemma 4.28.
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Proof. We can easily confirm that conv(V±C) satisfies the axioms of semi-vector
space (SV1)–(SV7). Using (l-SV8) in Theorem 4.13 and (iii), (iv) of Proposi-
tion 4.20, (SV8) holds. □

In a similar way as Section 4.1, we can consider the concept of minimality and
convex map on preordered semi-vector space (V,+,⊙,⪯λ

k0).

Definition 4.30. (⪯λ
k0-minimal and ≺λ

k0-minimal element [7]) Let S ⊂ V . We say

that Ā ∈ S is a ⪯λ
k0-minimal element if for any A ∈ S,

A ⪯λ
k0 Ā implies Ā ⪯λ

k0 A.

Moreover, Ā ∈ S is a ≺λ
k0-minimal element if for any A ∈ S,

A ≺λ
k0 Ā implies Ā ≺λ

k0 A.

The symbol Min(S;C, λ, k0) denotes the family of ⪯λ
k0-minimal elements of S and

wMin(S; intC, λ, k0) denotes the family of ≺λ
k0-minimal elements of S.

It is easily seen that

• l&u-Min(S;C) ⊂ Min(S;C, λ, k0) and
• l&u-wMin(S; intC) ⊂ wMin(S; intC, λ, k0).

For further investigation of minimality of the weighted set relations, see [5].

Definition 4.31 (⪯λ
k0-convexity). Let K be a convex set in a semi-vector space X.

A set-valued map F : X → V is said to be ⪯λ
k0-convex on K if for each x1, x2 ∈ K

and λ ∈ [0, 1], one has

F (λx1 + (1− λ)x2) ⪯λ
k0 λF (x1) + (1− λ)F (x2).

5. Conclusions

In this paper, we first introduced the concept of preordered semi-vector space
which is a natural generalization of ordered vector space. The concept of semi-
vector space is convenient for dealing with the set optimization problem and has
characteristic property “pointwise convex”. Cancelation law of set relations (Propo-
sition 4.4) holds under additional conditions.

We have found by Proposition 4.26 that the weighted set relation ⪯λ
k0 has the

same algebraic and ordinal structures as ≤l
C , ≤u

C and ≤l&u
C . In particular, the

concept of C-convexity proposed by Luc [32] plays a fundamental role to define
an ordinary algebraic operation on V. Moreover, we have found that ⪯λ

k0 contains

≤l&u
C under some natural conditions by characterization theorems of set relations

via nonlinear scalarization technique (Theorem 4.21).
Since set relation ≤l&u

C has wide applications in engineering (see [20, 34]), the

author infer that investigations of ⪯λ
k0 will be an important subject of the set

optimization problem. The above facts raise a crucial question for how λ in ⪯λ
k0 is

determined, and this problem has strong relationship with probability and statistics.
The concept of convex metric space proposed by Takahashi [42] is also an interesting
topic and it will be also important subject in pursuing how this concept in semi-
vector space is introduced.
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