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(3) ρ(αx + βy) ≤ ρ(x) + ρ(y) for each x, y ∈ X and each α, β ≥ 0 satisfying
α+ β = 1.

The vector space

Xρ := {x ∈ X : ρ(λx) → 0 as λ → 0}
is called a modular space.

Assume that ρ is a modular defined on a vector space X. We say that the modular
ρ satisfies a ∆2-type condition if there exists a number M > 0 such that

(2.1) ρ(2x) ≤ Mρ(x), x ∈ Xρ.

The authors of [12] considered a modular function space Lρ (which is a particular
case of a modular space) with a modular ρ satisfying a ∆2-type condition. They
showed that if T is a self-mapping of a closed subset K of Lρ such that for some
c ∈ [0, 1),

ρ(T (x)− T (y)) ≤ cρ(x, y) for all x, y ∈ K

and such that there exists x0 ∈ K satisfying

sup{ρ(2T p(x0)) : p = 1, 2, . . . } < ∞,

then T has a fixed point.
Assume that ρ is a modular defined on the vector space X. For each x, y ∈ X,

define
d(x, y) := ρ(x− y).

It is easy to see that for each x, y ∈ X, d(x, y) = 0 if and only if x = y and that
d(x, y) = d(y, x).

Assume that ρ satisfies the ∆2-type condition (2.1) with a number M > 0. Then
for each x, y, z ∈ Xρ, we have

d(x, z) = ρ(x− z) = ρ((x− y) + (y − z))

= ρ(2(2−1(x− y) + 2−1(y − z)))

≤ Mρ(2−1(x− y) + 2−1(y − z))

≤ M(ρ(x− y) + ρ(y − z))

≤ Md(x, y) +Md(y, z).

We say that a modular ρ is uniformly continuous (see Definition 5.4 of [11]) if for
each ϵ > 0 and each L > 0, there exists δ > 0 such that

(2.2) |ρ(x+ y)− ρ(x)| ≤ ϵ

for each pair x, y ∈ Xρ satisfying ρ(y) < δ and ρ(x) < L.
Assume that the modular ρ is uniformly continuous and that ϵ > 0 and L > 0.

Then there exists a number δ > 0 such that (2.2) holds for each pair x, y ∈ Xρ

satisfying ρ(y) ≤ δ and ρ(x) ≤ L.
Assume now that the points x, y, z ∈ Xρ satisfy

d(x, y) ≤ L, d(y, z) ≤ δ.

Then
ρ(x− y) ≤ L, ρ(y − z) ≤ δ,

d(x− z) = ρ(x− z) = ρ((x− y) + (y − z))
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and in view of the choice of δ,

|d(x, z)− d(x, y)| = |ρ(x− z)− ρ(x− y)| ≤ ϵ.

Thus we have shown that for each ϵ > 0 and each L > 0, there exists δ > 0 such
that if x, y, z ∈ Xρ satisfy

d(x, y) ≤ L, d(y, z) ≤ δ,

then

|d(x, z)− d(x, y)| ≤ ϵ.

In other words, d is uniformly continuous.

3. Generalized metric space

Assume that X is a nonempty set, d : X×X → [0,∞], M > 0, and that for each
x, y, z ∈ X,

(3.1) d(x, y) = 0 if and only if x = y,

(3.2) d(x, y) = d(y, x)

and

(3.3) d(x, z) ≤ Md(x, y) +Md(y, z).

We call the pair (X, d) a generalized metric space. For each point x ∈ X and each
number r > 0, set

Bd(x, r) := {y ∈ X : d(x, y) ≤ r}.
Clearly, a generalized metric space is both a generalization of the concept of a mod-
ular space and a generalization of the concept of a metric space. By investigating
generalized metric spaces we are able to unify the study of these two important
classes of spaces. For specific examples of modular spaces, see [11,14].

We equip the space X with the uniformity determined by the base

(3.4) U(ϵ) := {(x, y) ∈ X ×X : d(x, y) ≤ ϵ}, ϵ > 0.

This uniform space is metrizable (by a metric d̃). We also equip the space X with
the topology induced by this uniformity and assume that the uniform space X is
complete.

Consider a sequence {xn}∞n=1 ⊂ X and a point x ∈ X. Clearly, limn→∞ xn = x
if and only if limn→∞ d(xn, x) = 0 and {xn}∞n=1 is a Cauchy sequence if and only if
for each ϵ > 0, there exists a natural number n(ϵ) such that d(xn, xm) ≤ ϵ for every
pair of integers n,m ≥ n(ϵ).

A set E ⊂ X is said to be bounded if

sup{d(x, y) : x, y ∈ E} < ∞.

Assume that ϕ : [0,∞) → [0, 1] is a decreasing function such that

ϕ(t) < 1 for all t > 0.

In [21] we proved the following fixed point result for a Rakotch type contractive
operator which maps a closed subset of the space into the space.
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Theorem 3.1. Let K be a nonempty closed subset of X and let T : K → X satisfy

d(T (x), T (y)) ≤ ϕ(d(x, y))d(x, y)

for each x, y ∈ K satisfying d(x, y) < ∞. Assume that for each integer n ≥ 1, there
exists a point xn ∈ K such that

Tn(xn) exists and belongs to K

and that the set

E := {T i(xn) : n = 1, 2, . . . and i ∈ {0, . . . , n}}
is bounded. Then there exists a point x∗ ∈ K such that T (x∗) = x∗. Moreover, this
fixed point is unique if d(x, y) < ∞ for each pair x, y ∈ K.

We say that the generalized metric d is uniformly continuous on bounded sets if
for each nonempty bounded set D ⊂ X and each ϵ > 0, there exists a number δ > 0
such that for each x, y ∈ D and each z ∈ X satisfying d(y, z) ≤ δ, the inequality

|d(x, y)− d(x, z)| ≤ ϵ

holds.
From now on we assume that the generalized metric d is uniformly continuous

on bounded sets.

Proposition 3.2. Assume that K ⊂ X is a nonempty and bounded set and that
ϵ > 0. Then there exists δ > 0 such that for each x1, x2 ∈ K and each y1, y2 ∈ X
which satisfy

d(xi, yi) ≤ δ, i = 1, 2,

the inequality
|d(x1, x2)− d(y1, y2)| ≤ ϵ

holds.

Proof. Set

K0 = {ξ ∈ X : there is z ∈ K such that d(z, ξ) ≤ 1}.
Clearly, K0 is bounded. In view of the uniform continuity condition imposed on d,
there exists δ ∈ (0, 2−1) such that for each x, y1 ∈ K0 and each y2 ∈ X satisfying
d(y1, y2) ≤ δ, we have

|d(x, y1)− d(x, y2)| ≤ ϵ/4.

Assume that x1, x2 ∈ K and y1, y2 ∈ X satisfy

d(xi, yi) ≤ δ, i = 1, 2.

It is not difficult to see that y1, y2 ∈ K0. When combined with the choice of δ, this
implies that

|d(x1, x2)− d(x1, y2)| ≤ ϵ/4

and
|d(x1, y2)− d(y1, y2)| ≤ ϵ/4.

These inequalities imply that

|d(x1, x2)− d(y1, y2)| ≤ ϵ/2.

This completes the proof of Proposition 3.2. □
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4. The main result

We use the notations and definitions introduced in Section 3 and assume that all
the assumptions made there hold.

Assume that ϕ : [0,∞) → [0, 1] is a decreasing function such that

(4.1) ϕ(t) < 1 for all t > 0.

Now we proceed to present and prove a fixed point result for a Rakotch type con-
tractive operator which extends Theorem 3.1 to the case where only �inexact orbits
of arbitrary lengths exist.

Theorem 4.1. Let K be a nonempty closed subset of X and let T : K → X satisfy

(4.2) d(T (x), T (y)) ≤ ϕ(d(x, y))d(x, y)

for each x, y ∈ K satisfying d(x, y) < ∞. Assume that for each integer n ≥ 1, there
exists an inexact orbit

(4.3) {x(n)i : i = 0, . . . , n} ⊂ K,

satisfying for each i ∈ {0, . . . , n− 1},

(4.4) d(T (x
(n)
i ), x

(n)
i+1) ≤ 1/n

and that the set

E := {x(n)i : n = 1, 2, . . . and i ∈ {0, . . . , n}}

is bounded. Then there exists a point x∗ ∈ K such that T (x∗) = x∗.

Proof. We let T 0(x) = x, x ∈ K, and set

(4.5) E0 := {z ∈ X : there exists ξ ∈ E for which d(z, ξ) ≤ 2}.

Clearly, E0 is a bounded set. Set

(4.6) M0 := sup{d(y, z) : y, z ∈ E0}.

Let ϵ > 0. Fix a positive number

(4.7) ∆ < 4−1ϵ(1− ϕ(ϵ/2)).

Proposition 3.2 implies that there exists δ ∈ (0, ϵ) such that for each

ξ1, ξ2, η1, η2 ∈ E0

which satisfy

d(ξi, ηi) ≤ δ, i = 1, 2,

the inequality

(4.8) |d(ξ1, ξ2)− d(η1, η2)| ≤ ∆

holds. Choose a natural number

(4.9) p(ϵ) > max{8δ−1 + 1, 2M0ϵ
−1(1− ϕ(ϵ))−1 + 2}.

Let ni, pi, i = 1, 2, be integers such that

(4.10) p(ϵ) ≤ pi ≤ ni, i = 1, 2.
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We claim that there exists an integer j ∈ {0, . . . , p(ϵ)} such that

d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j) ≤ ϵ.

Suppose to the contrary that this is not true. Then for all j = 0, . . . , p(ϵ)− 1,

(4.11) d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j) > ϵ.

Let j ∈ {0, . . . , p(ϵ)− 1}. In view of (4.2) and (4.11), we have

(4.12)

d(T (x
(n1)
p1−p(ϵ)+j), T (x

(n2)
p2−p(ϵ)+j))

≤ ϕ(d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j))d(x

(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j)

≤ ϕ(ϵ)d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j).

Inequalities (4.9)–(4.11) imply that for i = 1, 2, we have

(4.13) d(x
(ni)
pi−p(ϵ)+j+1, T (x

(ni)
pi−p(ϵ)+j)) ≤ n−1

i ≤ p(ϵ)−1 < 8−1δ.

By (4.5), (4.12), (4.13) and the choice of δ (see (4.8)),

(4.14)
d(x

(n1)
p1−p(ϵ)+j+1, x

(n2)
p2−p(ϵ)+j+1) ≤ ∆+ d(T (x

(n1)
p1−p(ϵ)+j), T (x

(n2)
p2−p(ϵ)+j))

≤ ∆+ ϕ(ϵ)d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j).

It follows from (4.7), (4.11) and (4.14) that

(4.15)

d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j)− d(x

(n1)
p1−p(ϵ)+j+1, x

(n2)
p2−p(ϵ)+j+1)

≥ (1− ϕ(ϵ))d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j)−∆

≥ ϵ(1− ϕ(ϵ))−∆ ≥ 2−1ϵ(1− ϕ(ϵ))

for all j = 0, . . . , p(ϵ)− 1. By (4.5), (4.6), (4.10) and (4.15),

M0 ≥ d(x
(n1)
p1−p(ϵ), x

(n2)
p2−p(ϵ))

≥ d(x
(n1)
p1−p(ϵ), x

(n2)
p2−p(ϵ))− d(x(n1)

p1 , x(n2)
p2 )

=

p(ϵ)−1∑
j=0

(d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j)− d(x

(n1)
p1−p(ϵ)+j+1, x

(n2)
p2−p(ϵ)+j+1)

≥ 2−1ϵ(1− ϕ(ϵ))p(ϵ)

and
p(ϵ) ≤ 2M0ϵ

−1(1− ϕ(ϵ))−1.

This, however, contradicts (4.9). The contradiction we have reached shows that
there does exist j ∈ {0, . . . , p(ϵ)} such that

(4.16) d(x
(n1)
p1−p(ϵ)+j , x

(n2)
p2−p(ϵ)+j) ≤ ϵ,

as claimed.
Next. we show that for all integers

i ∈ {j, . . . , n(ϵ)},
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we have

(4.17) d(x
(n1)
p1−p(ϵ)+i, x

(n2)
p2−p(ϵ)+i) ≤ ϵ.

Suppose to the contrary that this is not true. Then there exists k ∈ {j, . . . , p(ϵ)}
such that

(4.18) d(x
(n1)
p1−p(ϵ)+k, x

(n2)
p2−p(ϵ)+k) > ϵ.

In view of (4.16) and (4.18),
k > j.

We may assume without any loss of generality that (4.17) holds for all integers
i = j, . . . , k − 1 and, in particular,

(4.19) d(x
(n1)
p1−p(ϵ)+k−1, x

(n2)
p2−p(ϵ)+k−1) ≤ ϵ.

There are two cases:

(4.20) d(x
(n1)
p1−p(ϵ)+k−1, x

(n2)
p2−p(ϵ)+k−1) ≤ ϵ/2,

(4.21) d(x
(n1)
p1−p(ϵ)+k−1, x

(n2)
p2−p(ϵ)+k−1) > ϵ/2.

Assume that (4.20) holds. In view of (4.2) and (4.20),

d(T (x
(n1)
p1−p(ϵ)+k−1), T (x

(n2)
p2−p(ϵ)+k−1))

(4.22) ≤ d(x
(n1)
p1−p(ϵ)+k−1, x

(n2)
p2−p(ϵ)+k−1) ≤ ϵ/2.

By (4.4), (4.5), (4.9), (4.10) and the choice of δ (see (4.8)),

(4.23) |d(x(n1)
p1−p(ϵ)+k, x

(n2)
p2−p(ϵ)+k)− d(T (x

(n1)
p1−p(ϵ)+k−1), T (x

(n2)
p2−p(ϵ)+k−1))| ≤ ∆.

Inequalities (4.7), (4.22) and (4.23) imply that

d(x
(n1)
p1−p(ϵ)+k, x

(n2)
p2−p(ϵ)+k) ≤ ∆+ ϵ/2 < ϵ.

This contradicts (4.18). The contradiction we have reached proves that (4.21) holds.
By (4.2), (4.19) and (4.21),

(4.24)

d(T (x
(n1)
p1−p(ϵ)+k−1), T (x

(n2)
p2−p(ϵ)+k−1))

≤ ϕ(d(x
(n1)
p1−p(ϵ)+k−1, x

(n2)
p2−p(ϵ)+k−1))d(x

(n1)
p1−p(ϵ)+k−1, x

(n2)
p2−p(ϵ)+k−1)

≤ ϕ(ϵ/2)ϵ.

Clearly, (4.23) holds in this case too. It follows from (4.1), (4.23) and (4.24) that

d(x
(n1)
p1−p(ϵ)+k, x

(n2)
p2−p(ϵ)+k) ≤ ϕ(ϵ/2)ϵ+∆ ≤ ϵ.

This, however, contradicts (4.18). The contradiction we have reached yields that
(4.17) holds for all i ∈ {j, . . . , p(ϵ)} and

d(x(n1)
p1 , x(n2)

p2 ) ≤ ϵ.

For each integer p ≥ 1, denote by Ep the closure of the set

{x(n)k : n ≥ p is an integer and k ∈ {p, . . . , n}}.
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We have shown that the diameters of Ep (with respect to the metric d̃) tend to zero
as p → ∞. Therefore

(4.25) ∩∞
p=1Ep = {x∗},

where x∗ ∈ K.
Next, we show that T (x∗) = x∗. To this end, let ϵ > 0. In view of (3.4), there

exists an integer p ≥ 1 such that

(4.26) Ep × Ep ⊂ U(ϵ), p−1 < ϵ.

By (4.25) and (4.26),

(4.27) d(x∗, z) ≤ ϵ for all z ∈ Ep.

It follows from (4.27) and the definition of Ep that

(4.28) d(x∗, x
(p+1)
p ) ≤ ϵ, d(x∗, x

(p+1)
p+1 ) ≤ ϵ.

In view of (4.2) and (4.28), we have

d(T (x∗), T (x
(p+1)
p )) ≤ ϵ.

When combined with (4.26) and (4.28), this implies that

d(T (x∗), x
(p+1)
p+1 ) ≤ Md(T (x∗), T (x

(p+1)
p )) +Md(T (x(p+1)

p ), x
(p+1)
p+1 )

≤ Mϵ+Mp−1 < 2Mϵ.

When combined with (4.28), this implies that

d(x∗, T (x∗)) ≤ Md(x∗, x
(p+1)
p ) +Md(x

(p+1
p+1 , T (x∗))

≤ Mϵ+ 2M2ϵ.

Since ϵ is an arbitrary positive number, we conclude that T (x∗) = x∗, as asserted.
This completes the proof of Theorem 4.1. □
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