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In probability theory and stochastic processes theory, the convergence of a se-
quence of random variables has been an important topic, e.g. in central limit theo-
rems. It leads us to consider the summability of the sequence of random variables
by a given double sequence of real numbers A.

Let x = [X1, X2, X3, ...] = {Xn}∞n=1 be a sequence of such real valued random
variables defined on the same probability space Ω. We will consider the following
types of convergence of this sequence of random variables:

(1) Xn → X∞, a.e. in Ω;

(2) Xn → X∞, a.s.;

(3) Xn → X∞, in pr.;

(4) Xn → X∞, in Lp(Ω), for p ≥ 1.

In this paper, we are interested in finding the conditions on A, under which Ax
is convergent a.e., almost surely, in pr., or in Lp(Ω), respectively, for any given x
satisfying one of the above convergence conditions.

2. Some known results and a need for a new approach

The following results are straightforward consequences from the traditional summa-
bility theory ( [1], [6], [24]), where random variables have all values finite.

Proposition 2.1. If A is a method of summability, that is satisfies the following
three conditions1: 1

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) lim
i→∞

aij exists for j = 1, 2, . . . ;

(3) lim
i→∞

∑∞
j=1aij exists.

Then Xn → X∞, a.e. in Ω implies (Ax)n → X̃∞, a.e. in Ω for some random

variable X̃∞ that may be different from X∞.

Extended real numbers are often defined as:

Definition 2.2.

R∗ = R ∪ {−∞,∞}.(2.1)

Example 2.3. Let A =

(
1 −1 ...
... ... ...

)
, X1(ω) = ∞, and X2(ω) = ∞, for some

ω ∈ Ω. Then Ax(ω) =

(
∞−∞

...

)
and the first element is undefined in R∗.

To have the matrix multiplication Ax defined, where the vector x = {Xn} can
have infinite entries, we will extend real numbers in a different way than R∗.

Let V be a 2-dimensional vector space over R with basis (1, z), where z /∈ R. The
objects in V are linear polynomials in z. We order V by the following lexicographic
ordering:

a1 + b1z ≺ a2 + b2z iff b1 < b2 or b1 = b2 and a1 < a2.

1The notation “lub” is commonly used in this setting with the meaning “least upper bound”.
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This ordering is now consistent with the vector addition and multiplication by a
scalar2: 2 Let u, v, w ∈ V and a ∈ R, then:

u ≺ v ⇒ u+ w ≺ v + w

u ≺ v ⇒ a · u ≺ a · v, whenever 0 < a

Definition 2.4. In the above construction, we make the following notation:

∞ := z

R∗∗ := V

R∗∗+
∞ := {u ∈ R∗∗ : ∀a ∈ R (a ≺ u)}

R∗∗−
∞ := {u ∈ R∗∗ : ∀a ∈ R (u ≺ a)}
R∗∗
∞ := R∗∗+

∞ ∪ R∗∗−
∞ ,

where we asume every a ∈ R to equal a + 0 · ∞ and so be also a member of R∗∗.
We call R∗∗ the summable extended real numbers and R∗∗

∞ the summable infinite real
numbers.

Remark 2.5. In this new notation, R∗∗ = R ∪ R∗∗
∞, R∗ ⊂ R∗∗, and every u ∈ R∗∗

can be written in a unique way as u = a + b · ∞ for some a, b ∈ R. Then R∗∗+
∞ =

{a+ b ·∞ : a, b ∈ R and b > 0} and R∗∗−
∞ = {a+ b ·∞ : a, b ∈ R and b < 0}. This

allows us to explore the summability of random variables x = {Xn} with infinite
values in R∗∗ because {(Ax)n} will also be a sequence of random variables with
values in R∗∗ as it is summarized in the following Proposition.

Proposition 2.6. For every x = {Xn}, Xn : Ω → R∗∗, n = 1, 2, ... we have
Ax = {(Ax)n}, (Ax)n : Ω → R∗∗, n = 1, 2, ....

Remark 2.7. We emphasize here that there is no multiplication of R∗∗ elements
defined in spite of calling them “real numbers”. That is why we added the adjective
“summable”. We do not need such a multiplication, so we work only with the group
(R∗∗,+) and scalar multiplication by finite real numbers.

Definition 2.8. For any u = a + b · ∞ ∈ R∗∗ define the absolute value of u as
|u| := |a|+ |b| · ∞.

Example 2.9. Let u = −π − 3 · ∞ then u ∈ R∗∗+
∞ , |u| = π + 3 · ∞ ∈ R∗∗+

∞ , and
10100 +∞ ≺ |u|.

Remark 2.10. There is a cannonical projection from the set of random variables
X : Ω → R∗∗ to the set of random variables X : Ω → R∗, where each X(ω)
is mapped by the identity on R, positive infinite values R∗∗+

∞ (see the Definition
2.4) are mapped to +∞ and negative infinite values R∗∗−

∞ to −∞. Considering of
this projection allows us to extend the statements and proofs of all needed3 claims
and theorems for random variables X : Ω → R∗ to random variables X : Ω → R∗∗.
More precisely, random variables X : Ω → R∗∗ form a model of the theory of random
variables X : Ω → R∗ under the condition (3.1), albeit with more structure.

From now on, consider all random variables to be X : Ω → R∗∗.

2See more explanation in remarks that follow the definitions below.
3Classical results for X : Ω → R∗, such as Lemma 2.12, do not use any group structure.
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Lemma 2.11. (a) R∗∗
∞ =

⋂
K∈N

{u ∈ R∗∗ : |u| ≻ K},

(b) P (X ∈ R∗∗
∞) = lim

K→∞
P (|X| ≻K).

Proof. From definitions 2.4 and 2.8 we have R∗∗
∞ = {u ∈ R∗∗ : ∀a ∈ R (a ≺ |u|)},

which is equivalent to (a). So P (X ∈ R∗∗
∞) can be expressed as:

P

( ⋂
K∈N

{ω : X(ω) ∈ R∗∗ and |X(ω)| ≻ K}

)
= P

( ⋂
K∈N

{ω : |X(ω)| ≻ K}

)
.

Since ({ω : |X(ω)| ≻ K})∞K=1 is a decreasing sequence w.r.t. inclusion, we have

P

( ⋂
K∈N

{ω : |X(ω)| ≻K}

)
= lim

K→∞
P ({ω : |X(ω)| ≻ K}) = lim

K→∞
P (|X|≻K). □

The following claim is well known and we include it here as a lemma without
proof.

Lemma 2.12. (a) If Ω′ ⊆ Ω and P (Ω′) = 1, then Xn → X∞ , in Lp(Ω), is
equivalent to Xn → X∞ , in Lp(Ω′).

(b) If countably many random variables Xn are finite a.e. in Ω, then there is
Ω′ ⊆ Ω with P (Ω′) = 1, such that all Xn are finite in Ω′.

The following proposition shows that a sequence x = {Xn}∞n=1 of random vari-
ables converging in pr. to X∞ does not imply that Ax converges in pr. to X∞.

Proposition 2.13. Suppose that A is a regular method of summability, that is:

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) lim
i→∞

aij = 0, for j = 1, 2, . . . ;

(3) lim
i→∞

∑∞
j=1aij = 1.

Then Xn → X∞ in pr. is not sufficient for (Ax)n → X∞ in pr.

This is a well known result in probability theory. To show it, for the convenience
of the reader, we provide an example below. This example uses only finite values.

Example 2.14. We take interval [0, 1) as the sample space. If n = 2m+ i, for some
given m = 1, 2, 3, ..., and for some 0 ≤ i < 2m, then we define Xn as follows:

Xn(ω) =

{
4m+i, if ω ∈

[
i

2m , i+1
2m

)
0, otherwise

(2.2)

It is clear that Xn → 0 in pr. Taking the Cesaro Summability method A, for n ≥ 16,
noting m > 3 and so 4m−1 > 2m+1, we have:

(∑n
j=1Xj

n
> 1

)
=

 n∑
j=1

Xj > n


⊇

 n∑
j=1

Xj > 2m+1
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⊇

 2m−1∑
j=2m−1

Xj > 2m+1


=

2m−1−1∑
i=0

X2m−1+i > 2m+1


=

2m−1−1⋃
i=0

[
i

2m−1
,
i+ 1

2m−1

)
= [0, 1).

It implies P

(∑n
j=1Xj

n
> 1

)
= 1 and shows that

lim
n→∞

P

(∑n
j=1Xj

n
> 1

)
= 1 > 0.

Hence

∑n
j=1Xj

n
does not converge to 0 in pr..

The above example demonstrates that even with Cesaro Summability method
A, Xn → X∞ in pr. does not imply that (Ax)n → X∞ in pr.. Hence to assure
(Ax)n → X∞ in pr. for any given regular summability method A, a stronger
condition on the sequence (Xn) than Xn → X∞ in pr. is needed.

We now review the definition of almost sure covergence.

Definition 2.15. If for any λ > 0

lim
n→∞

P

(
sup

n≤m<∞
|Xm −X∞| ≻ λ

)
= 0, then we denote Xn

a.s.−−→ X∞.

We have easily the following corollary, which is well-known.

Corollary 2.16. Xn
a.s.−−→ X∞ implies Xn → X∞ in pr.

The following example shows that we still have problems with convergence.

Example 2.17. Let set S be such that P (S) > 0, and let X1(ω) = ∞ for ω ∈ S
and zero otherwise, and Xn(ω) = 0 everywhere for n = 2, 3, ...,∞. Then Xn → X∞
even in the strongest sense one can think of but, for A that has all elements in the
first column nonzero, we still don’t need have (Ax)n → X∞ even in weakest sense.

We will resolve this problem in two different ways. First, we add a condition
about finitenes almost everywhere, see 3.1 in the next section. And then we will
introduce “column-finite regular method of summability” in the last section.

All standard definitions of almost sure convergence are equivalent to convergence
almost everywhere and the following theorem shows that it is so also in our case.

Theorem 2.18. Xn
a.s.−−→ X∞ is equivalent to Xn → X∞ a.e. in Ω.
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Proof. We will prove the nontrivial direction (⇒). Consider the following subsets
of Ω:

Uk,n = {ω : sup
n≤m<∞

|Xm(ω)−X∞(ω)| ≻ 1

k
},

Uk =
⋂
n

Uk,n, n, k ∈ Z+

Then

Uk,n ⊇ Uk,n+1, Uk,n ⊆ Uk+1,n, Uk ⊆ Uk+1,

In this notation, Xn
a.s.−−→ X∞ means limn→∞ P (Uk,n) = P (Uk) = 0 for every

k > 0. Suppose, by contradiction, that there is U ⊆ Ω, such that P (U) > 0 and
(∀ω ∈ U) (Xn(ω) /→X∞(ω)). Then U ⊆

⋃
k Uk and 0 < P (U) ≤ P (

⋃
k Uk) = 0, a

contradiction. □

3. Some new stochastic summability results for random variables
finite a.e.

All random variables considered in this section are real random variables defined
on a probability space (Ω, P, F ) that are finite almost everywhere (finite a.e.), that
is, every random variable X, satisfies

P (X ∈ R) = 1.(3.1)

The following extension of the Integral and Expected value will be sufficient for
us in this section.

Definition 3.1. Let X be a random variable that is finite a.e. in Ω. Then

E(X) =

∫
Ω
X(ω)P (dω) :=

∫
{ω:X(ω)∈R}

X(ω)P (dω).

Theorem 3.2. Let Xn, X∞ be finite a.e., that is P (Xn ∈ R) = 1, P (X∞ ∈ R) = 1,
and A define a regular method of summability, that is

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) lim
i→∞

aij = 0 for j = 1, 2, . . . ;

(3) lim
i→∞

∑∞
j=1aij = 1.

Then Xn → X∞ a.e. in Ω implies (Ax)n → X∞ a.e. in Ω.

Proof. From Lemma 2.12(b) and the assumptions, we have the existence of a se-
quence of sets Sn and sets S∞, S :

P (|Xn| ∈ R) = 1 ⇒ ∃Sn ⊆ Ω : P (Sn) = 1 and ω ∈ Sn ⇒ |Xn(ω)| ∈ R
P (|X∞| ∈ R) = 1 ⇒ ∃S∞ ⊆ Ω : P (S∞) = 1 and ω ∈ S∞ ⇒ |X∞(ω)| ∈ R
P (Xn → X∞) = 1 ⇒ ∃S ⊆ Ω : P (S) = 1 and ω ∈ S ⇒ Xn(ω) → X∞(ω)

Consider Tn =
⋂n

i=1 Si∩S∩S∞. The sequence (Tn)
∞
i=1 is decreasing w.r.t. inclusion,

so P (T ) = P (
⋂
Tn) = limn→∞ P (Tn) = 1. Now, for every ω ∈ T we have |Xn(ω)| ∈

R and |X∞(ω)| ∈ R. So the Silverman-Toeplitz theorem applies on Tn for each n
and consequently (Ax)n → X∞ a.e. in Ω. □
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Theorem 3.3. Suppose that A is a regular method of summability and its norm
|A| = M . That means, by Silverman-Toeplitz Theorem:

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) lim
i→∞

aij = 0, for j = 1, 2, . . . ;

(3) lim
i→∞

∑∞
j=1aij = 1.

Then Xn
a.s.−−→ X∞ implies (Ax)n

a.s.−−→ X∞ , whenever

Xn, X∞ are finite a.e., that is, P (Xn ∈ R) = 1, and P (X∞ ∈ R) = 1.

Remark 3.4. This theorem is, of course, an immediate consequence of the a.s and
a.e. equivalence (Theorem 2.18). Nevertheless, we give here this less abstract proof
in the classical Mathematical Analysis style. The proof of an analogical theorem
in the next section based on this proof will get simpler and the abstract proof for
covergence everywhere will get more complicated. Considering that the constraction
of the extended real numbers is new, we hope that the reader will benefit from these
additional proofs for almost sure convergence.

Proof of Theorem 3.3. By Lemma 2.11 and from finiteness a.e., we have conditions

(*) lim
K→∞

P (|Xn| ≻ K) = 0, lim
K→∞

P (|X∞| ≻ K) = 0.

For any given ε, δ > 0, we have to show that there exists N > 1, such that for all
n > N , the following inequality holds

P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ

)
< ε.

For the given ε, δ > 0, Xn
a.s.−−→ X∞ implies that there exists N2 > 1, such that

(3.2) P

(
sup

n≤k<∞
|Xk −X∞| ≻ δ

3M

)
<

ε

2
, for all n ≥ N2.

From conditions (*), for the already known ε and N2 there exists K > 1, such that

(3.3) P

 max
1≤k<N2
or k=∞

|Xk| ≻ K

 <
ε

2

For this fixed K > 1, we have

P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ

)

= P

 sup
n≤i<∞

|(Ax)i −X∞| ≻ δ : max
1≤k<N2
or k=∞

|Xk| ≤ K

(3.4)

+ P

 sup
n≤i<∞

|(Ax)i −X∞| ≻ δ : max
1≤k<N2
or k=∞

|Xk| ≻ K
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< P

 sup
n≤i<∞

|(Ax)i −X∞| ≻ δ : max
1≤k<N2
or k=∞

|Xk| ≤ K

+
ε

2
.(3.5)

For the fixed N2, there exists N3 ≥ N2, from condition (2) in this proposition, such
that

|anj | ≤
δ

6KN2
, for all n ≥ N3, and all 1 ≤ j < N2.

From condition (3) in this proposition, there exists N ≥ N3, such that∣∣∣∣∣∣
∞∑
j=1

anj − 1

∣∣∣∣∣∣ ≤ δ

3K
, for all n ≥ N, and so sup

n≤i<∞

∣∣∣∣∣∣
∞∑
j=1

aij − 1

∣∣∣∣∣∣ ≤ δ

3K
.

Now, for all n ≥ N , we have sup
n≤i<∞

|(Ax)i −X∞| ≻ δ : max
1≤k<N2
or k=∞

|Xk| ≤ K


=

 sup
n≤i<∞

∣∣∣∣∣∣
∞∑
j=1

aijXj −
∞∑
j=1

aijX∞ +

 ∞∑
j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ : max
1≤k<N2
or k=∞

|Xk| ≤ K


=

 sup
n≤i<∞

∣∣∣∣∣∣
∞∑
j=1

aij(Xj −X∞) +

 ∞∑
j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ : max
1≤k<N2
or k=∞

|Xk| ≤ K


=

 sup
n≤i<∞

∣∣∣∣∣∣
N2−1∑
j=1

aij(Xj −X∞) +

∞∑
j=N2

aij(Xj −X∞) +

 ∞∑
j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ :

max
1≤k<N2
or k=∞

|Xk| ≤ K


⊆

 sup
n≤i<∞

∣∣∣∣∣∣
N2−1∑
j=1

aij(Xj −X∞)

∣∣∣∣∣∣ ≻ δ

3

⋃ sup
n≤i<∞

∣∣∣∣∣∣
∞∑

j=N2

aij(Xj −X∞)

∣∣∣∣∣∣ ≻ δ

3


⋃ sup

n≤i<∞

∣∣∣∣∣∣
 ∞∑

j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ

3

⋂ max
1≤k<N2
or k=∞

|Xk| ≤ K


⊆

 sup
n≤i<∞

N2−1∑
j=1

|aij |(|Xj |+ |X∞|) ≻ δ

3

⋃ sup
n≤i<∞

∞∑
j=N2

|aij | |Xj −X∞| ≻ δ

3


⋃ sup

n≤i<∞

∣∣∣∣∣∣
 ∞∑

j=1

aij − 1

∣∣∣∣∣∣ |X∞| ≻ δ

3

 ∩ Ω

⊆

 sup
n≤i<∞

N2−1∑
j=1

δ

6KN2

(
max

1≤k<N2

|Xk|+ |X∞|
)

≻ δ

3
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⋃ sup
n≤i<∞

∞∑
j=N2

|aij | sup
N2≤k<∞

|Xk −X∞| ≻ δ

3

⋃(
δ

3K
|X∞| ≻ δ

3

)

⊆
[((

max
1≤k<N2

|Xk|+ |X∞|
)

≻ 2K

)⋃(
sup

N2≤k<∞
|Xk −X∞| ≻ δ

3M

)
⋃(

|X∞| ≻ K

)]

⊆ ∅ ∪

(
sup

N2≤k<∞
|Xk −X∞| ≻ δ

3M

)
∪∅.

Applying probability to these sets and by (3.2) we have:

P

 sup
n≤i<∞

|(Ax)i −X∞| ≻ δ : max
1≤k<N2
or k=∞

|Xk| ≤ K


≤ P

(
sup

N2≤k<∞
|Xk −X∞| ≻ δ

3M

)
<

ε

2

Now going back to (3.5) we can finish our proof:

P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ

)
<

ε

2
+

ε

2
= ε.

□

If we consider the Cesaro Summability method A, then we have the following
corollary of Theorem 3.3.

Corollary 3.5. For n = 1, 2, ..., let random variables Xn, X∞ satisfy

(a) Xn, X∞ are finite a.e.,

(b) Xn
a.s.−−→ X∞ .

Then

∑n
i=1Xi

n

a.s.−−→ X∞ .

Theorem 3.6. Let p ≥ 1. Suppose that A is a regular method of summability, that
is it satisfies the following conditions:

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) lim
i→∞

aij = 0, for j = 1, 2, . . . ;

(3) lim
i→∞

∑∞
j=1aij = 1.

Then Xn → X∞ , in Lp(Ω), implies (Ax)n → X∞ , in Lp(Ω), whenever

Xn, X∞ are finite a.e., that is, P (Xn ∈ R) = 1, P (X∞ ∈ R) = 1.
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Proof. For any given ε > 0, the condition Xn → X∞ , in Lp(Ω) (refer to Definition
3.1 and Lemma 2.12(a)) implies that there exists N1 > 1, such that for all n ≥ N1,
the following inequality holds

(E|Xn −X∞|p)
1
p <

ε

3M
.(3.6)

The condition Xn, X∞ ∈ Lp(Ω) implies that there exists K > 1, such that ||Xn||p ≤
K (again refer to Definition 3.1) for all n = 1, 2, ...,∞. For the fixed N1, Condition
(2) implies that there exists N2 ≥ N1, such that

|anj | ≤
ε

6KN1
, for all n ≥ N2, and all 1 ≤ j ≤ N1.(3.7)

From the condition (3) in this theorem, there exists N ≥ N2, such that∣∣∣∣∣∣
∞∑
j=1

anj − 1

∣∣∣∣∣∣ ≤ ε

3K
, for all n ≥ N.(3.8)

Now, for all n ≥ N , from (3.6), (3.7), and (3.8), we have

(E|(Ax)n −X∞|p)
1
p =

=

E

∣∣∣∣∣∣
∞∑
j=1

anjXj −
∞∑
j=1

anjX∞ +

 ∞∑
j=1

anj − 1

X∞

∣∣∣∣∣∣
p

1
p

≤

E

∣∣∣∣∣∣
∞∑
j=1

anj(Xj −X∞)

∣∣∣∣∣∣
p

1
p

+

E

∣∣∣∣∣∣
 ∞∑

j=1

anj − 1

X∞

∣∣∣∣∣∣
p

1
p

≤

E

∣∣∣∣∣∣
N1∑
j=1

anj(Xj −X∞)

∣∣∣∣∣∣
p

1
p

+

E

∣∣∣∣∣∣
∞∑

j=N1+1

anj(Xj −X∞)

∣∣∣∣∣∣
p

1
p

+

E

∣∣∣∣∣∣
 ∞∑

j=1

anj − 1

X∞

∣∣∣∣∣∣
p

1
p

≤
N1∑
j=1

|anj | (E |(Xj −X∞)|p)
1
p +

∞∑
j=N1+1

|anj | (E |(Xj −X∞)|p)
1
p

+

∣∣∣∣∣∣
 ∞∑

j=1

anj − 1

∣∣∣∣∣∣ (E |X∞|p)
1
p

≤ 2K

N1∑
j=1

|anj |+
∞∑

j=N1+1

|anj |
ε

3M
+

ε

3K
K

< ε.

□
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Similarly to the proof of Theorem 3.6, by applying the completeness property of
Lp(Ω), we can prove the following corollary.

Corollary 3.7. Let p ≥ 1. If A is a regular method of summability, that is it
satisfies the following conditions:

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) lim
i→∞

aij = 0, for j = 1, 2, . . . ;

(3) lim
i→∞

∑∞
j=1aij = 1.

Then x converges in Lp(Ω) implies that Ax converges in Lp(Ω), whenever

Xn, X∞ are finite a.e., that is, P (Xn ∈ R) = 1, and P (X∞ ∈ R) = 1.

Remark 3.8. By following the steps in the proof of Theorem 3.6, one can show
that both Theorem 3.6 and Corollary 3.7 hold for p = ∞.

4. Stochastic summability results, where only X∞ is finite a.e.

All random variables considered in this section are real random variables defined
on a probability space (Ω, P, F ) not necessarily finite almost everywhere. However,
we will still assume that random variable X∞ is finite a.e., that is

P (X∞ ∈ R) = 1.(4.1)

Changing this would require to introduce a new definition of pointwise convergence
on R∗∗

∞ and that is beyond the scope of this article4.4

Lemma 4.1. Given Xn, let there be a sequence of sets {Sn} that satisfies Sn ⊆
Sn+1, limn→∞ P (Sn) = 1, where Sn ⊆ {ω : Xn(ω) ∈ R}, let X∞ be finite a.e., that
is P (X∞ ∈ R) = 1, and let A define a column-finite regular method of summability,
that is

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) there is finitely many aij ̸= 0 for each j = 1, 2, . . .
(3) lim

i→∞

∑∞
j=1aij = 1.

Then Xn → X∞ a.e. in Ω implies (Ax)n → X∞ a.e. in Ω.

Proof. From Lemma 2.12(b) and the assumptions, we have the existence of a se-
quence of sets Sn as above and sets S∞, S :

P (X∞ ∈ R) = 1 ⇒ ∃S∞ ⊆ Ω : P (S∞) = 1 and X∞(ω) ∈ R for ω ∈ S∞

P (Xn → X∞) = 1 ⇒ ∃S ⊆ Ω : P (S) = 1 and Xn(ω) → X∞(ω) for ω ∈ S

Consider Tn = Sn ∩ S ∩ S∞. The sequence (Tn)
∞
i=1 is increasing w.r.t. inclusion,

so P (T ) = P (
⋃
Tn) = limn→∞ P (Tn) = 1. Now, fix ω ∈ T . There is N , such that

for all n > N we have ω ∈ Tn, so Xn(ω) ∈ R, X∞(ω) ∈ R, and Xn(ω) → X∞(ω).
However, due to the matrix A condition (2), there is also K, such that Aij = 0
for all i > K and j ≤ N . Now, for this ω we have a sequence of finite numbers

4We currently have essentially no convergence on R∗∗
∞ , for example, limn→∞ |an − a∞| =

limn→∞ |(1 + 1
n
)∞ − ∞| ̸= 0, so an /→a∞, that is the point-wise convergence in classic sense

fails here.



152 J. LI AND R. MENDRIS

{Xn(ω)}∞n=N+1 and a matrix A′ obtained from A by deleting first K rows and first
N columns, such that the sequence {(A′x)k(ω)}∞k=1 is same as {(Ax)n(ω)}∞n=K+1.
So the Silverman-Toeplitz theorem applies to A′ and {Xn(ω)}∞n=N+1, and we have
(A′x)k(ω) → X∞(ω), which is equivalent to (Ax)n(ω) → X∞(ω). This holds for all
ω ∈ T , consequently (Ax)n → X∞ a.e. in Ω. □
Example 4.2. In this example, the random variables are the same kind as X1 in
Example 2.17, but the convergence problem is resolved. Suppose n is a positive
integer, P (Vn) =

1
n > 0, Vn+1 ⊂ Vn, X∞(ω) = 0 for all ω, and

Xn(ω) =

{
∞, if ω ∈ Vn

0, if ω /∈ Vn.
(4.2)

Then P (
⋂
Vn) = 0 and for every ω /∈

⋂
Vn there is N , such that ω /∈ VN and

for all n ≥ N we have Xn(ω) = 0. Consequently Xn → X∞ a.e. in Ω and also

limn→∞ P (Xn ∈ R) = 1. Considering Sn = V complement
n = Ω−Vn, we can apply the

previous Lemma to a column-finite regular Summability method A, such as diagonal

Cesaro Summability method
∑2n−1

i=n Xn

n , since Sn satisfy the lemma’s conditions, and
get (Ax)n → 0 = X∞ a.e. in Ω.

Lemma 4.3. Let Xn → X∞ a.e. in Ω and X∞ be finite a.e.. Then there exists a
sequence of sets Sn that satisfy all their conditions required in Lemma 4.1.

Proof. From the convergence a.e. and finiteness a.e. conditions, there is a set
S′, P (S′) = 1, where Xn(ω) → X∞(ω) ∈ R. But then for any ω ∈ S′ also exists
N , such that for all integers n > N we have Xn(ω) ∈ R. Let Nω be least of such
integers. So S′ ⊆

⋃
Sn, where

Sn = {ω : Nω < n}.
Moreover Sn ⊆ {ω : Xn(ω) ∈ R}, Sn ⊆ Sn+1, and limn→∞ P (Sn) exists. However,
limn→∞ P (Sn) = P (

⋃
Sn) ≥ P (S′) = 1. Consequently limn→∞ P (Sn) = 1 and all

conditions hold now. □
As a corollary of the two lemmas above we have the following theorem.

Theorem 4.4. Let X∞ be finite a.e., that is P (X∞ ∈ R) = 1, and A define a
column-finite regular method of summability, that is

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) there is finitely many aij ̸= 0 for each j = 1, 2, . . .
(3) lim

i→∞

∑∞
j=1aij = 1.

Then Xn → X∞ a.e. in Ω implies (Ax)n → X∞ a.e. in Ω.

And we have a theorem with the same conditions also for almost sure convergence.

Theorem 4.5. Suppose that A is a column-finite regular method of summability
and its norm |A| = M . That means:

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) there is finitely many aij ̸= 0 for each j = 1, 2, . . . ;
(3) lim

i→∞

∑∞
j=1aij = 1.
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Then Xn
a.s.−−→ X∞ implies (Ax)n

a.s.−−→ X∞ , whenever

X∞ is finite a.e., that is, P (X∞ ∈ R) = 1.

Proof. This proof is based on the proof of Theorem 3.3. Please see Remark 3.4.
By Lemma 2.11 and from finiteness a.e., we have a condition

(*) lim
K→∞

P (|X∞| ≻ K) = 0

For any given ε, δ > 0, we have to show that there exists N > 1, such that for all
n > N , the following inequality holds

P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ

)
< ε.

For the given ε, δ > 0, Xn
a.s.−−→ X∞ implies that there exists N2 > 1, such that

(4.3) P

(
sup

n≤k<∞
|Xk −X∞| ≻ δ

3M

)
<

ε

2
, for all n ≥ N2.

From the condition (*), for the already known ε there exists K > 1, such that

P (|X∞| ≻ K) <
ε

2
.

For this fixed K > 1, we have

P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ

)
= P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ : |X∞| ≤ K

)
+ P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ : |X∞| ≻ K

)
< P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ : |X∞| ≤ K

)
+

ε

2
.(4.4)

For the fixed N2, there exists N3 ≥ N2, from condition (2) in this proposition, such
that

|anj | = 0, for all n ≥ N3, and all 1 ≤ j < N2.

From condition (3) in this proposition, there exists N ≥ N3, such that∣∣∣∣∣∣
∞∑
j=1

anj − 1

∣∣∣∣∣∣ ≤ δ

3K
, for all n ≥ N, and so sup

n≤i<∞

∣∣∣∣∣∣
∞∑
j=1

aij − 1

∣∣∣∣∣∣ ≤ δ

3K
.

Now, for all n ≥ N , we have(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ : |X∞| ≤ K

)

=

 sup
n≤i<∞

∣∣∣∣∣∣
∞∑
j=1

aijXj −
∞∑
j=1

aijX∞ +

 ∞∑
j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ : |X∞| ≤ K
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=

 sup
n≤i<∞

∣∣∣∣∣∣
∞∑
j=1

aij(Xj −X∞) +

 ∞∑
j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ : |X∞| ≤ K


=

 sup
n≤i<∞

∣∣∣∣∣∣
N2−1∑
j=1

aij(Xj −X∞) +

∞∑
j=N2

aij(Xj −X∞) +

 ∞∑
j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ :

|X∞| ≤ K


⊆

 sup
n≤i<∞

∣∣∣∣∣∣
N2−1∑
j=1

aij(Xj −X∞)

∣∣∣∣∣∣ ≻ δ

3

⋃ sup
n≤i<∞

∣∣∣∣∣∣
∞∑

j=N2

aij(Xj −X∞)

∣∣∣∣∣∣ ≻ δ

3


⋃ sup

n≤i<∞

∣∣∣∣∣∣
 ∞∑

j=1

aij − 1

X∞

∣∣∣∣∣∣ ≻ δ

3

⋂ (|X∞| ≤ K)

⊆

 sup
n≤i<∞

N2−1∑
j=1

|aij |(|Xj |+ |X∞|) ≻ δ

3

⋃ sup
n≤i<∞

∞∑
j=N2

|aij | |Xj −X∞| ≻ δ

3


⋃ sup

n≤i<∞

∣∣∣∣∣∣
 ∞∑

j=1

aij − 1

∣∣∣∣∣∣ |X∞| ≻ δ

3

 ∩ Ω

⊆

 sup
n≤i<∞

N2−1∑
j=1

0 ·
(

max
1≤k<N2

|Xk|+ |X∞|
)

≻ δ

3


⋃ sup

n≤i<∞

∞∑
j=N2

|aij | sup
N2≤k<∞

|Xk −X∞| ≻ δ

3

⋃(
δ

3K
|X∞| ≻ δ

3

)
⊆

[
∅
⋃(

sup
N2≤k<∞

|Xk −X∞| ≻ δ

3M

)⋃(
|X∞| ≻ K

)]

= ∅ ∪

(
sup

N2≤k<∞
|Xk −X∞| ≻ δ

3M

)
∪ ∅.

Applying probability to these sets and by (4.3) we have:

P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ : |X∞| ≤ K

)
≤ P

(
sup

N2≤k<∞
|Xk −X∞| ≻ δ

3M

)
<

ε

2

Now going back to (4.4) we finish our proof:

P

(
sup

n≤i<∞
|(Ax)i −X∞| ≻ δ

)
<

ε

2
+

ε

2
= ε.
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□

If we consider the diagonal Cesaro Summability method A, then we have the
following corollary of Theorem 4.5.

Corollary 4.6. For n = 1, 2, ..., let random variables Xn, X∞ satisfy

(a) X∞ is finite a.e.,

(b) Xn
a.s.−−→ X∞ .

Then

∑2n−1
i=n Xi

n

a.s.−−→ X∞ .

However, diagonal Cesaro Summability method fails for convergence in pr. giving
us the following Proposition.

Proposition 4.7. Suppose that A is a column-finite regular method of summability,
that is:

(1) lub
1≤i<∞

∑∞
j=1|aij | = M < ∞;

(2) there is finitely many aij ̸= 0 for each j = 1, 2, . . . ;
(3) lim

i→∞

∑∞
j=1aij = 1.

Then Xn → X∞ in pr. is not sufficient for (Ax)n → X∞ in pr.

This follows from a well known example 2.14 after applying it to diagonal Ce-
saro Summability method. For the convenience of the reader, we provide it in the
example below. This example uses only finite values.

Example 4.8. Taking the diagonal Cesaro Summability method A in Example
2.14, and again for n ≥ 16, we have:

(∑2n−1
j=n Xj

n
> 1

)
=

2n−1∑
j=n

Xj > n


⊇

2n−1∑
j=n

Xj > 2m+1


=

(
2m−1∑
k=i

X2m+k +
2i−1∑
k=0

X2m+1+k > 2m+1

)

=
2m−1⋃
k=i

[
k

2m
,
k + 1

2m

)
∪

2i−1⋃
k=0

[
k

2m+1
,
k + 1

2m+1

)
=

[
i

2m
, 1

)
∪
[
0,

i

2m

)
= [0, 1).
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This implies P

(∑2n−1
j=n Xj

n
> 1

)
= 1 and shows that

lim
n→∞

P

(∑2n−1
j=n Xj

n
> 1

)
= 1 > 0.

Hence

∑2n−1
j=n Xj

n
does not converge to 0 in pr..
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