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we consider a mechanical system as sketched in Figure 1.1. The block of mass m1

is anchored to a fixed horizontal wall and to the block of mass m2 by springs and
dampers, and the block of mass m2 is also attached to the wall by a pair of springs
and dampers. Suppose that the stiffnesses and the dampings are represented by the
functions ki : R+ → R+ and di : R+ → R+, i ∈ {1, 2, 3}, and ĝi : R+ × R× R → R,
i ∈ {1, 2}, denote external forces acting on the blocks, where R+ := [0,+∞). We
assume that, when the two blocks are in their equilibrium positions, the springs
and the dampers are also in their equilibrium positions. Let x (t) and y (t) be the
vertical displacements of the blocks from their equilibrium positions.

Figure 1.1

Then the system of ODEs describing the motion is (see, e.g., [50]){
m1ẍ+ k1 (t)x+ d1 (t) ẋ− k3 (t) (y − x)− d3 (t) (ẏ − ẋ) = ĝ1 (t, x, y) ,
m2ÿ + 2k2 (t) y + 2d2 (t) ẏ + k3 (t) (y − x) + d3 (t) (ẏ − ẋ) = ĝ2 (t, x, y) ,

or

(1.2)

{
ẍ+ 2f1 (t) ẋ− f3 (t) ẏ + β (t)x− γ1 (t) y + g1 (t, x, y) = 0,
ÿ + 2f2 (t) ẏ − f4 (t) ẋ− γ2 (t)x+ δ (t) y + g2 (t, x, y) = 0,

where

f1 (t) : =
1

2m1
(d1 (t) + d3 (t)) , f2 (t) :=

1

2m2
(2d2 (t) + d3 (t)) ,

f3 (t) : =
1

m1
d3 (t) , f4 (t) :=

1

m2
d3 (t) ,
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β (t) : =
1

m1
(k1 (t) + k3 (t)) , δ (t) :=

1

m2
(2k2 (t) + k3 (t)) ,

γ1 (t) : =
1

m1
k3 (t) , γ2 (t) :=

1

m2
k3 (t) ,

g1 (t, x, y) : = − 1

m1
ĝ1 (t, x, y) , g2 (t, x, y) := − 1

m2
ĝ2 (t, x, y) .

In [26] we studied the system (1.2) by two approaches, based on differential in-
equalities and on the Lyapunov method. In Theorem 2.2 below we provide some
results on the stability of the equilibrium of (1.2) using a generalized variant of
the Krasnoselskii theorem, on the metrizable locally convex space of the continuous
functions defined on a half-line, endowed with two countable families of seminorms
as chosen as to determine the same topology, of the uniform convergence on the com-
pact subsets of this interval. We will also show that for any solution (x, y) to system
(1.2) we have limt→+∞ x (t) = limt→+∞ ẋ (t) = limt→+∞ y (t) = limt→+∞ ẏ (t) = 0,
for small initial data, in the case when the nonlinearities are not necessarily locally
Lipschitz functions (hence the uniqueness is not guaranteed).

In [25] we researched the large-time behavior of the solutions of a system of two
coupled damped nonlinear oscillators using a generalized form of the Schauder-
Tychonoff fixed point theorem. For other results regarding the stability of the
equilibria of coupled damped nonlinear oscillators, we refer the reader to [15], [23],
[24], [34–37], [44], and the references therein. Investigations on the stability of the
equilibrium of a single damped nonlinear oscillator can be found, e.g., in [2], [5],
[13], [14], [16], [17], [21], [22], [43], [45], and the references therein. For fundamental
concepts and results in stability theory, see, e.g., [3], [9], [11], [12], [20], [33], and
for comprehensive studies on the fixed point theory we refer the reader to the
monographs [30], [38–42], [49].

The model in Figure 1.1 could be used, e.g., to describe the dynamics in ver-
tical direction of vibration reduction systems for horizontal cranes with loadings
suspended in two sides ([18], [47]). For other models of coupled oscillators or for
models from electric circuit theory, structural dynamics, described by systems of
type (1.2), we refer the reader to the monographs [10], [28], [48].

2. General framework and main result

The following hypotheses will be admitted:

(H1) fi ∈ C1 (R+;R+), fj ∈ C (R+;R+), and
∫ +∞
0 fj (t) dt < +∞, ∀i ∈ {1, 2} ,

∀j ∈ {3, 4};

(H2) there exist constants h, K1, K2 ≥ 0 such that∣∣∣ḟi (t) + f2i (t)
∣∣∣ ≤ Kif̃ (t) , ∀t ∈ [h,+∞), ∀i ∈ {1, 2} ,

where f̃ (t) := min {f1 (t) , f2 (t)} , ∀t ∈ R+;

(H3)
∫ +∞
0 f̃ (t) dt = +∞.
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(H4) β, δ ∈ C1 (R+;R+), β, δ are decreasing, and

β0 := lim
t→+∞

β (t) > 0, δ0 := lim
t→+∞

δ (t) > 0,

are such that

(2.1)
K1√
β0

+
K2√
δ0
< 1;

(H5) γi ∈ C (R+;R+) and
∫ +∞
0 γi (t) dt < +∞, ∀i ∈ {1, 2};

(H6) gi = gi(t, x, y) ∈ C (R+ × R× R;R) and fulfill the relations

(2.2) |g1 (t, x, y)| ≤ r1 (t)O (|x|) , ∀t ∈ R+, ∀y ∈ R,

(2.3) |g2 (t, x, y)| ≤ r2 (t)O (|y|) , ∀t ∈ R+, ∀x ∈ R,

where ri ∈ C (R+;R+),
∫ +∞
0 ri (t) dt < +∞, ∀i ∈ {1, 2} , and O(|x|) denotes the

big-O Landau symbol as x→ 0 (similarly for O(|y|));

(H7) gi = gi (t, x, y) is locally Lipschitzian in x, y, ∀i ∈ {1, 2}.

(H8) There is a p > 0, such that fi (t) ≥ p, ∀t ≥ 0, ∀i ∈ {1, 2}.

Remark 2.1. As in, e.g., [26, Remark 2.1], we deduce that if (H1) and (H2) hold,

then fi, ḟi are bounded, i ∈ {1, 2} .

The main result of this paper in the following.

Theorem 2.2.

i) Suppose that the hypotheses (H1)-(H6) are fulfilled. Then for every solution
(x, y) of the system (1.2) , we have

lim
t→+∞

x (t) = lim
t→+∞

ẋ (t) = lim
t→+∞

y (t) = lim
t→+∞

ẏ (t) = 0,

for small initial data.
ii) If the hypotheses (H1)-(H7) are fulfilled, then the null solution of (1.2) is

asymptotically stable.
iii) If the hypotheses (H1), (H2), (H4)-(H7) are fulfilled, then the null solution

of (1.2) is uniformly stable.
iv) If the hypotheses (H1), (H2), (H4)-(H8) are fulfilled, then the null solution

of (1.1) is uniformly asymptotically stable.

Remark 2.3. Let us note that in order to prove i), the hypothesis (H7), which
ensures the uniqueness of the solution of any initial value problem associated to
the system (1.2), is not needed. Hence, while ii)-iv) are comparable to the stability
results reported in [26, Theorem 2.1], the statement i) is new and is obtained by
using a generalized variant of the Krasnoselskii fixed point theorem (see Section 3
below). So we emphasize the efficiency of the fixed point method in studying the
behavior at infinity of the solutions of (1.2) .
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3. Proof of Theorem 2.2

Using the transformation (similar to that introduced by Burton and Furumochi
in [5]),

(3.1)



ẋ = u− f1 (t)x

u̇ =
[
ḟ1 (t) + f21 (t)− β (t)

]
x− f1 (t)u+ [γ1 (t)− f2 (t) f3 (t)] y

+f3 (t) v − g1 (t, x, y)
ẏ = v − f2 (t) y

v̇ = [γ2 (t)− f1 (t) f4 (t)]x+ f4 (t)u+
[
ḟ2 (t) + f22 (t)− δ (t)

]
y

−f2 (t) v − g2 (t, x, y)

the system (1.2) becomes, as in [26],

(3.2) ż = U (t) z + V (t) z + F (t, z) ,

where

z =


x
u
y
v

 , U (t) =


−f1 (t) 1 0 0
−β (t) −f1 (t) γ1 (t) 0

0 0 −f2 (t) 1
γ2 (t) 0 −δ (t) −f2 (t)

 ,

V (t) =


0 0 0 0

ḟ1 (t) + f21 (t) 0 −f2 (t) f3 (t) f3 (t)
0 0 0 0

−f1 (t) f4 (t) f4 (t) ḟ2 (t) + f22 (t) 0

 ,

F (t, z) =


0

−g1 (t, x, y)
0

−g2 (t, x, y)

 .

and our large time behavior question reduces to the large time behavior of the
solutions of (3.2).

Take t0 ≥ 0 and let

Z (t, t0) = (aij (t, t0))i,j∈1,4 , t ≥ t0,

be the fundamental matrix of the system

ż = U (t) z,

which equals the identity matrix for t = t0. Let ∥·∥0 be the norm in R4 defined by

(3.3) ∥z∥0 =
(
β0x

2 + u2 + δ0y
2 + v2

)1/2
, for z = (x, u, y, v)⊤ ,

which is obviously equivalent to the Euclidean norm.

For z0 = (x0, u0, y0, v0)
⊤ ∈ R4, we deduce as in [25], [26], for all t ≥ t0

(3.4) ∥Z (t, t0) z0∥0 ≤ λ ∥z0∥0 α(t0)e
∫ t
t0

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du

and for all t ≥ s ≥ t0 ≥ 0
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(3.5)

∥∥∥Z (t, t0)Z (s, t0)
−1 e2

∥∥∥
0
≤ e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du
,∥∥∥Z (t, t0)Z (s, t0)

−1 e4

∥∥∥
0
≤ e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du
,

(3.6)
∥∥∥Z (t, t0)Z (s, t0)

−1 z0

∥∥∥
0
≤ Λ ∥z0∥0 e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du
,

where λ := max
{
1, 1/

√
β0, 1/

√
δ0
}
, α(t0) :=

√
β (t0) + δ (t0) + 2,

Λ := max
{√

β (0) /β0,
√
δ (0) /δ0

}
, γ (t) := max {γ1 (t) , γ2 (t)} ,

ζ (t) := min {β (t) , δ (t)} , ∀t ∈ R+, e2 = (0, 1, 0, 0)⊤ , and e4 = (0, 0, 0, 1)⊤ .

For t0 ≥ 0 we consider the functional space

Cc (t0) :=
{
z : [t0,+∞) → R4, z continuous

}
,

which becomes a complete metrizable locally convex space (i.e., a Fréchet space)
with respect to each of the countable families of seminorms

(3.7) ∥z∥n := sup
t∈[t0,n]

{∥z (t)∥0} , n ∈ N, n > t0,

and

(3.8) ∥z∥λn
:= sup

t∈[t0,n]

{
∥z (t)∥0 e

−λn(t−t0)
}
, n ∈ N, n > t0,

where λn > 0 (n ∈ N, n > t0) are positive numbers to be specified later.

Remark 3.1. It is readily seen that a sequence (wm)m ⊂ Cc (t0) is convergent to
w ∈ Cc (t0) , with respect to the family of seminorms (3.8) ⇐⇒ (wm)m ⊂ Cc (t0) is
convergent to w ∈ Cc (t0) , with respect to the family of seminorms (3.7) .

Indeed, let us consider (wm)m ⊂ Cc (t0) convergent to w ∈ Cc (t0) , with respect
to the family of seminorms (3.8) . Let n ∈ N, n > t0 and ε > 0 be given. Then there
is M ∈ N, such that ∀m ≥M

∥wm (t)− w (t)∥0 e
−λn(t−t0) < εe−λn(n−t0), ∀t ∈ [t0, n] .

Hence
∥wm (t)− w (t)∥0 < εe−λn(n−t) ≤ ε, ∀t ∈ [t0, n]

and so wm → w, with respect to the family of seminorms (3.7) . The converse can
be easily deduced.

Therefore, the families of seminorms (3.7) and (3.8) define on Cc (t0) the same
topology, of the uniform convergence on the compact subsets of [t0,+∞), for every
sequence λn. We also mention that A ⊂ Cc (t0) is relatively compact if and only
if it is equicontinuous and uniformly bounded on the compact subsets of [t0,+∞)
(the Arzelà-Ascoli Theorem).

Let t0 ≥ 0 and z0 ∈ R4 be arbitrary. We define on Cc (t0) the operators

(3.9) (Aw) (t) := Z (t, t0) z0 +

∫ t

t0

Z (t, t0)Z
−1 (s, t0)V (s)w (s) ds,
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(3.10) (Bw) (t) :=

∫ t

t0

Z (t, t0)Z
−1 (s, t0)F (s, w (s)) ds,

for all w ∈ Cc (t0) and for all t ≥ t0 and, obviously, the set of the solutions of (3.2)
fulfilling the initial condition z (t0) = z0 is equal to the set of the fixed points of
A+B.

From (2.2) , (2.3) we infer that there exist Mi, li > 0, i ∈ {1, 2} , such that

(3.11)
|g1 (t, x, y)| ≤M1r1 (t) |x| , if |x| < l1,
|g2 (t, x, y)| ≤M2r2 (t) |y| , if |y| < l2.

Let q (t) be the unique solution of the initial value problem

(3.12)
q̇ (t) =

[
−f̃ (t) + |ḟ1(t)+f2

1 (t)|√
β0

+
|ḟ2(t)+f2

2 (t)|√
δ0

+ ν (t)

]
q (t) , t ≥ t0,

q (t0) = λ ∥z0∥0 α(t0),
where

ν (t) :=
γ (t)

2
√
ζ (t)

+ f3 (t) + f4 (t) +
f1 (t) f4 (t)√

β0
+
f2 (t) f3 (t)√

δ0

+
M1r1 (t)√

β0
+
M2r2 (t)√

δ0
, ∀t ≥ 0.

Obviously, for t ≥ t0, we have

q (t) = λ ∥z0∥0 α(t0)e
−

∫ t
t0

f̃(s)ds
e

∫ t
t0

[
|ḟ1(s)+f21 (s)|√

β0
+
|ḟ2(s)+f22 (s)|√

δ0

]
ds

e
∫ t
t0

ν(s)ds

and, due to the hypotheses (H1), (H2), (H4)-(H6) and Remark 2.1, we obtain∫ +∞
0 ν(s)ds < +∞.
Now, consider the set

S (t0, ρ) := {w ∈ Cc (t0) | ∥w (t)∥0 ≤ ρ and ∥w (t)∥0 ≤ q (t) , ∀t ≥ t0} ,

for t0 ≥ 0 and ρ > 0. Since w0 (t) := min {ρ, q (t)} (0, 1, 0, 0)⊤, ∀t ≥ t0, is contained
in S (t0, ρ) , it follows that the set S (t0, ρ) is nonempty. Obviously S (t0, ρ) is a
complete and convex subset of Cc (t0), ∀t0 ≥ 0, ∀ρ > 0.

We first state and prove the following useful result.

Lemma 3.2. There exists l > 0, such that for all t0 ≥ 0 and for all ρ ∈ (0, l), there
exists a > 0, such that for all z0 with ∥z0∥0 ∈ (0, a) and for all w1, w2 ∈ S (t0, ρ) ,
we have Aw1 +Bw2 ∈ S (t0, ρ) .

Proof. Let l := min
{√

β0l1,
√
δ0l2

}
, ρ ∈ (0, l), t0 ≥ 0, and z0 ∈ R4\ {0} with ∥z0∥0

small enough. Consider some arbitrary w1, w2 ∈ S (t0, ρ). Obviously, Aw1+Bw2 ∈
Cc (t0) .

From (3.4)− (3.6), (3.9), (3.10) we deduce (as in [26])

∥(Aw1) (t)∥0 ≤ λ ∥z0∥0 α(t0)e
∫ t
t0

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du

(3.13)

+

∫ t

t0

e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du
[∣∣∣ḟ1 (s) + f21 (s)

∣∣∣
√
β0
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+

∣∣∣ḟ2 (s) + f22 (s)
∣∣∣

√
δ0

+ f3 (s) + f4 (s)

+
f1 (s) f4 (s)√

β0
+
f2 (s) f3 (s)√

δ0

]
∥w1 (s)∥0 ds

and

(3.14) ∥(Bw2) (t)∥0 ≤
∫ t

t0

e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du

[
M1r1 (s)√

β0
+
M2r2 (s)√

δ0

]
∥w2 (s)∥0 ds,

for all t ≥ t0.
Since ∥wi (s)∥0 ≤ q (s) , ∀s ≥ t0, ∀i ∈ {1, 2} , we obtain from (3.13) and (3.14)

∥(Aw1 +Bw2) (t)∥0 ≤ λ ∥z0∥0 α(t0)e
∫ t
t0

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du

+

∫ t

t0

e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du
[∣∣∣ḟ1 (s) + f21 (s)

∣∣∣
√
β0

+

∣∣∣ḟ2 (s) + f22 (s)
∣∣∣

√
δ0

+ f3 (s) + f4 (s) +
f1 (s) f4 (s)√

β0

+
f2 (s) f3 (s)√

δ0
+
M1r1 (s)√

β0
+
M2r2 (s)√

δ0

]
q (s) ds

= : σ (t) , ∀t ≥ t0.

Easy computations show that σ (t) fulfills the initial value problem (3.12) and so
σ (t) = q (t) , ∀t ≥ t0. Hence ∥(Aw1 +Bw2) (t)∥0 ≤ q (t) , ∀t ≥ t0.

Thus, for all t ≥ t0

∥(Aw1 +Bw2) (t)∥0 ≤ λ ∥z0∥0 α(t0)e
−

∫ t
t0

f̃(s)ds
e
∫ t
t0

ν(s)ds
(3.15)

×e

∫ t
t0

[
|ḟ1(s)+f21 (s)|√

β0
+
|ḟ2(s)+f22 (s)|√

δ0

]
ds

.

Heaving in mind the hypothesis (H2), we distinguish two cases.

Case 1: t0 ∈ [0, h).
Since fi ∈ C1 ([0, h] ;R+) , fj , ri, β, δ, γ ∈ C ([0, h] ;R+) , ∀i ∈ {1, 2}, ∀j ∈ {3, 4} ,

from (3.15) we derive that there exists a constant D > 0, such that

∥(Aw1 +Bw2) (t)∥0 ≤ λ ∥z0∥0 α(t0)e
Dh, ∀t ∈ [t0, h] .

By (3.15) and hypothesis (H2) we get for all t ≥ h

∥(Aw1 +Bw2) (t)∥0 ≤ λ ∥z0∥0 α(t0)e
Dhe−K

∫ t
h f̃(s)dse

∫ t
h ν(s)ds

= : Π1 (t) ,

where K := 1− K1√
β0

− K2√
δ0

∈ (0, 1].
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Let

a := ρe−Dhe−
∫+∞
h ν(s)ds/

(
λ
√
β (t0) + δ (t0) + 2

)
.

From (2.1) we deduce that if ∥z0∥0 < a, then

∥(Aw1 +Bw2) (t)∥0 < ρ, ∀t ≥ t0.

Case 2: t0 ≥ h.
We obtain similarly for all t ≥ t0

∥(Aw1 +Bw2) (t)∥0 ≤ λ ∥z0∥0 α(t0)e
−K

∫ t
t0

f̃(s)ds
e
∫ t
t0

ν(s)ds

= : Π2 (t)

and, with the same a as in Case 1, ∥z0∥0 < a implies

∥(Aw1 +Bw2) (t)∥0 < ρ, ∀t ≥ t0.

□
Taking into account Lemma 3.2, for proving the part i) of Theorem 2.2, it suffices

to show that the system (3.2) admits solutions defined on R+ for initial data small
enough. We will do this using the following generalized variant of the Krasnoselskii
fixed point theorem, which can be found, e.g., in [8, Theorem 3.1].

Theorem 3.3. Let X be a Hausdorff locally convex topological vector space and P
a family of seminorms which generates the topology of X. Let D be a convex and
complete subset of X and let A, B be operators on D into X such that Ax+By ∈ D
for every pair x, y ∈ D. Suppose A is a µ−contraction for every µ ∈ P, B is
continuous, and B(D) is contained in a compact set. Then there is a point x in D
such that Ax+Bx = x.

We recall that A is µ−contraction iff there is Lµ ∈ [0, 1) such that for all x,
y ∈ D,

µ (Ax−Ay) ≤ Lµµ (x− y) .

Let t0 ≥ 0 and ρ ∈ (0, l), where l is given by Lemma 3.2.
We set X = Cc (t0). Let A, B be given by (3.9) , (3.10) , and D = S (t0, ρ) .

Step 1. Let n ∈ N, n > t0 be arbitrary. We prove that A is n−contraction. Let w1,
w2 ∈ S (t0, ρ) be given and t ∈ [t0, n]. Then

∥(Aw1 −Aw2) (t)∥0 =

∥∥∥∥∫ t

t0

Z (t, t0)Z
−1 (s, t0)V (s) [w1 (s)− w2 (s)] ds

∥∥∥∥
0

≤
∫ t

t0

e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du
[∣∣∣ḟ1 (s) + f21 (s)

∣∣∣
√
β0

+

∣∣∣ḟ2 (s) + f22 (s)
∣∣∣

√
δ0

+
f2 (s) f3 (s)√

δ0
+
f1 (s) f4 (s)√

β0

+f3 (s) + f4 (s)

]
∥w1 (s)− w2 (s)∥0 ds.
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Since fi, γ, ζ,
∣∣∣ḟi + f2i

∣∣∣ , fj are bounded on [t0, n], ∀i ∈ {1, 2} , ∀j ∈ {3, 4} , there
is a constant cn > 0, such that

∥(Aw1 −Aw2) (t)∥0 ≤ cn

∫ t

t0

∥w1 (s)− w2 (s)∥0 e
−λn(s−t0)eλn(s−t0)ds

≤ cn ∥w1 − w2∥λn

∫ t

t0

eλn(s−t0)ds

< cn ∥w1 − w2∥λn

eλn(t−t0)

λn
.

Hence

∥(Aw1 −Aw2) (t)∥0 e
−λn(t−t0) <

cn
λn

∥w1 − w2∥λn
, ∀t ∈ [t0, n] ,

and so
∥Aw1 −Aw2∥λn

≤ cn
λn

∥w1 − w2∥λn
.

By taking λn > cn, it follows that A is an n−contraction.

Step 2. We are going to show that B is continuous. Let wm, w ∈ S (t0, ρ) be such
that wm → w in Cc (t0) .

Consider n ∈ N, n > t0. Using (3.6) we have for every t ∈ [t0, n]

∥(Bwm −Bw) (t)∥0 ≤ Λ

∫ t

t0

e

∫ t
s

[
−f̃(u)+

γ(u)

2
√

ζ(u)

]
du

∥F (s, wm (s))

−F (s, w (s))∥0 ds.
Therefore there exists a constant dn > 0, such that

∥(Bwm −Bw) (t)∥0 ≤ dn

∫ n

t0

∥F (s, wm (s))− F (s, w (s))∥0 ds.

Since F (t, z) is uniformly continuous for t ∈ [t0, n] and ∥z∥0 ≤ ρ, it follows that the
sequence F (t, wm (t)) converges uniformly on [t0, n] to F (t, w (t)) . Hence Bwm →
Bw in Cc (t0) , which proves the continuity of H.

Step 3. Finally, we prove that B(S (t0, ρ)) is relatively compact. For this aim, we
need to show that for each n ∈ N, n > t0, the set {(Bw) (t) |t∈[t0,n], w ∈ S (t0, ρ)}
is uniformly bounded and equicontinuous.

Let n ∈ N, n > t0 be fixed. As at Step 2, we have for every w ∈ S (t0, ρ) and
t ∈ [t0, n] ,

(3.16) ∥(Bw) (t)∥0 ≤ dn

∫ n

t0

∥F (s, w (s))∥0 ds.

Since F (t, w) is bounded for t ∈ [t0, n], ∥w∥0 ≤ ρ, from (3.16) it follows that there
is a positive constant pn, such that ∥(Bw) (t)∥0 ≤ pn, ∀w ∈ S (t0, ρ) , ∀t ∈ [t0, n] .
Hence the set

{
(Bw) (t) |t∈[t0,n], w ∈ S (t0, ρ)

}
is uniformly bounded in Cc (t0).

Let w ∈ S(t0, ρ) be arbitrary and let z = Bw. By differentiating (3.10) with
respect to t ∈ [t0, n], we obtain

ż (t) = U (t) z (t) + F (t, w (t)) , ∀t ∈ [t0, n] .
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Since the functions fi, γi, ∀i ∈ {1, 2}, β, δ are bounded on [t0, n] and F (t, w) is
bounded for t ∈ [t0, n], ∥w∥0 ≤ ρ, it follows that there are positive constants φn,
ψn, such that

∥ż (t)∥0 ≤ φnpn + ψn, ∀t ∈ [t0, n].

So, the family of the derivatives of the functions from B(S (t0, ρ)) is uniformly
bounded and we infer that B(S (t0, ρ)) is equicontinuous on the compact subsets of
[t0,+∞).

By applying Theorem 3.3, it follows that A+ B admits fixed points in S (t0, ρ).
Hence a solution z(t) with initial data small enough exists on the whole R+.

As in the proof of Lemma 3.2, if t0 ∈ [0, h) we have

q (t) ≤ Π1 (t) , ∀t ≥ h,

and if t0 ≥ h,
q (t) ≤ Π2 (t) , ∀t ≥ t0.

Using the hypotheses (H1), (H3)-(H6), in both cases we deduce

lim
t→+∞

q (t) = 0.

Applying Lemma 3.2, it follows limt→+∞ ∥z (t)∥0 = 0 and so

lim
t→+∞

x (t) = lim
t→+∞

ẋ (t) = lim
t→+∞

y (t) = lim
t→+∞

ẏ (t) = 0.

ii) If g1, g2 are locally Lipschitzian with respect to x, y, then the solution exists
on the whole R+ for small initial data and is unique. So we can proceed with
the stability question for the null solution of the system (1.2) , which, due to the

boundedness of the functions fi, β, δ, γi,
∣∣∣ḟi + f2i

∣∣∣ , fj , gi, i ∈ {1, 2} , j ∈ {3, 4} ,
reduces to the stability of the null solution z (t) = 0 of (3.2) .

By virtue of i), for proving the asymptotic stability, we need to prove that the
null solution of (3.2) is stable.

Let ε > 0 and ρ ∈ (0, l) be fixed. Consider t0 ≥ 0 and z0 ∈ R4\ {0} , with
∥z0∥0 < a, where l and a are given by Lemma 3.1. If z (t, t0, z0) is the solution of
(3.2) which equals z0 for t = t0, then we have for all t ≥ t0

z (t, t0, z0) = Z (t, t0) z0 +

∫ t

t0

Z (t, t0)Z
−1 (s, t0) [V (s) z (s, t0, z0)

+F (s, z (s, t0.z0)) ds]

and, from i), ∥z (t, t0, z0)∥0 ≤ ρ and ∥z (t, t0, z0)∥0 ≤ q (t), ∀t ≥ t0.
We distinguish again two cases.

Case 1: t0 ∈ [0, h).
We deduce, as in the proof of Lemma 3.2,

∥z (t, t0, z0)∥0 ≤ λ ∥z0∥0 α(t0)e
Dh, ∀t ∈ [t0, h] ,

and

(3.17) ∥z (t, t0, z0)∥0 ≤ Π1 (t) , ∀t ≥ h.

Let

η = η (t0, ε) := εe−Dhe
−

∫+∞
t0

ν(s)ds
/ (λα(t0)) .
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Then we can show that if ∥z0∥0 < min {η, a}, then ∥z (t, t0, z0)∥0 < ε, ∀t ≥ t0.

From the boundedness of the functions fi, β, δ, γi,
∣∣∣ḟi + f2i

∣∣∣ , fj , gi, i ∈ {1, 2} ,
j ∈ {3, 4} , we get that ∥ż (t, t0, z0)∥0 is also small.

Case 2: t0 ≥ h.
We have

(3.18) ∥z (t, t0, z0)∥0 ≤ Π2 (t) , ∀t ≥ t0.

With the same η as before, ∥z0∥0 < min {η, a} implies ∥z (t, t0, z0)∥0 < ε, ∀t ≥ t0.
Since ∥ż (t, t0, z0)∥0 is also small, it follows that the null solution of (3.2) is stable.

iii) The uniform stability of the null solution of (3.2) can be deduced in the same
manner as for the stability, if we consider

a := ρe−Dhe−
∫+∞
h ν(s)ds/ (λα(0)) ,

η = η (ε) := εe−Dhe−
∫+∞
0 ν(s)ds/ (λα(0)) .

iv) We know from iii) that the null solution of (1.2) is uniformly stable. It remains
to prove that there exists ξ > 0, such that for every ε > 0 there exists T = T (ε) > 0,
such that ∥z0∥0 < ξ implies ∥z (t, t0, z0)∥0 < ε, for all t0 ≥ 0 and t ≥ t0 + T.

Indeed, if (H7) also holds, then
∫ t
t0
f̃ (s) ds ≥ p (t− t0) , ∀t ≥ t0 ≥ 0. Let

ξ :=
1

λα(0)eDhN
,

where N := e
∫+∞
0 ν(s)ds, ε > 0 be given, and

T = T (ε) :=

{
h+ 1

Kp ln
1
ε , if ε < 1,

C, if ε ≥ 1,

with C > h arbitrary. Let z0 ∈ R4, z0 ̸= 0, with ∥z0∥0 < ξ and t0 ≥ 0.
Corresponding to the position of t0 about h from the hypothesis (H2), we have

again two cases.

Case 1: t0 ∈ [0, h).
Let t ≥ t0 + T be given. Then t > t0 + h ≥ h and by (3.17) we deduce

∥z (t, t0, z0)∥0 ≤ λ ∥z0∥0 α(t0)e
Dhe−K

∫ t
h f̃(s)dse

∫ t
h ν(s)ds(3.19)

< e−K
∫ t
h f̃(s)ds ≤ e

−K
∫ t
t0+h f̃(s)ds

≤ e−pK(t−t0−h).

From the definition of T we easily derive e−pK(t−t0−h) ≤ ε and, by (3.19) we
obtain

∥z (t, t0, z0)∥0 < ε,

for all t ≥ t0 + T.

Case 2: t0 ≥ h.
Let t ≥ t0 + T be arbitrary. So t ≥ t0 and from (3.18) we get

∥z (t, t0, z0)∥0 ≤ λ ∥z0∥0 α(t0)e
−K

∫ t
t0

f̃(s)ds
e
∫ t
t0

ν(s)ds
(3.20)
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< e
−K

∫ t
t0

f̃(s)ds ≤ e−Kp(t−t0).

Using the definition of T, we similarly infer e−Kp(t−t0) ≤ ε and, from (3.20) it
follows that

∥z (t, t0, z0)∥0 < ε,

for all t ≥ t0 + T. Therefore the null solution of (1.2) is uniformly asymptotically
stable.

The proof of Theorem 2.2 is now complete. □
Example 3.4. Here are some examples of functions fi, fj , β, δ, γi, gi, i ∈ {1, 2} ,
j ∈ {3, 4},

f1(t) =
1

2t+
√
t2 + 2

, f2(t) =
1

t+
√
t2 + 1

, ∀t ≥ 0,

f3 (t) =
1

(t+ 1)4
, f4 (t) =

2

(t+ 1)3
, ∀t ≥ 0,

β(t) =
2t+ 3

t+ 1
, δ(t) =

2t3 + 5

t3 + 2
, γ1 (t) =

1

t
√
t2 + 1 + 1

, γ2 (t) = e−
t
2 , ∀t ≥ 0,

g1(t, x, y) = e−
t2

2 x3, g2 (t, x, y) =
3

t2
√
t+ 1

y4, ∀t ≥ 0, ∀x, y ∈ R.

These functions satisfy the hypotheses (H1)-(H7), with β0 = 2, δ0 = 2, K1 = 1/
√
2,

K2 =
(
2 +

√
3
)
×
(
3− 2

√
2
)
, h = 1, r1 (t) = e−

t2

2 , r2 (t) = 3
t2
√
t+1

, ∀t ≥ 0. In

Figure 3.1 the solution of (1.2) and its derivative are plotted in the case of two
time intervals, for the initial data z0 = [0.01, 0.01, 0.01, 0.01]. The plottings of the
solution in the planes (x, ẋ), (y, ẏ) are given in Figure 3.2.

Example 3.5. If in Example 3.4 we replace only f1, f2 by f1(t) = 1
10 + 1

t+1 ,

respectively f2(t) =
1
5 +

2
t+1 , ∀t ≥ 0, then the hypotheses (H1), (H2), (H4)-(H8) are

verified with K1 = 1/5, K2 = 4/5, h = 7, p = 1
10 , and the same β0, δ0, r1 (t) , r2 (t)),

and we obtain the solution of (1.2) and its derivative plotted in Figure 3.3 with the
same time intervals and for the same initial data. The plottings of the solution in
the planes (x, ẋ), (y, ẏ) are given in Figure 3.4.

Remark 3.6. Note that the null solution of the system (1.2) can be uniformly
stable, but not asymptotically stable. Indeed, this can be seen by considering the
following functions

f1(t) =
1

(t+ 1)2
, f2(t) = 2f1 (t) , f3 (t) =

∣∣sin t2∣∣
t+ 2

, f4 (t) =
e−t2

t+ 1
, ∀t ≥ 0,

β(t) = 0.04 +
1

t2 + 1
, δ(t) = 0.2 +

1√
t2 + 2

, ∀t ≥ 0,

γ1 (t) =
t

t+ 2
e−t2 , γ2 (t) =

3 |cos t|
(t+ 1)2

, ∀t ≥ 0,

g1(t, x, y) =
3x3

(t2 + 2)2
, g2 (t, x, y) =

2y2

(t+ 1)3
, ∀t ≥ 0, ∀x, y ∈ R.
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Figure 3.1. The solution of (1.2) and its derivative.

These functions satisfy the hypotheses (H1), (H2), (H4)-(H7), with K1 = 1/10,
K2 = 1/5, h = 20, β0 = 0.04, δ0 = 0.2, r1 (t) = 3

(t2+2)2
, r2 (t) = 2

(t+1)3
, ∀t ≥ 0.

For the initial data z0 = [0.0001, 0.0001, 0.0001, 0.0001], the solution of (1.2) and
its derivative are plotted in Figure 3.5 on some time intervals. The plottings of the
solution in the planes (x, ẋ), (y, ẏ) are given in Figure 3.6.

All the graphs in the figures above were obtained using the Matlab programming
platform.

Remark 3.7. If the block of mass m1 is subject to the action of a time dependent

external force f̂ : R+ → R, then the inhomogeneous system of ODEs describing the
dynamics of the mechanical system is

(3.21)

{
ẍ+ 2f1 (t) ẋ− f3 (t) ẏ + β (t)x− γ1 (t) y − f (t) + g1 (t, x, y) = 0,
ÿ + 2f2 (t) ẏ − f4 (t) ẋ− γ2 (t)x+ δ (t) y + g2 (t, x, y) = 0,

with the same functions as before and f (t) := 1
m1
f̂ (t) , ∀t ∈ R+. Using the same

proof techimques, based on Theorem 3.3, we can derive in this case qualitative
properties of the solutions of (3.21) with initial data small enough, similar to those
from [26, Theorem 3.1].



QUALITATIVE PROPERTIES OF SOLUTIONS OF A MECHANICAL SYSTEM 129

Figure 3.2. The solution of (1.2) in the planes (x, ẋ), (y, ẏ).

Figure 3.3. The solution of (1.2) and its derivative.



130 G. MOROŞANU AND C. VLADIMIRESCU

Figure 3.4. The solution of (1.2) in the planes (x, ẋ), (y, ẏ).

Figure 3.5. The solution of (1.2) and its derivative.
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Figure 3.6. The solution of (1.2) in the planes (x, ẋ), (y, ẏ).
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[26] G. Moroşanu and C. Vladimirescu, On coupled nonlinear oscillators of a mechanical system
of vibration reduction, submitted.

[27] M. Z. Nashed and J. S. W. Wong, Some variants of a fixed point theorem of Krasnoselskii and
applications to nonlinear integral equations, J. Math. Mech. 18 (1969), 767–778.

[28] M. Paz and W. Leigh, Structural Dynamics: Theory and Computation [5th edition], Springer,
New York, 2004.
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400084 Cluj-Napoca, Romania & Academy of Romanian Scientists, 3 Ilfov Str., Sector 5, Bucharest,
Romania

E-mail address : morosanu@math.ubbcluj.ro

C. Vladimirescu
Department of Applied Mathematics, University of Craiova, 13 A.I. Cuza Str., 200585 Craiova,
Romania

E-mail address : cristian.vladimirescu@edu.ucv.ro


