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be the simplest and generalization of the Newtonian fluid. There exist another
one most common type of such fluid that is known as Casson fluid, and this type
of non-Newtonian fluid was initially introduced by Casson in1959, with an ambi-
tion to determine the regime of pigment-oil suspentions [6]. From the Casson fluid
model, the model for viscous fluid can be determine by oversight the impacts of
their generalized parameters. Being mindful of its important properties, features
and abilities, the wide application of Casson fluid is observed in biological science
such as plasma, handling of biological fluid, blood, etc, and in mechanics due to
its viscoelastic behavior. According to the prevailing modern scientific challanges,
several mathematicians, researchers, scientists and engineers pay extraordinary at-
tention to biology, engineering, chemistry, petroleum industries and physiology as
compared to Newtonian fluids, they specially focus to study the Casson fluid due
to its natural behaviour. Khalid et al. [11] studied MHD unsteady free convectional
transport ofCasson model with computational aspects in porous media. Bhatta
charyya et al. [5] described the magnetohydro dynamic flow of Casson fluid veloc-
ity in presence of exponentially stretching surface. Oka [19] examined the Casson
fluid movement first time along with the convective conditions at the boundary,
through permeable stretching sheet and analyzed the results theoretically. The im-
pacts of heat generation on the MHD Maxwell fluid in a permeable medium carried
by Riaz et al. [30]. Mernone et al. [14] examined the two-dimentional peristaltic
Cassonfluid flow in a channel. Arthur et al. [3] investigated the generalized peri-
staltic Casson fluid flow in a permeable channel subject to chemical reaction effects.
Mukhopadhyay [16] examined the heat transfer phenomenon of MHD cason fluid
heat suction/blowing that passed over the stretching plate. Mustafa et al. [18] ex-
plained for unsteady flow of Casson model by considering the homotopy analysis to
analyzed the heat transfer over movable flatplate. Similar studies on MHD Casson
fluid recorded in literature [23,27,32] and references therein.

The versatile and valuable impacts of fractional calculus in the field of electrical
engineering, electro chemistry, control theory, electromagnetism, mechanics, image
processing, bio-engineering, physics, finance, fluid dynamics, and many others make
it a valuable tool for study. Fractional derivatives not only keep the record of the
present but also the past, so they are very suitable and accurate when the system has
long-term memory. It has several applications in physical science as well as in other
areas such as biology, astrophysics, ecology, geology and chemistry. The mechanism
of non-Newtonian models is elaborated successfully with the fractional calculus in
the past decades due to its simple and elegant description of the complexity of its
behavior. One of the important feature and most commonly known name of non-
Newtonianfluid is viscoelastic fluid that which exhibit the behavior of elasticity and
viscosity. Such types of fluid models have great implications in various fields namely
polymerization, industrial as well as mechanical engineering and also in the field of
automobile industry due to its significance. Fractional calculus is very helpful in
the interpretation of the viscoelastic nature of the materials. Taking into account
the enormous mentioned properties, many researchers paid attention to analyse
the fractional behaviour of different fluid models directly or indirectly in case of
derivatives when it is considered as non-integer order from. Bagley and Torvik
[4] noted the fractional calculus application on the viscoelastic fluids. Rehman et
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al. [22] studied the fractional Maxwell fluid and explored the closed solution of
shear stress and velocity. M.B. Riaz [31] analyzed the influence of the MHD on
the heat transfer of fractionalized Oldroyd-B fluid. Some features of Maxwell fluid
along with observing the impact of Newtonian Heating and developed the fractional
model using Prabhakar fractional approach is explored by Rehman et al. [20]. The
ABC, CF and CPC comparative analysis of second-grade fluid under Newtonian
heating effect, found the series solution, performed by Rehman et al. [26]. Saqib et
al. [33] carried a study to analysed the natural movement of generalized convective
Jeffrey fluid by employing the definition of CF fractional time derivative. Shehzad
et al. [34] illustrated the problem that is considered three-dimensionally Jeffery fluid
movement along with observing the impact of Newtonian Heating. Further, Hayat
et al. [7] attained the series solutions of the problem related the flow of Jeffery fluid.
Some of the contributions of the fractional calculus on the viscoelastic fluids are
highlighted in [8, 21,24].

In the most recent exploration, Talha Anwar et al. et al. [2] examined the
classical version of Casson fluid model along with ramped boundary conditions by
employing the method of Laplace transformation which is an efficiently applica-
ble for boundary conditions that is non-uniform, but not considering the fractional
behavior effect for the presented model. But it is noticed that the Casson fluid
model with this innovative fractional operator namely Yang-Abdel-Cattani opera-
tor having non-local and singular kernel are not investigated together with ramped
boundry conditions for valocity and energy distribution through the porous media,
and not available in the previous literature related to fluid mechanics of fractional
models. Inspired by the above literature, this article is devoted to studying the heat
transfer analysis of the MHD fractional Casson fluid in achannel with ramped con-
ditions. We have converted the integer-order derivative Casson fluid model with the
non-integer order derivative YAC model. Laplace transform have been employed
to get the analytical solutions of the current problem. The analytical expression
for velocity and temperature are evaluated in a series form. Such exact solutions
have never been noted in the literature before. Hence this article makes valuable
contributions to the existing literature in view of pan-city of exact solutions ofCas-
son fluid with suitable boundary conditions.The influence of embedded parameters
namely YAC fractional parameter α, porosity parameter K, Casson fluid parameter
β, prandl parameter Pr, magnetic number M , heat injection/suction parameter Q,
grashof number Gr and the radiation parameter Nr, on the velocity profile and
heat distribution, are captured with the assistance of graphs.

2. Mathematical Model

The phenomenon of the heattransfer of the convective MHD Casson fluid flow
overan infinite plate hanged vertically, is examined here. We have the coordinate
axis in such a way that the plate is fixed in the direction of x-axis and ϕ-axis
perpendicular the plate (as shown in Fig. 1). Initially, fortime t = 0 and ϕ = 0
the fluid is not moving with ambient temprature T∞. It is assumed that the fluid,
fortime t = 0+, ramped condition are taken for velocity, the wall temprature is
Tw and u(ϕ, t) is supposed to be a velocity component that is taking alongx-axis
while u0 is considered as the charactaristic velocity and the fluid is flowing that
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Figure 1. Schematic drawing of the flow model

is restrained to ϕ > 0. Further, to govern the model assumptions are considered
as a transverse magnetic force is introduced vertically to the fluid flow and the
movement of the fluid is uni-directional. By neglecting the impacts of an induced
magnatic field in which Reynolds parametre/number is supposed to be too small,
viscous dissipation omit in energy equation, Joule heating, Qr (radiative heat flux)
and further assumes that fluid velocity in this present problem is the function of
only two parameteres namely ϕ and t, the governing equation for the fluid flow
description using the Boussinesq’s approximation [10, 17] for velocity and energy
equations will take the form:

The momentum and energy equations are given below:

∂u(ϕ, t)

∂t
= υ

(
1 +

1

β

)∂2u(ϕ, t)

∂ϕ2
+ gβT

(
T (ϕ, t)− T∞

)
− σ

ρ
B0

2u(ϕ, t)− υ
(
1 +

1

β

) ζ

kp
u(ϕ, t),(2.1)

ρCp
∂T (ϕ, t)

∂t
=− ∂q(ϕ, t)

∂ϕ
− ∂Qr

∂ϕ
+Q0 (T (ϕ, t)− T∞) .[

Qr =− 4σ1
3k1

∂T 4

∂ϕ
;T 4 ≈ 4T 3

∞T − 3T 4
∞

]
(2.2)

The Fourier’s Law of thermal flux are written as:

q(ϕ, t) = −k
∂T (ϕ, t)

∂ϕ
.(2.3)

with associated initial conditions together with ramped boundary conditions are
displayed mathematically as:

u(ϕ, 0) = 0, T (ϕ, 0) = T∞, ϕ ≥ 0,
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u(0, t) =

{
u0

t
t0
, 0 < t ≤ t0;

u0, t > t0
,

T (0, t) =

{
T∞ + (Tw − T∞) t

t0
, 0 < t ≤ t0;

Tw, t > t0
,

u(ϕ, t) → 0, T (ϕ, t) → T∞, as ϕ → ∞ and t > 0.(2.4)

Introducing the new quantities used here to non-dimentionalize the equations:

t∗ =
u20t

υ
, ϕ∗ =

u0ϕ

υ
, u∗ =

u

u0
, q∗ =

q

q0
,

T ∗ =
T − T∞
Tw − T∞

, q0 =
k(Tw − T∞)u0

υ
.(2.5)

when using the newly introduced entities as defined in the Eq. (2.5) into Eq.
(2.1) and Eq.(2.2), and after that ∗ symbol ignoring, then finally the equations
transformed in the following form:

∂u(ϕ, t)

∂t
= b

∂2u(ϕ, t)

∂ϕ2
−
[
M +

b

K

]
u(ϕ, t) +GrT (ϕ, t),(2.6)

∂T (ϕ, t)

∂t
= −

(
1 +Nr

Pr

)
∂q(ϕ, t)

∂ϕ
+QT,(2.7)

q(ϕ, t) = −∂T (ϕ, t)

∂ϕ
,(2.8)

Along with the set of non-dimensional from of initial and boundry conditions be-
comes

u(ϕ, 0) = 0, T (ϕ, 0) = 0, for ϕ ≥ 0,(2.9)

u(0, t) = T (0, t) =

{
t 0 < t ≤ 1

1 t > 1
,(2.10)

u(ϕ, t) → 0, T (ϕ, t) → 0 as ϕ → ∞ and t > 0.(2.11)

where

Q =
Q0υ

ρCpu20
, Gr =

gβT (Tw − T∞)

u30
,

P r =
µCp

k
, M =

σB2
0υ

ρu20
, Nr =

16σ1T
3
∞

3kK1
,

θ =
Pr

1 +Nr
,

1

K
=

υ2ζ

kpu20
, a = bθQ+ c,

b = 1 +
1

β
, c = M +

b

K
, d = 1− bθ.
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here, Gr represents grash of number, Pr is denoted by Prandtl number, Nr is
radiation parameter, M represents magnetic number, kp is permeability, k is ther-
mal conductivity, k1 is the coefficient of Rossland absorption, σ1 Stefan-Boltzman
constant, ζ is porosity, Qr is radioactive heat flux and K is defined as porosity.

3. Preliminaries

Y ACDα
t f (t) =

∫ t

0
Ψα(−℘(t− τ)α)f

′
(τ)dτ, for t > 0, 0 < α < 1.(3.1)

where

Ψ(℘zα) =

∞∑
n=0

℘nz(n+1)(α+1)−1

Γ(n+ 1)(α+ 1)
, z ∈ C.

and Ψα is denoted the Robotnov exponentialfunction of order α.
Laplace transformation of this newly developed operator is defined as:

{Y ACDα
t f(t)} =

1

𝟋α+1

𝟋{f(t)} − f(0)

1 + ℘𝟋−(α+1)
.(3.2)

where 𝟋 represnts Laplace transform parameter and α used as a fractional param-
eter.

4. Fractional formulation of governing equations and solutions

Replace the time deriavtive with the YAC fractional derivative into Eq. (2.6)-
(2.8), then the time-fractional rate type fluid model for velocity and energy are
written as:

Y ACDα
t u(ϕ, t) = b

∂2u(ϕ, t)

∂ϕ2
− cu(ϕ, t) +GrT (ϕ, t),(4.1)

Y ACDα
t T (ϕ, t) =

1

θ

∂2T (ϕ, t)

∂ϕ2
+QT (ϕ, t),(4.2)

where Y ACDα
t represents YAC fractional operator, for further properties about the

Yang-Abdel-Cattani operator are discussed in [35].

4.1. Investigation of exact solution for temprature profile. Implement the
Laplace transformation on Eq.(4.2) with transformed conditions as mentioned in
Eqs. (2.9) − (2.11), we will get

𝟋T̄ (ϕ,𝟋)− T̄ (ϕ, 0)

𝟋α+1 + ℘
=

1

θ

∂2T̄ (ϕ,𝟋)

∂ϕ2
+QT̄ (ϕ,𝟋).(4.3)

with transformed boundary conditions

T̄ (ϕ, 0) = 0, T̄ (0,𝟋) =
1− e−𝟋

𝟋2
and T̄ (ϕ,𝟋) → 0 as ϕ → ∞.(4.4)

Employing the Laplace transformation of Eq.(4.3), then the energy solution is ob-
tained as:

T̄ (ϕ,𝟋) = e1e
−ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)
+ e2e

ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)
.(4.5)
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Applying the transformed boundary conditions, then the energy solution is written
as:

T̄ (ϕ,𝟋) =

(
1− e−𝟋

𝟋2

)
e
−ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)
,

= T̄1(ϕ,𝟋)− e−𝟋T̄1(ϕ,𝟋).(4.6)

To transform the solution in time variable again, we have to employ inverse Laplace
transformation technique on Eq. (4.6)

T (ϕ, t) = T1(ϕ, t)− T1(ϕ, t)P (t− 1).(4.7)

In the above expression P (t− 1) represents a Heaviside function.
where

T1(ϕ, t) =
{
T̄1(ϕ,𝟋)

}
=

{
1

𝟋2
e
−ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)}

,(4.8)

To compute Laplace inverse of Eq.(4.8), it seems to be difficult in the present form,
we have to convert it in the series form, after that it takes the form:

T1(ϕ, t) =

 1

𝟋2

∞∑
χ=0

∞∑
n=0

(−ϕ)χ(θ)
χ
2 (−Q)

χ
2
−nΓ(χ2 + 1)(𝟋)n

χ!n!Γ(χ2 − n+ 1) (𝟋α+1 + ℘)n


=

∞∑
χ=0

∞∑
n=0

(−ϕ)χ(θ)
χ
2 (−Q)

χ
2
−nΓ(χ2 + 1)

χ!n!Γ(χ2 − n+ 1)
tnα+1En

α+1,nα+2(−℘tα+1)

by using
{

𝟋αγ−β

(𝟋α−℘)γ

}
= tβ−1Eγ

α,β(℘t
α)

4.2. Investigation of exact solution for fluid velocity. Applying the Laplace
transformation into Eq. (4.1) with appropriate transformed conditions as defined
in Eqs. (2.9) − (2.11), we get

𝟋ū(ϕ,𝟋)− ū(ϕ, 0)

𝟋α+1 + ℘
= b

d2ū(ϕ,𝟋)

dϕ2
− cū(ϕ,𝟋) +GrT̄ (ϕ,𝟋).(4.9)

with conditions are:

ū(ϕ, 0) = 0, ū(0,𝟋) =
1− e−𝟋

𝟋2
and ū(ϕ,𝟋) → 0 as ϕ → ∞.(4.10)

Taking the computed temperature T̄ (ς,𝟋) from Eq. (4.6) and replacing in Eq.(4.9),
then the solution after simplification are given in the form

ū(ϕ,𝟋) =e5e
−ϕ

√
1
b

(
𝟋

𝟋α+1+℘
+c

)
+ e6e

ϕ

√
1
b

(
𝟋

𝟋α+1+℘
+c

)

+Gr

(
1− e−𝟋

𝟋2

)
e
−ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)

a+ d𝟋
𝟋α+1+℘

.(4.11)
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With the help of the transformed boundary conditions, determine the unknown
constant, the obtained velocity solution for Eq.(4.11) is given as

ū(ϕ,𝟋) =

(
1− e−𝟋

𝟋2

)
e
−ϕ

√
1
b

(
𝟋

𝟋α+1+℘
+c

)

+
Gr (1− e−𝟋)

𝟋2
(
a+ d𝟋

𝟋α+1+℘

) [
e
−ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)
− e

−ϕ

√
1
b

(
𝟋

𝟋α+1+℘
+c

)]
.(4.12)

To find Laplace inverse of the above Eq. (4.12), first we write it in the following
form:

ū(ϕ,𝟋) = Ω̄(ϕ,𝟋) +GrΦ̄(ϕ,𝟋)
[
T̄ (ϕ,𝟋)− Ω̄(ϕ,𝟋)

]
.(4.13)

and

Ω̄(ϕ,𝟋) = Ω̄1(ϕ,𝟋)− e−𝟋Ω̄1(ϕ,𝟋).(4.14)

The inverse Laplace of the above Eq. (4.14), is obtained as:

Ω(ϕ, t) = Ω1(ϕ, t)− Ω1(ϕ, t)P (t− 1).(4.15)

where

Ω1(ϕ, t) =
{
Ω̄1(ϕ,𝟋)

}
=

{
1

𝟋2
e
−ϕ

√
1
b

(
𝟋

𝟋α+1+℘
+c

)}
,

=

 1

𝟋2

∞∑
χ=0

∞∑
n=0

(−ϕ)χ(c)
χ
2
−nΓ(χ2 + 1)(𝟋)n

χ!n!(b)
χ
2 Γ(χ2 − n+ 1) (𝟋α+1 + ℘)n

 ,

=

∞∑
χ=0

∞∑
n=0

(−ϕ)χ(c)
χ
2
−nΓ(χ2 + 1)

χ!n!(b)
χ
2 Γ(χ2 − n+ 1)

tnα+1En
α+1,nα+2(−℘tα+1)

Φ(ϕ, t) =
{
Φ̄(ϕ,𝟋)

}
=

{
1

a+ d𝟋
𝟋α+1+℘

}
,

=

{ ∞∑
m=0

(−1)m(d)m(𝟋)m

(a)m+1 (𝟋α+1 + ℘)m

}
,

=
∞∑

m=0

(−1)m(d)m

(a)m+1
tmα−1Em

α+1,mα(−℘tα+1)

The required velocity solution after employing the definition of inverse Laplace
operator on the above Eq. (4.13) is

u(ϕ, t) = Ω(ϕ, t) +GrΦ(ϕ, t) ∗ [T (ϕ, t)− Ω(ϕ, t)] .(4.16)

Limiting models. Some special cases are discussed here that derived from current
problem to analyze the influence on solutions for different cases arises in theabsence
of some physical parameters.

Solution in the absence of Casson parameter. In this case supposed that
theCasson fluid parameter as denoted by β is taking as very large, i.e., 1

β → 0, after
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that the new transformed viscous fluid has velocity field solution derived from the
already computed velocity Eq.(4.12) is transformed as:

ū(ϕ,𝟋) =

(
1− e−𝟋

𝟋2

)
e
−ϕ

√(
𝟋

𝟋α+1+℘
+c1

)

+
Gr (1− e−𝟋)

𝟋2
(
a1 +

d1𝟋
𝟋α+1+℘

) [
e
−ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)
− e

−ϕ

√(
𝟋

𝟋α+1+℘
+c1

)]
.(4.17)

where a1 = θQ+ c1, c1 = M + 1
K , d1 = 1− θ

Tofind Laplace inverse of the above Eq. (4.17), first we write it in the following
form:

ū(ϕ,𝟋) = ω̄(ϕ,𝟋) +GrΨ̄(ϕ,𝟋)
[
T̄ (ϕ,𝟋)− ω̄(ϕ,𝟋)

]
.(4.18)

and

ω̄(ϕ,𝟋) = ω̄1(ϕ,𝟋)− e−𝟋ω̄1(ϕ,𝟋).(4.19)

After the application of Laplace inverse operator, the above Eq. (4.19), is turn out
again in the time variable as:

ω(ϕ, t) = ω1(ϕ, t)− ω1(ϕ, t)P (t− 1).(4.20)

where

ω1(ϕ, t) = {ω̄1(ϕ,𝟋)} =

{
1

𝟋2
e
−ϕ

√(
𝟋

𝟋α+1+℘
+c1

)}
,

=

 1

𝟋2

∞∑
χ=0

∞∑
n=0

(−ϕ)χ(c1)
χ
2
−nΓ(χ2 + 1)(𝟋)n

χ!n!Γ(χ2 − n+ 1) (𝟋α+1 + ℘)n

 ,

=

∞∑
χ=0

∞∑
n=0

(−ϕ)χ(c1)
χ
2
−nΓ(χ2 + 1)

χ!n!Γ(χ2 − n+ 1)
tnα+1En

α+1,nα+2(−℘tα+1)

Ψ(ϕ, t) =
{
Ψ̄(ϕ,𝟋)

}
=

{
1

a1 +
d1𝟋

𝟋α+1+℘

}
,

=

{ ∞∑
m=0

(−1)m(d1)
m(𝟋)m

(a1)m+1 (𝟋α+1 + ℘)m

}
,

=

∞∑
m=0

(−1)m(d1)
m

(a1)m+1
tmα−1Em

α+1,mα(−℘tα+1)

The inverse Laplace of the above Eq. (4.18), the required velocityfield solution,
finally written as:

u(ϕ, t) = ω(ϕ, t) +GrΨ(ϕ, t) ∗ [T (ϕ, t)− ω(ϕ, t)] .(4.21)

Solution in the absence of magnetic and porosity parameter. In this case
supposed that M = 0 and 1

K = 0 in the velocity Eq. (4.12) that reduced in the
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following form:

ū(ϕ,𝟋) =

(
1− e−𝟋

𝟋2

)
e
−ϕ

√
1
b

(
𝟋

𝟋α+1+℘

)

+
Gr (1− e−𝟋)

𝟋2
(
bθQ+ d𝟋

𝟋α+1+℘

) [
e
−ϕ

√
θ
(

𝟋
𝟋α+1+℘

−Q
)
− e

−ϕ

√
1
b

(
𝟋

𝟋α+1+℘

)]
.(4.22)

Tofind Laplace inverse of the above Eq. (4.22), first we write it in the following
form:

ū(ϕ,𝟋) = Ῡ(ϕ,𝟋) +Grϖ̄(ϕ,𝟋)
[
T̄ (ϕ,𝟋)− Ῡ(ϕ,𝟋)

]
.(4.23)

and

Ῡ(ϕ,𝟋) = Ῡ1(ϕ,𝟋)− e−𝟋Ῡ1(ϕ,𝟋).(4.24)

After the application of Laplace inverse operator, the above Eq. (4.24), is turn out
again in the time variable as:

Υ(ϕ, t) = Υ1(ϕ, t)−Υ1(ϕ, t)P (t− 1).(4.25)

where

Υ1(ϕ, t) =
{
Ῡ1(ϕ,𝟋)

}
=

{
1

𝟋2
e
−ϕ

√
1
b

(
𝟋

𝟋α+1+℘

)}
,

=

 1

𝟋2

∞∑
χ=0

∞∑
n=0

(−ϕ)χΓ(χ2 + 1)(𝟋)n

χ!n!(b)
χ
2 Γ(χ2 − n+ 1) (𝟋α+1 + ℘)n

 ,

=
∞∑
χ=0

∞∑
n=0

(−ϕ)χΓ(χ2 + 1)

χ!n!(b)
χ
2 Γ(χ2 − n+ 1)

tnα+1En
α+1,nα+2(−℘tα+1)

ϖ(ϕ, t) = {ϖ̄(ϕ,𝟋)} =

{
1

bθQ+ d𝟋
𝟋α+1+℘

}
,

=

{ ∞∑
m=0

(−1)m(d)m(𝟋)m

(bθQ)m+1 (𝟋α+1 + ℘)m

}
,

=

∞∑
m=0

(−1)m(d)m

(bθQ)m+1
tmα−1Em

α+1,mα(−℘tα+1)

The inverse Laplace of the above Eq. (4.23), the required velocityfield solution,
finally written as:

u(ϕ, t) = Υ(ϕ, t) +Grϖ(ϕ, t) ∗ [T (ϕ, t)−Υ(ϕ, t)] .(4.26)

5. Results and discussion

The heat transference analysis of MHD natural convective flow of the Casson fluid
to derive analytical solutions via non-integer order derivative Yang-Abdel-Cattani
(YAC) is elaborated here. The fluid flow is happened in the direction of ϕ-axis. The
dimensionless system of equations representing the fluid flow phenomenon is solved
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by the integral LT. The obtained results are presented in a series form and also in the
form of special functions. The graphical illustration is used to present the behaviour
of embedded physical parameters such as memory parameter α, Pradtl number Pr,
Casson parameter β, heat absorption parameter Q, thermalGrashof number Gr,
magnetic parametr M , chemical reaction rate Nr and porosity paramter K on the
Casson fluidvelocity and temprature distribution are portrayed graphically in Figs.
2–11 with the help of graphicall softwares.

Fig 2. manifests the memory parameter control on the temprature profile. The
boundarylayer becomes thick with the increase in α which causes to decay in tem-
prature. It is easy to valedate the result for α → 1.

The dominance of the mass diffusivity in fluid flow results in a reduction of the
thermal boundary layer. The thermall boundry layer reduces, resulting in a decline
in temperature. These are the effects of Pr which are elaborated in Fig. 3.

Fig. 4 illustrats the impact of Nr on temperature distribution of Casson fluid
by assuming its various values. It is analysed from the graphs that energy profile
elevated as enhancing the values of Nr. Physically, change of heat flux increases
but k1 reduces along the plate which is in normal direction, this impliesthat the
more amount of heat radiation is absorbed to thefluid which cause to increase the
temprature profile.

Fig. 5 exhibits the relationship between the amount of heat either sucked (Q < 0)
or injected (Q > 0) and temperature. It is notedthat the energy profile increasing
while rising the values of Q and it has much significance of heat suction/generation
in cooling and heating processes. Next, Fig. 6 portray the behaviour of α on the
fluid flow. Add up the value of the α result in descending velocity curves.

Fig. 7 elucidates the impact ofCasson fluid parameter β on thevelocity graphs
for Casson fluid against ϕ, by choosing the distinct values of β for taking the values
of various fluidic parameters.

Fig. 8 exhibits the impact of Prandlnumber Pr on Casson fluidvelocity against
to ς, by taking distint valuesof Pr, at four different valuesof fractional paramter α.
Enhancement in the distinct values of Pr, decay in the boundry layer of velocity
noticed. To elaborate on the effects of Gr, Fig. 9 is plotted. Since Gr represents
the fraction of buoyancyforce to viscousforce, as aresult, with an enhancing in Gr
that cause to accelerate the fluid velocity, have appeared dueto boost in the value
of Gr. Next, Fig. 10 elucidates the impact of permeability parameter K on theve-
locity graphs for Maxwell fluid against ς, by choosing the distinct values of K for
taking the values of α small andlarge. An increase in theporosity of medium cause
to weak the resistive force and consequently, the flow regime enhances due to mo-
mentum development. It isdepicted that the elevation in the velocity profile with
an increazing values of K under ramped conditions.

Fig. 11 interprets the impact of M on the momentum profile against ς, when
assigned different values of M in the velocity expression to exemplify the physical
behavior of Maxwell fluid velocity corresponding to distinct values of fractional
paramter. It is established that the decline in both magnitude of boundarylayer
thickness and velocity when the strong magnetic field applied. Subsequently, this
explanation justifies the fluid gets slowed down corresponding to an increase in
magnetic number because dragging forces cause to dominates theflow supporting
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forces. Eventually, decay in the velocity contour with an enhancement in valuesof
magnetic number.

Figure 2. Influence of Casson fluid temperature and concentration
against ϕ for multiple values of α.

Figure 3. Representation of Casson fluid temperature against ϕ for
multiple values of Pr.
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Figure 4. Representation of Casson fluid temperature against ϕ for
distinct values of Nr.

Figure 5. Representation of Casson fluid temperature against ϕ for
distinct values of Q.

6. Conclusion

In this research article, MHD natural convective flow of the Casson fluid to de-
rive analytical solutions with the non-integer order derivative Yang-Abdel-Cattani
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Figure 6. Representation of Casson fluid temperature against ϕ for
distinct values of Q.

Figure 7. Velocity representation for multiple values of α

(YAC) is investigated. The fluid flow is elaborated near an infinitely verticalplate
and Laplace transform(LT) is operated on the fractional system of equations and
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Figure 8. Velocity representation for multiple values of β

Figure 9. Velocity representation for multiple values of Pr.

results are presented in series form and also presented the solution in the form
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Figure 10. Velocity representation for multiple values of Gr.

Figure 11. Velocity representation for multiple values of K.

of special functions. Some most essential key points noticed from the graphical
behaviour are expressed as:
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Figure 12. Velocity representation for multiple values of M .

• The velocity field and temprature decreases with rising values of memory
parameter α.

• Temperature curves decay with the corresponding rise in Pr.
• The accumulative values of Nr and Q escalates the temperature graphs.
• Large values of Gr and K enhancing the Maxwell fluid velocity.
• The increasing variation of magnetic number M , decay in the velocity is
observed.

In future work some new time fractional operators can be utilized on the same
problem and compared with the previously computed results.
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