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ASYMPTOTICAL STABILITY OF NONLINEAR FRACTIONAL
NEUTRAL SYSTEMS WITH UNBOUNDED DELAY

ABDULLAH YIGIT AND CEMIL TUNC

ABSTRACT. In this paper, we investigate the asymptotical stability of zero solu-
tion of a nonlinear fractional neutral system (NFNS) with unbounded delay. We
define two new Lyapunov-Krasovskii functionals (LKFs) and use some well-known
inequalities to prove the results of this paper. By using MATLAB-Simulink
sofware, we give two numerical examples to show applications our results.

1. INTRODUCTION

The concept of delay is widely encountered in many different systems and models
such as biological systems, chemical engineering systems, software systems, eco-
nomic systems, nuclear reactors, transportation systems, population dynamic mod-
els, financial systems and more. Hence, stability problems functional differential
equations and systems have an importance place in the scientific world and they
have been intensively studied in the literature (see, for example, [1-20] and the ref-
erences therein).

Factional calculus has also a very old history that has existed since the day of the
regular calculus came into existence. It should be noted that neutral delay systems
are more complex and more general than other delayed systems.

We would now like to outline some papers on the stability of neutral and some
other fractional differential systems.

By using LKF's, asymptotic robust stability of neutral type of fractional order
systems have been discussed in [1, 2].

In [3], the authors investigate delay-dependent asymptotic stability of a differ-
ential and Riemann-Liouville fractional differential neutral system with constant
delays and nonlinear perturbation.

In [7], asymptotic stability of linear and interval linear fractional-order neutral
systems with time delay is discussed.

In [8], applying Lyapunov direct method, asymptotical stability of Riemann-
Liouville fractional neutral systems is studied.
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In Liu et al. [9], applying Lyapunov direct method, certain sufficient conditions on
asymptotical stability of nonlinear fractional systems without and with unbounded
delays are given.

Motivated the works mentioned and that in the references of this paper, we
consider an NFNS with unbounded delay:

toDix(t) — AyyDiz(t — k(t)) = Ba(t) + Ca(t — k(t)) + Hi(t, z(t))
(1.1) + Hy(t,z(t — k(t))) + Hs(t,, Dix(t — k(t))),
where z(t) € R", A, B,C € R™"™ are known real constant matrices with suitable

dimensions, H; € R™*™ are continuous matrices functions and satisfy H;(t,0) =
0,j = 1,2,3. The variable k(t) > 0 is a differentiable variable delay and

(1.2) R(t) < hg <1,

where hq is positive constant. We also assume that the nonlinear terms H;(t, z) are
the higher terms in (¢, z), that is,
(2]

llzl|—0 |||

(1.3) =0,j=1,2,3.

Now, we give some basic definitions and lemmas before the main results and
numerical examples.

Definition 1.1 ([10]). The Riemann-Liouville fractional integral and derivative are
defined by

WD a(t) = 1 [ (0= 9" a(a)ds, (4> 0),
q B 1 an [t z(s)
o Dix(t) = m% /to mds, (n—1<g<n),

respectively, where I' is the Gamma function.
Property 1.2 ([6]). If p > g > 0, then the equality
tng(toD;pw(t)) —to Dgipw(t)'

holds for “sufficiently good” functions z(t). In particular, this relation holds if z(t)
is integrable.

Lemma 1.3 ([9]). Suppose x(t) € R™ is a differentiable vector. Then, the following
inequality holds:

to DI (xT () Nx(t)) < 227 (t) Ny Dia(t), Vg € (0,1),Vt > to,
where N € R™™ N = NT >0 is a constant matriz.
Lemma 1.4 ([12]). For any z,y € R",a > 0, the following inequality holds:

2:UTy <azxle+ oz_lyTy.
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Lemma 1.5 ([12]). Let S > 0 and M > 0 are real symmetric matrices and & is a
positive constant. Then ,

€8> M & Anan(MS™Y) < € & Apan(S7 MS7) < €.
2. MAIN RESULTS AND NUMERICAL APPLICATIONS

We give some assumptions to prove the asymptotic stability of zero solution of
NFNS (1.1) under consideration.

A. Assumptions

(A1) Let P=PT >0,R=R" >0,Q =Q" >0and Z = ZT > 0 are symmetric
matrices with suitable dimensions such that

(2.1) BTP+ PB+2Q + [a(1 — hg) +1]Z = 0,
(2‘2) HPC + PAH < [)‘mm(Q) + )\mm(Z)] V 1- hd>
(2.3) Z =R,
(2.4) ||IRB + RC + RA|| < Amin(Z2)\/1 — hy.

(A2) Let C and A are regular matrices, P = PT >0,Q = QT >0and Z = ZT >
0 are symmetric matrices with suitable dimensions such that

BTP+ PB + uCTPC + au(1 — hq) BT PB

2
(2.5) +mP+Q+Z:O,

(2.6) pATPA - 2P + P+7Z <0,

(1 = ha)
where p is a positive number.

Theorem 2.1. If conditions (A1) and (1.2) are satisfied, then the zero solution of
NFNS (1.1) is asymptotically stable.

Proof. We define the LKF
t

V(t,x) =, DI (27 (t) Px(t)) + /t o 2T (5)Qux(s)ds

t
(27) [ (DIals) 20, DEa(s))ds.
t—r(t)
It can be easily shown that the LKF (2.7) is positive definite. In light of Property
1.2, Lemma 1.3 and condition (1.2), by the time-derivative of the LKF (2.7) along
the solutions of NFNS (1.1), we obtain

V(t,z) <a’(t)[BTP + PB + Qlz(t) + 227 (t)PCx(t — k(1))
+ 227 () PA(3, Dix(t — k(1)) + 227 (t)PH, (¢, 2(t))
+ 22T () PHy(t, 2(t — K(t))) + 227 () PHs(t,y, Dia(t — 1(t)))
— (1= ha)a™ (t = 5(£))Qu(t = k(1)) + (1 Df(t))" Z (1, Df(t))
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(2.8) = (1= ha) (s, Df(t = 5(1)))" Z (s, Dfx(t — K(t))).
Using Lemma 1.4, for some terms included in (2.8), we have

227 (£)PCx(t — k(t)) =227 () PCQ 2Q2x(t — K(t))

gmxT(t)PCQ_lCTPx(t)

(2.9) + a1 — hg)zT (t — (1)) Qz(t — K(t)),
227 (t) PA(y, Diz(t — k(1)) = 22T (t)PAZ "2 22 (4, D{x(t — K(t)))

1 T —1 7T
R
Soi= hd)$ (t)PAZ™ A" Px(t)

(2.10) +a(l = ha) (s Dfw(t — 5(1))T Z (1, Dia(t — w(1))),
2¢T () PH, (t,z(t)) <B~ T (t)P?x(t)
(2.11) + BHY (t,x(t)) Hi(t, (1)),

22T () PHy(t, z(t — k(1)) <y taT (t)P2x(t)
(2.12) +yHy (t,x(t — w(t))) Ha(t, 2(t — K(1))),
22T (t)PH3(t sy Dix(t — k(1)) < €12t (t) P?x(t)
(2.13) + EHS (8, (1o D (t — 5(8))) Ha(t, (1 Dfx(t — K(t))))-
Using the equality
—oDiz(t) + Bx(t) + Cx(t — k(t)) + A, Diz(t — w(t)) + Hi(t, z(t))
+ Ho(t, x(t — k(1)) + Hs(t., Dix(t — k(1)) =0,
We have
2o Dix(t)R[—4, Dix(t) + Bx(t) + Cx(t — k(1))
+ Ay Diz(t — k(t)) + Hi(t,z(t)) + Ha(t, z(t — k(t)))
+ Ha(t o, Dix(t — r(1)))] = —=2(;o D{x(t))" R(s, D x(t))
+ 2(4 Di2(t)) " RBx(t) + 2(3, D{x(t))T RCx(t — k(t))
+ 2(4 DIz (t)) T RA (4, DIz (t — k(1))
+ 2t D (t))" RH: (¢, (1)) + 2(1o Dfx(t))" RHa (¢, 2(t — £(t)))
(2.14) + 2(4, Dx(t)) T RH3(t,, Dia(t — 1(t))) = 0.
Using Lemma 1.4, for some terms included in (2.14), we obtain the following in-
equalities
2(,, Dz ()T RBx(t) =2(;, D{z(t))TRBZ 2 Z2 x(t)
1
=all—ha)
(2.15) + a1 — hg)zT () Zx(t),

(1 Dfx(t))" RBZ™ B R(3, Djx(t))
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2(,, DIz (t))TRCx(t — K(t)) =2(,, DIz (t))TRCZ ™2 Z22(t — k(1))
1
= —hy)
(2.16) +a(l — hy)xT (t — k(1)) Za(t — K(t)),

(1o Dfx (1)) RCZ ™ CT R(y, D (1))

2(10 DY (t))T RA(1o DY (t — K(t))) = 2(s0 DI (t))T RAZ™2 23 (3 DIa(t — 5(2)))
1
SO4(1 - hd)(
(2.17) + a1 — ha) (i DI(t — K()))T Z (s DI (t — K(t))),

1o DIz(t)TRAZLAT R(y, D{x(t))

25, Dix(t))" RH: (t, x(t)) <a™ ' (4, Dfx(t))" R* (1, Dix(t))"
(2.18) + aHT (t, x(t))Hy(t, z(t)),

2(o Df (1)) RHa(t, 2(t — 5(t))) < b7 (1 Dfw(t))" R (1 Df(t))
(2.19) +OHT (¢, 2(t — w(8) Ha(t, 2(t — K(1)),

2(1y Df ()" RH3(t, (1 Dfa(t — 5(t)))) < ¢ (1 Df(t))" R (s, Df (1))
(2.20) +cH3 (t, (o Dfa(t — w(1)) Ha(t, (1 Dfz(t — K(1))))-
where a,7,b, 8, ¢, £ and « are some positive constants.
Combining (2.8)-(2.20) and using (2.1) and (2.3), we have
1 1
a(l — hy) a(l — hg)
+<; 2 - i)PQ] z(t) + (¢, Dz (t)"

1 1
—_— z71ct —— _RAZ'ATR-Z
+a(1—hd)RC C R+a(1—hd)R R

(55 + )R] wDta0) + o7 = s - R - D@

+a(l = ha) Z)x(t — (1)) + (4 Df(t — £(1))) T [(a = 1)(1 — ha) Z
+a(l = ha) Z) (e, D (t — k(1)) + (B + a) HY (t,2(8)) H(t, (1))
+ (7 + 0)H (t,2(t — k(1)) Ha(t, ot — k(1))

(2.21) + (€ + ) H3 (tag Dfa(t — k(1)) Ha(tag Dfa(t — (1))

Moreover, for some terms of (2.21), in the light of definition of spectral norm, we
write the following inequalities, respectively:

V(t,x) <zT(t) [ pPCcQ~ctp + PAZ'ATP-Q-Z

1
a(l = hq)

RBZ'BTR

1

V1 —hyg
1

V- hy

[AW (JQch@lcTP@‘f)} - Anaz(QF PCQ1CTPQ™))2
— N

1Q= PCQ=||
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1 -1
= WHQ z [|?||PC|
1
2.22 _ PCl.
22 i@ 1€
1 3 1
3 = —1 —1..1
|:)\m(m:< ZZPAZ_lATPZQ)] = 7[)\max(ZTPAZ_1ATPZT)]§
L= ha VI—ha
= mnz 2 PAZZ ||
1 -1
< m”z 2 HQHPAH
1
2.23 _ A
1 3 1
3 = =1 -1..1
{Amw< ZQRBZlBTRZ?)] — ——[\nw(Z7 RBZ'B"RZ 7 )]2
1= hq N
1 -1
< =17 IFIRB|
1
2.24 _ RB
1 -1 1 2 1 1 o
[Am“’”< ZQRCZ_ICTRZ?)] — —— [\nw(Z7 RCZ7\CTRZ 7))z
L= ha i
- Y z#Rez?
V1—hg
1 -1
< = liZE PR
1
2.25 _ RO
(2.25) \/W/\mm(Z)H I,
1 3 1
=) - =1 —1.,1
[Am“( ZQRAZ_lATRZQ)] = ——[\naw(Z27 RAZTVATRZ 7))
1= ha VI—ha
= MHZ 2 RAZ =2 H
1 -1
= m!\Z 2 ||*||RA]|
1
(2.26) = IRA]|
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From (2.22), (2.23) and the inequality (2.2), we obtain

1
s (77
Hence, there exist a constant n > 0 such that
1

Amaz (1_—hd

Q%IPCQ*CTPQ%) <1

Q_TlPCQ_lcTPQ_Tl) <n<l.

Since P > 0 and CQ~'CT > 0, then it follows from Lemma 1.5 that
1
1—hy
Let a < % such that 0 < I < 1. Hence, we get
1
a(l = hq)

PCQCTP < Q.

(2.27) PCQ~'CTP - Q < (Z ~1)Q <0

and 1
Amaz ( 1—hy
Next, there exist a constant n > 0 such that
e (=
Since P > 0 and AZ~'AT > 0, in the light of Lemma 1.5, we find
1
Let a < % such that 0 < g < 1. Thus, in view of the last inequality, we have
Y pazaTp_z < (2-1)z<0
a(l — hy) a
From (2.27) and (2.28), we have
1
a(l — hd)(
Using (2.24)-(2.26) and (2.4), we arrive at
1
a(l — hq)
Let a,v,b,8,¢,§ and a be positive numbers such that the following inequalities
hold:

Z%PAZ*IATPZﬂ <1

Z%PAZ*lATPZ%l) <n<l.

PAZYATP <z

(2.28)

Ui

PCQ™ICTP + PAZ'ATP) Q- 7 < (5 - 1)(@ +27) <.

(RBZBTR + RCZCTR + RAZ'ATR) — Z < (g - 1)2 <0.

(2.29)
0= — L (PCQCTP 4+ PAZATP) — Q- Z + (l + 1y l)P? <0
a(l = hq) B & ’
1
0y=———{RBZ'BTR+ RCZ'CTR + RAZ'ATR}
a(l = hq)
1 1 1y,
2 (Gt )R

(2.30) <0.
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Since 0 < hg < 1,a < %,Q:QT >0and Z = ZT > 0, we obtain
(2.31) O3 =(a—1)(1 —hg)Q + a(l — hy)Z <0,
(2.32) 04 =2a—1)(1 - hyg)Z < 0.
Hence, we have
V(t,2) <a” (£)012(t) + (1, Dfx(1))" O2(s, Diz(t)) + 2" (t — £(t))O3
< alt = k(1)) + (o Dt — k(1)) Oalsy Dia(t — ()
(B + @)yt ()2 + (v + )l Ha(t, (¢ — ()|

(2.33) + (& + o)l Hs(t, Dia(t — w(2)))[]*.
In view of the inequalities (2.29)-(2.32), we choose a positive constant p such that
(2.34) 0; +pI <0,(j =1,2,3,4).

From (1.3), there exist a positive number § such that when ||z(t)|| < d,¢ > to, the
following inequalities hold:

(6 2O < 5]
| Ha(t,z(t — s(1)))||* < 5 Pt — (),
p
E+c

Using these inequalities in (2.33), we obtain
V(t,w) =27 (0)(O1 + pD)alt) + (1 DLx(t)T (02 + pI) (1 Dix()
+a(t = 5(1)(O3 + pD)a(t — K(t)) + (1 Dfx(t — r(1)))"
X (O©4 + pI) (1, Dix(t — K(t))),
where [ is n x n - identity matrix.

Considering (2.34), we can write V(t,z) < 0. Thus, the zero solution of NFNS
(1.1) is asymptotically stable. This result completes the proof of Theorem 2.1. [

[|Hs(t 1 Dt — 5(1)))]]* < [lto Df(t — m ()|

Example 2.2. Consider the following NFNS with unbounded delays, which is a
special case of (1.1):

toDix(t) — Ay Dix(t — k(t)) = Bx(t) + Cx(t — k(t)) + Hi(t, z(t))
+ Ho(t,x(t — k(1)) + Hs(ty, Diz(t — k(t))),
where
0<g<lz(t)=[a1(t) za(t) |",a=0.3,k(t) = 0.5t i(t) = 0.5 = hy.

0.5 0 0.8 0 0.01 0
A‘[o 0.3}’3_[ 0 —0.6}’0_[ 0 0.02]’

and
H(t,z(t)) = [ x1(t)sin(zy1(t)) x2(t)sin(za(t)) ]T,
Hy(t,x(t — k(1)) = [ x1(t — k(t))cos(z1(t — k(L)) x2(t — K(t))cos(xa(t — K(t))) }T ,
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Hy(tsy DY(t — (1)) = [ 1D (t — w(t))cos(t) 1, Dizalt — (t))eos(t) |7
Let P = diag(25,30) and @ = diag(10,9). Then, it follows from (A1) that

17.3913 0
0 15.6522 |-

Next, we obtain ||[PC + PA|| = 12.75,||RB + RC + RA|| = 5.0435, [Anin(Q) +
Amin(Z)]V1 — hg = 17.4317 and A\pin(Z)v/1 — hg = 11.0678. Thus, assumption
(A1) hold. Hence, all conditions of Theorem 2.1 are satisfied. According to Theorem
2.1, the zero solution of NFNS of Example 2.2 is asymptotically stable.

R=7=

- (0)=2
- ()2

Xit)

¢
’v

N
- - -\

0 1 2 3 [ 5 6 7 8 9
time(sec) «1®

Ficure 1. The numerical simulation of the NFNS of Example 2.2
for k(t) = 0.5¢.

Theorem 2.3. If the conditions (2.5) and (2.6), that is, assumption (A2) and (1.2)
are satisfied, then the zero solution of NFNS (1.1) is asymptotically stable.

Proof. We define the LKF
t
V(t,z) =, DT (2T (1) Pa(t)) + u/ 27 (s)CT PCx(s)ds
t—r(t)

t

(2.35) + ,u/ (1o Dfx(s))T AT PA(y, D (s))ds.
t—k(t)

Since the matrices C, A are regular and P = PT > 0, then CTPC > 0 and

ATPA > 0. Hence, it can be shown that the LKF (2.35) is positive definite. By the

time-derivative of the LKF (2.35) along the trajectories of NFNS (1.1), we obtain

V(t,z) <aT(t)[BTP + PB + uCT PC)x(t) + pu(s, Diz(t))T AT PA(;, Dix(t))
+ 22T () PCx(t — K(t)) + 22T (1) PA(y, Diz(t — k(1))
+ 22T () PH, (t,2(t)) + 227 (t)PHy(t, 2(t — k(1)) 4 227 (t) P
x Hj(t,t, Dix(t — k(t))) — p(1 — hg)xT (t — r(t))CT PCx(t — k(1))
(2.36) — (1 = a) (1o Df(t — k(1)) T AT PA(s, Df(t — 5(1)))-
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Since P = PT > 0, P has a decomposition such as P = LTL, where L is any
nonsingular matrix with appropriate dimension. In view of Lemma 1.4, we have

207 (1) PCx(t — w(t)) =22 () LT LOx(t — K(t))

T T
Sa,u(l — hd)x (t)L" Lx(t)
+ ap(l — hy)at (t — k(t))CTLTLCx(t — K(t))
=2 (t)Px
(2.37) + ap(l — hg)zt (t — k(t))CT PCx(t — K(t)),

22T (£)PA(y, DY (t — k(1)) = 22T (£) LT LA(y, DI (t — 5(2)))

T T
Sa,u(l — hd)x (t)L" Lz(t)
+au(l = hg) (s Diw(t — w(1))) AT LT LA(s, Djx(t — k(1))
= zT(t)Px
~ap(l — hq) (P
(2.38) (1 = hg) (1 DYa(t — 5(6)))T AT PAG, Dia(t — (),

22T (1)PH (¢, z(t)) < B o (t) P2x(t)
(2.39) + BHY (t,x(t)) Hi(t, (1)),

207 (t) PH (t, 2 (t — w(1))) <~ 'a’ ()P?a(t)
(2.40) +yHy (8,2t — w(1)) Ha(t, 2(t — K(t))),

()P (t)

2xT(t)PH3(t7tO Dga:(t —k(t))) < f T
k(1)) Hs (L., Dix(t — k(1))

(2.41) + EHT (4, Dia(t —
Considering the equality
—1,Dix(t) + Bx(t) + Cx(t — K(t)) + Ay Diz(t — k(t)) + H1(t, z(t))
+ Ho(t,x(t — k(1)) + Hs(t, Diz(t — k(t))) =0,

We have
2o Dix(t)P|—4, Dix(t) + Bx(t) + Cx(t — k(1))
+ Ay, Diz(t — k(t)) + Hy(t,x(t)) + Hao(t, z(t — K(t)))
+ Ha(t,, Diw(t — w(t)))] = =20 D2 (t))" P(sy D (1))
+ 2(4 D (t )T PBx(t) + 2(tODgl‘(t))TPC:E(t — k(t))
+ 240 Df(1))T PA(so Di(t — w(t)))
+ 2(to D ()" PH (¢, 2(t)) + 2(zo Dfx(t))" PHa(t, x(t — 5(1)))
(2.42) (1o Df(t))" PH3(t .1, Dix(t — K(t))) = 0
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By using Lemma 1.4, for some terms of (2.42), we obtain the following inequalities,
respectively:
25y DIx(t)T PBx(t) = 2(4, Dz (t))" LT LBx(t
< i (0 D) LT L, Df (1)
+ ap(1 — hg)x? (t)BT LT LBx(t)
1
an(i— g WP
(2.43) + ap(l — hq)z' ()BT PBx(t),

(to Df(t))" Pt Df (1))

25, Dx(t)) T PCx(t — k(1)) = 2(3, Diz(t))T LT LCz(t — k(1))
1

9. TrT . gx
< i W D0 T L, DY)
+ ap(l — hy)at (t — k(1)) CTLTLCz(t — k(1))
fé e (tNT 9
_Ozu(l _ hd) (tth (t)> P(tth (t))
(2.44) + ap(l — hy)xt (t — k(t))CT PCx(t — K(t)),

2(so Df (1)) PA(e, Df(t — 5(1))) = 2(¢ Df(t))" LT LA, Df(t — 5(2)))
1

9. TrT ; gx
S Ty (W DO LT LG Dfa(0)
+ap(l = ha) (oo Dfx(t — w(t)T AT LT LA, D (t — k(1))
_é 90 T 9
= ot i (W DEe () PG, D ()
(2.45) + apu(1 — ha) (g Dfr(t — ()T AT P Aw(y, D (t — k(1))

2(1y Dfx(t)) " PHi(t,2(t)) < @™ (4 Dfa(t)) " P2 (s Df(t))"
(2.46) + aHT (t,2(t))Hy (t, z(t)),
2(1 D ()T PHa(t, x(t — £(t))) < b~ (s Dfw(t))" P (s Df(t))
(2.47) + bHI (t, 2(t — k(1)) Ho(t, z(t — K(1))),
2(1o Dfx (1)) PH3(t, (1o Dfx(t — 5(1)))) < ¢ (1 Df(8))" P? (1 D (1))
(2.48) + cH3 (t, (1o Dia(t — w(1)) Hs(t, (1 Df2(t — K(1))))-

where a,~,b, 3, ¢, & and « are some positive constants.
Combining (2.36)-(2.48) and using (2.5) and (2.6) of (A2), we arrive at

V(L) <aT(t) [M(; ~1)P+ (; + é + i)PQ _Q- z] (1)

D) [ (S0P (4 1) Pt 2 (i)
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+xT(t —k(t)[(2a — )p(1 — hd)CTPC]x(t — k(t))

+(1o Df(t — w(t))) " [1(2a = 1)(1 — ha) AT PA](1, Dfx(t — 5(1)))
+(B+ a)HY (t,x(t)) Hy(t, z(t))

+(y + b)Hy (t,x(t — k(1)) Ha(t, x(t — k(1))

+(& + O Hy (g D (t — k() Hs (b, Dw(t — K(t))).

Since P = PT > 0 and A, C are regular matrices, it follows that AT PA > 0 and
CTPC > 0. Let o < %, then

. 2 1 1 1 1
V(t,z) <zT(1) {1_}”( )P+(6 £ ) —Q—Z]x(t)
)T [#(1_% 1)P+ i+z+i)P2—Z} (1, D1(t))
(t — K(1))[(2a = Dp(1 — hq)CT PCa(t — k(1))
( ot — k(1) [(20 = D)pu(1 = hq) AT PA) (s, D (t — k(1))

+(6+ a)|‘Hl(t>$( O+ (v + b)| | Ha(t, 2(t — w(1)))|[?
(2.49)  +(&+ )| Ha(tyy Dix(t — w(1)))].

We choose positive constants a,~, b, 8, ¢, £ sufficiently large and o < % with 1 — «
sufficiently small such that

2 1 1 1
2. _ P PlP-Q-Z
(250) O = (1_hd)< 1) +(ﬂ £t ) Q-2<0,

3 1 1 1 1

2.51 = |(——1)P —4+ -+ )PPz .
(2:51) ©2 u(l—hd)<a ) +(a+b+c) <0
Since a < % and A, C are regular matrices, we have
(2.52) 03 =(2a — (1 — hg)CTPC < 0,
(2.53) 04 =(2a — 1)u(1 — hy) ATPA < 0.

Using (2.49)-(2.53), we find
V(t,z) <zT(1)012(t) + (3, Dz (t))T O (s, Dix(t)) + 2T (t — K(t))O3
x x(t — (1) + (1o Dfa(t = £(t)))" Oalsy Diz(t — K(t)))
+ (B+ a)|[Hi(t, z(0)[] + (v + 0| Ha(t, x(t — 5(1)))]”

(2.54) + (€ + O)[Hs(ts, Df(t — k()|
From the inequalities (2.50)-(2.53), we choose a positive constant p such that
(2.55) 0, +pl <0,(j =1,2,3,4).

From (1.3), there exist a positive number ¢ such that when ||z(¢)|| < 0, > to, the
following inequalities hold:

(62O < 5]
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P
[ Ha(t, 2 (t — 5(1)))||* < Py et = = @),

(1o Di(t = s < 1

Substituting last three inequalities into (2.54), we obtain
V(L) <aT(8)(O1 + pl)a(t) + (1 Dia(t)" (O3 + pT) (s, Di (1))
o (= K(5)(O3 + pl)alt — (1)) + (1 Dia(t — 5(1)))”
X (©4 + pI)(1y Dix(t — K(1))),

where [ is n x n - identity matrix. '
In the light of inequality (2.55), we conclude that V(¢,z) < 0. Thus, the zero
solution of NFNS (1.1) is asymptotically stable. This result is the end of the proof.
O

[lto Df:(t — (1)

Example 2.4. Consider the NFNS with unbounded delay, which is a special case
of NFNS (1.1):

to Dix(t) — Ay Dix(t — k(t)) = Bx(t) + Cx(t — k(t)) + Hi(t, z(t))
+ H(t, a(t — k(1)) + Hz(t4o Dix(t — 5(1))),

where
0<g<l,z(t)=[ a1(t) xa(t) =3(t) ],
a=0.3,u=06,k(t) =0.5t,k(t) = 0.5 = hy.
01 O 0 -1 0 0 001 O 0
A= 0 02 0 ,B = 0 —-0.6 0 ,C = 0 002 O
0 0 0.3 0 0 —-0.5 0 0 0.03
and
H1 (t, l’(t)) == [ xl(t)e—l‘%(t) x9 (t)e_xg(t) xg(t)e_xg(t) }T ,
Ho(t,2(2) = [ 22D ax(@e 3D ay@)e5@ |,

25 0 O 79 O 0
P=1] 0 30 0 |.,Q= 0 38 0
0 0 35 0 0 21
Then, it follows from (2.5) and (2.6) of (A2) that
2.9183 0 0
Z = 0 2.4080 0
0 0 1.5027

This shows that (2.5) and (2.6) of (A2) are satisfied. Thus, all conditions of Theorem
2.3 hold. According to Theorem 2.3, the zero solution of the NFNS of Example 2.4
is asymptotically stable.
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A. YIGIT AND C. TUNC

— 1(0)=4
- ()2
- 3(0)=3

. 'i‘

0 1 2 3 4 5 5 7 8 9
time(sec) 10

F1GURE 2. The numerical simulation of the system given by Exam-
ple 2.4 for k(t) = 0.5t.

3. CONCLUSION

In this article, using two different LKFs, we prove two theorems, which include
some sufficient conditions, on the asymptotic stability of zero solution of an NFNS
with an unbounded delay. We also provide two new examples with their graphs to
show that the given conditions are applicable. Our results have contributions to the
relevant literature.
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