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We will study the solution structure of first order linear TV differential-algebraic
equations of the following form

(1.1) L(t)
·
z =M (t) z + g (t) ,

where (L,M) ∈ C (J ;Rp×p)
2
, g ∈ C (J ;Rp) for finite p ∈ N. Here t ∈J ⊆ R is an

open interval and L(t) is a singular matrix. For simplicity, the tuples (L,M, g) and
(L,M, 0) = (L,M) denote the homogeneous and non-homogeneous systems (1.1)
respectively.

A function z : K → Rp is called a solution of DAE (1.1) if and only if z is
a continuously differentiable function on K ⊆ J, and solves equation (1.1) for all
t ∈ K. It is called global solution if and only if K = J.

Evaluating the solution structure of DAEs with periodic coefficients is of great
importance from theoretical point of view as well as against the background of
applicability. Solution structure of periodic DAE was studied by René et. al.
in [10]. We note that Floquet theory of index-1-tractable DAEs demands a strict
constant rank condition on the singular coefficient matrix which is not required by
solution theory of periodic DAEs transferable into SCF and derives a result about
the periodic solution. We also obtain a Floquet type result for periodic DAEs which
is transferable into SCF.

This paper has been organized as follows: Section 2 presents a collection of
basic definitions on linear DAEs. Section 3 presents the uniqueness of SCF for a
particular system, the various properties of the generalized transition matrix, and an
algorithm for computing the SCF with the help of transformation matrices. Section
4 contains the Floquet theory of index-1-tractable DAEs and a result about their
periodic solution. Section 5 shows that Floquet theory demands strict constant
rank condition on singular coefficient matrix which is not required for the solution
of periodic DAEs transferable into SCF. Moreover, we obtain Floquet type result
for periodic DAEs transferable into SCF.

2. Preliminaries

Nomenclature

N, N0 The set of natural numbers, N0= N ∪ {0} .
kerL, imL The kernel, image, of the matrix L ∈ Rp×p, respectively.
Glp (R) General linear group of degree p i.e. set of all invertible

p× p matrices over R .
C (J ;V ) The set of continuously differentiable functions g : J → V

from an open interval J ⊆ R to a vector space V.
Ck (J ;V ) The set of k-times continuously differentiable functions g : J → V

from an open interval J ⊆ R to a vector space V.
dom g The domain of the function g.
g |A The restriction of the function g on a set A ⊆ dom g.

To understand the solution structure of DEAs, first, we review some basic defi-
nitions with the help of suitable examples.
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The DAEs (L1,M1), (L2,M2) ∈ C (J ;Rp×p)
2
are called equivalent if, and only if,

there exists (P,Q) ∈ C(J ;Glp (R))× C1 (J ;Glp (R)) such that

L2 = PL1Q, M2 = PM1Q− PL1

·
Q.

Then we write

(2.1) (L1,M1)
P,Q∼ (L2,M2).

A square matrix which has all the entries on and above the main diagonal are
zero for all t ∈ J, is called pointwise strictly lower triangular [3,9]. Regular pencil is

a pair of matrices (L,M) such that (Lc−M)−1 exists, where c ∈ C. If (Lc−M)−1

does not exists, then pair of matrices (L,M) will be called a singular pencil.

The DAE (L,M) ∈ C (J ;Rp×p)
2
for which transformation matrices (P,Q) ∈

C (J ;Glp (R))× C1(J ;Glp(R)) exist such that

(2.2) (L,M)
P,Q∼

([
Ip1 0
0 A

]
,

[
B 0
0 Ip2

])
,

where A is a square matrix of size p2 and pointwise strictly lower triangular and B
is a square matrix of size p1. Then DAE (L,M) is called transferable into SCF.

Example 2.1. Consider DAE with (E,F ) ∈ C
(
(0,∞) ;R2×2

)2
and

(
P

′
, Q

′
)

∈
C ((0,∞) ;Gl2 (R)) ×C1 ((0,∞) ;Gl2 (R)) , where

E (t) =

[
1 0
0 0

]
, F (t) =

[
−1 0
0 et

]
, t ∈ R,

and P
′
(t) =

[
1 0
0 et

]
, Q

′
(t) = I2, t ∈ R such that

A(t) = 0, B (t) = −1.

By using equation (2.2), we can write

(2.3) (E,F )
P

′
,Q

′

∼
([

1 0
0 0

]
,

[
−1 0
0 1

])
.

Thus DAE (L,M) is transferred into SCF.

The set which consist of all possible pairs of consistent initial values of (L,M) ∈
C (J ;Rp×p)

2
is denoted by

WL,M := {
(
t0, z0

)
∈ R× Rp | ∃ t0 ∈ domz(·), z(t0) = z0},

where z (·) is (local) solution of homogeneous DAE. Then the subspace of initial
values which are consistent at time t0 ∈ J is called linear subspace of initial values
and represented by

WL,M

(
t0
)
:= {z0 ∈ Rp |

(
t0, z0

)
∈WL,M}.

Note that z : K −→ Rp is a solution of equation (1.1), then z (t) ∈ WL,M for all
t ∈ K.
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Example 2.2. Suppose (L,M) ∈ C (J ;Rp×p)
2
, which is interchangeable into SCF

for some (P,Q) ∈ C (J ;Glp (R))× C1(J ;Glp(R)). Then generalized transition ma-
trix Y (·, ·) of the system is defined by

(2.4) Y
(
t, t0

)
:= Q (t)

[
ΦB

(
t, t0

)
0

0 0

]
Q
(
t0
)−1

, t, t0 ∈ J,

where ΦB

(
t, t0

)
denotes the transition matrix of inherent ODE

·
x = B (t)x.

Consider DAE (E,F ) ∈ C
(
(0,∞) ;R2×2

)2
, which is transferable into SCF, as

expressed in equation (2.3) with same P
′
(t) and Q

′
(t). Then equation (2.4) gives

Y
(
t, t0

)
= I2

[
e−(t−t0) 0

0 0

]
I−1
2 =

[
e−(t−t0) 0

0 0

]
.

A square matrix function L (t) is called T -periodic if ∃ a constant T > 0 such
that

L (t+ T ) = A (t) , t ∈R.

3. SCF form of time-varying linear DAEs

3.1. Standard Canonical Form. We know that the SCF in equation (2.2) is
unique in the sense that the dimensions of the ODE and the pure DAE are unique
and that the ODE and pure DAE are unique up to some equivalence as given in
equation (2.1) [1]. Consider homogeneous time-varying linear differential-algebraic
equations of the following form:

(3.1) L(t)
·
z =M (t) z,

where (L,M) ∈ C (J ;Rp×p)
2
for some finite p ∈ N, t ∈ J and J ⊆ R.

Lemma 3.1. Let A ∈ C (J ;Rp×p) be a pointwise strictly lower triangular. Then
the pure DAE

(3.2) A (t)
·
z = z,

has the unique global solution z (·) = 0 and every local solution y : K −→ Rp of
equation (3.2) satisfies y (t) = 0, (∀) t ∈ K.

Theorem 3.2. Suppose p1, p2,
∼
p1,

∼
p2 ∈ N0, B1 ∈ C (J ;Rp1×p1) , B2 ∈ C

(
J ;R

∼
p1×

∼
p1

)
and A1 ∈ C (J ;Rp2×p2) , A2 ∈ C

(
J ;R

∼
p2×

∼
p2

)
, where A1, A2 are pointwise strictly

lower triangular. If for some (P,Q) ∈ C (J ;Glp (R))× C1 (J ;Glp (R)) , we have([
Ip1 0
0 A1

]
,

[
B1 0
0 Ip2

])
P,Q∼

([
I∼
p1

0

0 A

]
,

[
B 0
0 I∼

p2

])
,

then we obtain

(1) p1 =
∼
p1, p2 =

∼
p2.

(2) P =

[
P11 0
0 P22

]
, Q =

[
Q11 0
0 Q22

]
, Q11 = P−1

11 .

(3) (IP1 , B1)
Q−1

11 ,Q11∼ (IP1 , B2) , (A1, IP2)
P11,Q22∼ (A2, IP2) .
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Proposition 3.3. Consider (L,M) ∈ C (J ;Rp×p)
2
, then we have (L,M) is trans-

ferable into SCF if and only if (L,M) is regular.

3.2. Transition Matrix and Variation of Constants Formula. In this section,
we define generalized transition matrix by using the transformation matrix and SCF
and discuss the solution of DAEs by using the generalized transition matrix.

Proposition 3.4. Suppose the DAE (L,M) ∈ C (J ;Rp×p)
2
, which is transferable

into SCF as described in equation (2.2). Then we have

(3.3) (1)
(
t0, z0

)
∈WL,M if and only if z0 ∈ imQ

(
t0
) [ Ip1

0

]
,

(2) Any solution of the IVP (3.1), z
(
t0
)
= z0, where

(
t0, z0

)
∈ WL,M , extends

uniquely to a global solution z (·) , and this solution satisfies

(3.4) z (t) = Y
(
t, t0

)
z0, (∀) t ∈ J,

where Y
(
t, t0

)
is the generalized transition matrix of (3.1) as defined in (3.1).

Proposition 3.5. Suppose (L,M) ∈ C (J ;Rp×p)
2
is transferable into SCF. Then

Y (·, ·) defined in (2.4) is independent of the choice of (P,Q) in (2.2).

Proposition 3.6. Suppose (L,M) ∈ C (J ;Rp×p)
2
which is transferable into SCF

and has generalized transition matrix Y (·, ·) . Then Y (·, ·) has the following prop-
erties for all t, s, r ∈ J,

(1) L (t) d
dtY (t, r) =M (t)Y (t, r) ,

(2) imY (t, r) =WL,M (t) ,
(3) Y (t, s)Y (s, r) = Y (t, r) ,

(4) Y (t, r)2 = Y (t, r) ,
(5) Y (t, r) z = z, ∀z ∈WL,M (t) ,

(6) d
dtY (r, t) = −Y (r, t)Q (t)P (t)M (t) .

Theorem 3.7. Suppose (L,M) ∈ C (J ;Rp×p)
2
is transferable into SCF and t0 ∈ J,

then the linear map

ψ :WL,M (to) −→ {z : J −→ Rp | z (·) is a global solution of (3.1) } ,
such that

ψ(z0) = Y
(
·, t0
)
z0,

is a vector space isomorphism.

Corollary 3.8. If (L,M) ∈ C (J ;Rp×p)
2
is transferable into SCF then dimWL,M (·)

is constant.

Consider inhomogeneous time-varying linear differential-algebraic equations of
the form

(3.5) L(t)
·
z =M (t) z + g (t) , z

(
t0
)
= z0,

where (L,M) ∈ C (J ;Rp×p)
2
, g ∈ C (J ;Rp) , (t0, z0) ⊆ R× Rp for finite p ∈ N

and J ⊆ R.
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Theorem 3.9. Suppose that the DAE (L,M) ∈ Cp (J ;Rp×p)
2
is transferable into

SCF by some transformation matrices (P,Q) ∈ Cp (J ;Glp (R)). Then the state-
ments described in following holds for g ∈ Cp2 (J ;Rp) :

(1) The IVB (3.5) has a solution if, and only if,

(3.6)
z0 +Q

(
t0
) [ 0

Ip2

](
p2−1∑
k=0

(
A (·) d

dt

)k [
0 Ip2

]
P (·) g (·)

) ∣∣∣∣
t=t0

∈ imQ
(
t0
) [ Ip1

0

]
.

(2) Any solution of equation (3.5) such that equation (3.6) holds can be uniquely
extended to a global solution z (·) , and this solution satisfies, for the gener-
alized transition matrix Y (·, ·) of (L,M) and all t ∈ J,

z (t) = Y
(
t, t0

)
z0 +

∫ t

t0
Y (t, r)Q (r)P (r)g (r) dr(3.7)

−Q (t)

[
0
Ip2

] p2−1∑
k=0

(
A (·) d

dt

)k [
0 Ip2

]
P (t) g (t) .

Theorem 3.10. Let A ∈ Cp (J ;Rp×p) be pointwise strictly lower triangular, g ∈
Cp (J ;Rp) and

(
t0, z0

)
∈ J × Rp. Then the IVP

(3.8) A(t)
·
z = z + g(t), z (t) = z0,

has a solution iff

−
p−1∑
k=0

(
A (·) d

dt

)k

g (t)

∣∣∣∣
t=t0

= z0.

Any solution of (3.8) can be uniquely extended to a global solution z (·) , and this
solution

(3.9) z (t) = −
p−1∑
k=0

(
A (·) d

dt

)k

g (t) , t ∈ J.

3.3. Computing SCF. In this section, three main algorithms are presented in
quasi-MATLAB code for computing the SCF of DAEs (L,M) with real analytic
coefficients and this algorithm also decides whether (L,M) is transferable into SCF
or not.

Algorithm 3.11. (Function transfSCF)

(1) function [P,Q,A,B] = transfSCF (L,M)
(2) reached SCF= 0; % initial value for global variable
(3) [P1, Q1, A1, B2] = getSCF (L,M) ;
(4) n :=size(B) ;

(5) P :=


In 0

0

 1
⧸

1


P1; Q := Q1


In 0

0

 1
⧸

1


 ;



FLOQUET THEORY OF DAE TRANSFERABLE INTO SCF 51

(6) A :=

 1
⧸

1

A1

 1
⧸

1

 ; B = B1.

Algorithm 3.12. (Function get SCF)

(1) function [P,Q,A,B] =getSCF (L,M)
(2) [L1, L2,M1,M2,H,E, F ] :=reduce (L,M) ;
(3) if reachedSCF= 0 then
(4) [P1, Q1, A1, B1] =getSCF (L1,M1) ;
(5) else if L ≡ 0, then
(6) A1 := 0; B1 := ∅, P1 := Q1 := I; % set B = ∅ if the matrix B is absent
(7) else
(8) A1 := ∅ ; B1 := L−1

1 M, P1 := L−1
1 , Q1 := I;

(9) end if
(10) n1 :=size(B1) ; n2 :=size(A1) ; % the size of an empty matrix is 0

(11)

[ ∼
L1
∼
L2

]
:= P1L2 s.t.

∼
Li has ni rows, i = 1, 2;

(12)

[ ∼
M1
∼
M2

]
:= P1M2 s.t.

∼
Mi has ni rows, i = 1, 2;

(13) P :=

 In1 0 d
dt

∼
L1 +B1

∼
L1 −

∼
M1

0 In2 0
0 0 Isize(L)−n1−n2


 In1 0 0

0 In2 −
∼
M2H

−1

0 0 H−1


×
[
P1 0
0 Isize(L)−n1−n2

]
E;

(14) Q := F

[
Q1 0
0 Isize(L)−n1−n2

] In1 0 −
∼
L1

0 In2 0
0 0 Isize(L)−n1−n2

 ;

(15) B := B1, A :=

[
A1

∼
L2

0 0

]
, such that size(A)+size(B) =size(L) .

Algorithm 3.13. (Function reduce)

(1) function [L1, L2,M1,M2,H,E, F ] =reduce (L,M) ,
(2) if L ≡ 0 or (∀t ∈ I : detL(t) ̸= 0) then
(3) L1 := L; M1 :=M ; L2 :=M2 := H := ∅; E := F := I;
(4) reached SCF:= 1;
(5) else if not(∀t ∈ I : detL(t) = 0) , then
(6) print ”Not Transferable into SCF” STOP
(7) else
(8) determine (minimal) n < p := size (L) such that rkL (t) ≤ n < p for all

t ∈ I and E : J → Rp×p real analytic and pointwise nonsingular such that

EL =

[
∧
L1

∧
L2

0 0

]
where

∧
L1 ∈ Rp×p;
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(9)

 ∧
M11

∧
M12

∧
M21

∧
M22

 := EM, where
∧
M11 ∈ Rp×p;

(10) if not
(
∀t ∈ I : rk

[ ∧
M21

∧
M22

]
= p− n = max

)
then

(11) print ”Not Transferable into SCF” STOP
(12) else
(13) choose F : J → Rp×p real analytic and pointwise nonsingular such that

[
∧
M21,

∧
M21]Q =

[
0(p−n)×n H

]
, detH (t) ̸= 0 ∀t ∈ J ;

(14)
[
L1 L2

]
:=
[ ∧
L1

∧
L2

]
F ;

(15)
[
M1 M2

]
:=
[ ∧
M11

∧
M 12

]
F −

[ ∧
L1

∧
L2

] ·
F ;

(16) end if
(17) end if

4. Floquet theory of index one tractable DAEs

Consider linear homogenous time-varying DAE with continuous coefficients

(4.1) L (t)
·
z +M(t)z = 0,

where (L,M) ∈ C (R,Rp×p)
2
for finite p ∈ N.and t ∈R.

Consider F (t) := kerL (t) is the the null-space. Suppose F (t) to be smooth that
is to be spanned by continuously differential basis functions. In particular, F (t)
then has constant rank. Obviously, all solutions of equation (4.1) belong to the
subspace,

R (t) := {z ∈ Rp :M(t)z ∈ imL (t)} ⊂ Rp.

Assume that equation (4.1) is index-1-tractable, that is

R (t) ∩ F (t) = {0} .

Then exactly one solution passes through each point of R (t) at time t [7]. Using any
C1 projector function G (t) onto F (t) and H (t) := I−G (t) , initial value problems
(IVPs) are properly stated with the initial condition

(4.2) G (t)
(
z (0)− z0

)
= 0.

IVPs (4.1) and (4.2 are uniquely solvable for all z0 ∈ RP . The solution of the DAE
(4.1) should belong to the function space,

C1
F :=

{
z ∈ C : Gz ∈ C1

}
.

By using the fundamental matrix U (t, 0) , which is the solution of the matrix-valued
IVP, we have

L (t)
·
U(t, 0) +M(t)U(t, 0) = 0,

G (t)
(
U (0, 0)− U0

)
= 0.

We write the solutions of equation (4.1) and equation (4.2) as

z (t) = U(t, 0)z.0.
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In the above equation U represents the fundamental matrix of the DAE as we know
that V is the fundamental matrix of the inherent ODE [7].

(4.3)
·
V +

[
−GGcan +G(L+MG)−1M

]
V = 0, V (0) = I ∈ Rp×p,

where Gcan represents the canonical projector along F (t) onto R(t). Then

(4.4) U (t, 0) = Gcan (t)V (t)G (t) .

Consider linear homogenous ODE with periodic coefficient,

(4.5)
·
z +B(t)z = 0,

where B ∈ C (R,Rp×p) , B (t) = B (t+ T ) , ∀t ∈ R and T is a positive constant. Its
fundamental matrix is V (t) with

·
V (t) +B(t)V (t) = 0, V (t) = I.

Floquet describes the decomposition of fundamental matrix of system (4.5).

Theorem 4.1. The fundamental matrix V (t) can be written in the form

V (t) = E (t) etB0 ,

where B ∈ Cp×p, E ∈ C1 (R,Cp×p) is nonsingular, E (t) = E (t+ T ) , ∀t ∈ R and
T is positive constant.

Now we consider linear homogenous time-varying DAEs with periodic coefficients

(4.6) L (t)
·
z +M(t)z = 0,

where (L,M) ∈ C (R,Rp×p)
2
, L (t) = L (t+ T ) , M(t) = M(t + T ), ∀t ∈ R and T

> 0. Since L (·) are M (·) are T -periodic coefficients then F (·) and R (·), are also
T -periodic. We use the natural splitting of the following form

Rp = F (t)⊕R (t) ,

for index-1 tractable DAEs. We span F (·) by T -periodic C1 function,

F (t) = span {ηs+1 (t) , · · · , ηp (t)} , s = rkL (t) ,

and R (·) may be only continuous, let R (·) be spanned by T -periodic continuous
function,

R (t) = span {r1 (t) , · · · , rs (t)} .
Since Gcan projects onto R along F, we have the representation

(4.7) Gcan (t) = Q (t)

[
I

0

]
Q−1 (0) ,

where

(4.8) Q (t) := [r1 (t) , · · · , rs (t) , ns+1 (t) , · · · , nn (t)] ∈ Rp×p.

We choose a projector G(·) along F (·) , so that G is not only smooth but also
periodic and

(4.9) G (0) = Gcan (t) .

From equation (4.4), we have

U (t, 0) = Gcan (t)V (t)G (0) .
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By using equation (4.9), we have

U (t, 0) = Gcan (t)V (t)Gcan (0)

= Q (t)

[
I

0

]
Q−1 (t)V (t)Q (0)

[
I

0

]
Q−1 (0)

= Q (t)

[
X (t)

0

]
Q−1 (0) ,

where X ∈ C (R,Rs×s) , X (0) = I and the Monodromy matrix U (T, 0) is of the
following form

(4.10) U (T, 0) = Q (T )

[
X (T )

0

]
Q−1 (0) = Q (0)

[
X (T )

0

]
Q−1 (0) .

Since rank X (t) = s is constant so X (t) ∈ Rs×s is nonsingular for all t ∈ R.
From the theory of linear algebra [12], it is known that every nonsingular matrix

D ∈ Rs×s can written in the form

D = eB with B ∈ Cs×s,

and

D2 = eB with B ∈ Rs×s.

Now, let

X (T ) = eTB0 , B0 ∈ Cs×s,

and

X (2T ) = e2TW0 , W0 ∈ Cs,

= X (T )2 .

respectively. Here

X (2T ) = X (T )2 ,

from the corresponding property of X and the relation W (2T ) =W (T )2 =W (0) .
By using the Theorem of Floquet for ODEs 4.1, we set

Ek (t) := Q (t)

[
X(t)e−tB0

I

]
= U(t, 0)Q(0)

[
e−tB0

0

]
+Q (t)

[
0

1

]
.

Now we state and proof the Floquet decomposition of fundamental matrix of peri-
odic DAEs.

Theorem 4.2. The fundamental matrix U (t, 0) of (L,M) can be written as

U (t, 0) = E (t)

[
etB0

0

]
E (0)−1 ,

where E ∈ C1
F (R,Cp×p) is nonsingular and T -periodic.

Now, we prove a result for DAEs as a generalization of known ODEs result.
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Theorem 4.3. A solution z (·) of T -periodic time varying linear DAE

(4.11) L (t)
·
z (t) =M (t) z (t) + g (t) , z

(
t0
)
= z0,

is T -periodic if and only if, z
(
t0 + T

)
= z0.

Proof. If z (·) is T -periodic, then clearly z
(
t0 + T

)
= z0. Conversely, suppose z0 is

such that the corresponding solution of equation (4.11) satisfies z
(
t0 + T

)
= z0.

Letting x (t) := z (t+ T )− z (t) , it follows that x
(
t0
)
= 0 and

·
x (t) =

·
z (t+ T )− ·

z (t) .

Multiplying the above equation by L (·) , we get

L (t)
·
x (t) = L (t)

·
z (t+ T )− L (t)

·
z (t) .

Since L,M and g are T -periodic. Therefore, the above equation becomes

L (t)
·
x (t) = L (t+ T )

·
z (t+ T )− L (t)

·
z (t) ,

= [M (t+ T ) z (t+ T ) + g (t+ T )]− [M (t) z (t) + g (t)] ,

= [M (t) z (t+ T ) + g (t)]− [M (t) z (t) + g (t)] ,

=M (t) [z (t+ T )− z (t)] ,

=M (t)x (t) ,

but uniqueness of solution implies that x (t) = 0 for all t, that is

z (t+ T ) = z (t) ,

which shows z (·) is T -periodic. This completes the proof of theorem. □

5. Floquet theory of systems with standard canonical form

Consider linear homogenous time-varying periodic DAE transferable into SCF,

(5.1) L (t)
·
z(t) +M(t)z(t) = 0, z (t) = z0,

where (L, M) ∈ C (J,Rp×p)
2
, L (t) = L (t+ T ) , M(t) = M(t + T ), ∀ t ∈ J ⊆ R

and T is a positive constant. The Floquet theory requires some strict conditions for
the solution of periodic DAE. The Floquet theory demands constant rank condition
on the singular coefficient matrix for the solution of periodic DAEs but there is no
such condition in the solution theory of periodic DAEs transferable into SCF. This
fact is obvious from the following example.

Example 5.1. Consider the time-varying periodic DAE

L (t)
·
z =M (t) z,

where

L (t) =

 sin (t) cos (t) 0
0 0 0

− cos (t) sin (t) sin2 (t) 0

 , t ∈ R,

M (t) =

 sin (t)− cos (t) cos (t) 0
− cos (t) sin (t) 0
sin2 (t) − sin (t) cos (t) t2 + 1

 , t ∈ R.
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Note that rank of L is not constant. We show that (L,M) is transferable into SCF
by applying Algorithm 3.11.

transf SCF(L,M)
reached SCF= 0, [P1, Q1, A1, B2]=get SCF(L,M) ,
get SCF(L,M) (First Instance):
[L1

1, L
1
2,M

1
1 ,M

1
2 ,H

1, E1, F 1] =reduce (L,M) ,
reduce(L,M) : Conditions in rows 2 and 5 of Algorithm 3.13 not fulfilled, go to

rows 8 to 16,
for n = 2

∧
L1 =

[
sin (t) cos (t)

− cos (t) sin (t) sin2 (t)

]
,

∧
L2 =

[
0
0

]
.

Choose E1 (t) =

 1 0 0
0 0 1
0 1 0

 , such that

E1 (t)L(t) =

 sin (t) cos (t) 0
− cos (t) sin (t) sin2 (t) 0

0 0 0

 =

[
∧
L1

∧
L2

0 0

]
,

and evaluate ∧
M11

∧
M12

∧
M21

∧
M22

 = E1 (t)M(t) =

 sin(t)− cos (t) cos (t) + sin(t) 0
sin2(t) − sin(t) cos (t) t2 + 1
− cos (t) sin(t) 0

 .
Condition in row 10 of Algorithm 3.13 not fulfilled, go to rows 13 to 15,

choose F 1 (t) =

 0 sin(t) − cos (t)
0 cos (t) sin(t)
1 0 0

 , such that

[ ∧
M21

∧
M22

]
F 1 (t) =

[
0 0 1

]
.

Then we have[
L1
1 (t) L1

2 (t)
]
=
[ ∧
L1

∧
L2

]
F 1 =

[
0 1
0 0

∣∣∣∣ 0
sin (t)

]
.

[
M1

1 (t) M1
2 (t)

]
=
[ ∧
M11

∧
M12

]
F 1 −

[ ∧
L1

∧
L2

] ·
F 1

=

[
0 1

t2 + 1 0

∣∣∣∣ 00
]
.

Condition in row 3 of Algorithm 3.12 fulfilled, go to row 4,
[P 2

1 , Q
2
1, A

2
1, B

2
1 ]=get SCF

(
L1
1,M

1
1

)
,

get SCF
(
L1
1,M

1
1

)
(second instance):

[L2
1, L

2
2,M

2
1 ,M

2
2 ,H

2, E2, F 2] =reduce
(
L1
1,M

1
1

)
,

reduce
(
L1
1,M

1
1

)
: Conditions in rows 2 and 5 of Algorithm 3.13 not fulfilled, go

to rows 8 to 16, for n = 1 [ ∧
L1

∧
L2

]
=
[
0 1

]
.
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Choose E2 (t) = I2, such that

E2 (t)L1(t) =

[
0 1
0 0

]
=

[
∧
L1

∧
L2

0 0

]
.

and evaluate  ∧
M11

∧
M12

∧
M21

∧
M22

 = E2 (t)M1
1 (t) =

[
0 1

t2 + 1 0

]
.

Condition in rows 10 of Algorithm 3.13 not fulfilled, go to rows 13 to 15, choose

F 2 (t) =

[
0 1
1 0

]
, such that[ ∧

M21

∧
M22

]
F 2 (t) =

[
0 t2 + 1

]
.

Then we have [
L2
1 (t) L2

2 (t)
]
= [0 |1] .

and [
M2

1 (t) M2
2 (t)

]
= [1 |0] .

get SCF
(
L2
1,M

2
1

)
. (Third Instance):

[L3
1, L

3
2,M

3
1 ,M

3
2 ,H

3, E3, F 3] = reduce
(
L2
1,M

2
1

)
,

reduce
(
L2
1,M

2
1

)
: Conditions in rows 2 and 5 of Algorithm 3.13 fulfilled, go to

rows 3 and 4, L3
1 = L2

1, M
3
1 = M2

1 , L
3
2 = M3

2 = H3 = ∅, E3 := F 3 = I, reached
SCF=1, conditions in row 3 and 5 of Algorithm 3.12 not fulfilled, go to row 8,

A4
1 = ∅, B4

1 = (L
3

1)
−1M3

1 = 1, P 4
1 = L−1

1 = 1, Q4
1 = 1.

(Third Instance) n1 =size
(
B4

1

)
, ⇒ n1 = 1. n2 =size

(
A4

1

)
, ⇒ n2 = 1.[ ∼

L1
∼
L2

]
= P 4

1L
3
2 =

[
∅
∅

]
,

[ ∼
M1
∼
M2

]
= P1M2 =

[
∅
∅

]
.

⇒
∼
L1 =

∼
L2 =

∼
M1 =

∼
M2 = ∅.

Then we have

P 3
1 = P 4

1E
3 = 1, Q3

1 = F 3Q4
1 = 1,

Also

B3
1 = B4

1 = 1, A3
1 =

[
A4

1

∼
L2

0 0

]
= ∅,

such that size
(
A3

1

)
+ size

(
B3

1

)
= size

(
L3
1

)
.

(Second Instance) n1 =size
(
B3

1

)
, ⇒ n1 = 1. n2 =size

(
A3

1

)
, ⇒ n2 = 0.[ ∼

L1
∼
L2

]
= P 3

1L
2
2 =

[
0
∅

]
,

[ ∼
M1
∼
M2

]
= P 3

1M
2
2 =

[
0
∅

]
,

⇒
∼
L1 =

∼
M1 = 0,

∼
L2 =

∼
M2 = ∅.
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Then we obtain

P 2
1 =

[
1 0
0 1

t2+1

]
, Q2

1 =

[
0 1
1 0

]
,

and

B2
1 = B3

1 = 1, A2
1 =

[
A3

1

∼
L2

0 0

]
= 0.

(First Instance) n1 =size
(
B2

1

)
, ⇒ n1 = 1. n2 =size

(
A2

1

)
, ⇒ n2 = 0.[ ∼

L1
∼
L2

]
= P 2

1L
1
2 =

[
0

sin(t)
t2+1

]
,

⇒
∼
L1 = 0,

∼
L2 =

sin (t)

t2 + 1
.[ ∼

M1
∼
M2

]
= P 2

1M
1
2 =

[
0
0

]
.

⇒
∼
M1 =

∼
M2 = 0.

Then we obtain

P 1
1 =

 1 0 0
0 0 1

t2+1
0 1 0

 . Q2
1 =

 sin (t) 0 − cos (t)
cos (t) 0 sin (t)

0 1 0

 ,
and

B1
1 = B2

1 = 1, A1
1 =

[
A2

1

∼
L2

0 0

]
=

[
0 sin(t)

t2+1
0 0

]
,

back in trans SCF r =size(B) ,⇒ r = 1. We have

P =

 1 0 0
0 0 1
0 1 0

P1 =

 1 0 0
0 1 0
0 0 1

t2+1

 ,
Q = Q1

 1 0 0
0 0 1
0 1 0

 =

 sin (t) − cos (t) 0
cos (t) sin(t) 0

0 0 1

 ,
and

A =

[
0 1
1 0

]
A1

[
0 1
1 0

]
=

[
0 0

sin(t)
t2+1

0

]
, B = B1 = 1.

Thus time-varying periodic DAE (L,M) is transferable into SCF in the following
form

(L,M)
P,Q∼

 1 0 0
0 0 0

0 sin(t)
t2+1

0

 ,
 1 0 0

0 0 0
0 0 1

 , t ∈ R.
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So we have

P (t) =

 1 0 0
0 1 0
0 0 1

t2+1

 , Q (t) =

 sin (t) − cos (t) 0
cos (t) sin(t) 0

0 0 1

 , t ∈ R.

Definition 5.2. Suppose (L,M) ∈ C (J ;Rp×p)
2
, which is interchageable into SCF

for some (P,Q) ∈ C (J ;Glp (R)) × C1(J ;Glp(R)) and Q(t) is periodic. Then the
generalized transition matrix Y (·, 0) of system (5.1) is given as

Y (t, 0) := Q(t)

[
ΦB (t, 0)

0

]
Q(0)−1, t,∈ J,

where ΦB (t, 0) denotes the transition matrix of inherent ODE
·
x = Bx.

We will decompose the generalized transition matrix of system (5.1). This Flo-
quet type decomposition can be used to investigate solution properties of periodic
DAEs transferable into SCF.

Theorem 5.3. The generalized transition matrix Y (t, 0) of periodic DAEs trans-
ferable into SCF (5.1) can be written in the form

Y (t, 0) = E (t)

[
etB0

0

]
E (0)−1 ,

where E (t) ∈ C1 (J,Glp (R)) and T -periodic.

Proof. Assume that Q(t) is periodic and

(5.2) E (t) = Q (t)

[
ΦB (t, 0) e−tB0

I

]
.

Since, we know that

(5.3) Y (t, 0) = Q (t)

[
ΦB (t, 0)

0

]
Q (0)−1 .

From equation (5.2), we have

(5.4) Q (t) = E (t)

[
etB0ΦB (t, 0)−1

I

]
,

and

(5.5) Q (0) = E (0)

[
ΦB (0, 0)−1

I

]
.

Since

ΦB (0, 0) = I.

By using the equation (5.5), we have

(5.6) Q (0)−1 = E (0)−1 .

By substituting equations (5.4) and (5.6) in equation (5.3), we have

Y (t, 0) = E (t)−1

[
etB0ΦB (0, 0)−1

I

] [
ΦB (0, 0)

0

]
E (0)−1 ,
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= E (t)−1

[
etB0

0

]
E (0)−1 .

This completes the proof. □

6. Conclusion

In this paper, we have presented a collection of basic definitions on linear DAEs.
We have showed DAEs can be transformed into SCF. This class is a time-varying
generalization of time invariants DAEs, where the corresponding matrix pencil is
regular. It has also been discussed that in which sense the SCF is a canonical form,
that allows for a transition matrix similar to the one for ODEs, and how this can be
exploited to derive a variation of constants formula. At the end, we have presented
an algorithm which determines the transformation matrices which put a DAE into
SCF. We also showed that Floquet theory of DAEs demands a strict constant rank
condition on the singular coefficient matrix which is not required by solution theory
of DAEs transferable into SCF. Moreover, we have obtained the Floquet type result
for periodic DAEs which are transferable into SCF.
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