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where τ > 0 is constant time delay, φ, ψ, χ, h and P2 are real valued continuous
functions in their arguments and

P2(.) = P2(t, x, x
′, x′′, x′′′, x(t− τ), x′(t− τ), x′′(t− τ)).

In this research work, motivated by the results of Tejumola and Tchegnani [42],
we consider the following nonlinear DDE of fourth order with multiple constant
time delays τi > 0, i = 1, 2, ..., n:

x(4) + f(t, x, x′, x′′, x′′′)x′′′ +

n∑
i=1

ψi(t, x
′(t− τi), x

′′(t− τi))

+

n∑
i=1

gi(t, x(t− τi), x
′(t− τi)) +

n∑
i=1

hi(x(t− τi)

=P (t, x, x′, x′′, x′′′, x(t− τ1), ..., x(t− τn), ..., x
′′′(t− τ1), ..., x

′′′(t− τn)),(1.1)

where t ∈ [0,∞), x ∈ ℜ, ℜ = (−∞,∞), f, gi, hi, ψi and P are continuous func-
tions in their respective arguments. Also, the functions hi are continuously differ-
entiable.

The DDE (1.1) can be stated in the system form as follows:

x′ =y,

y′ =z,

z′ =w,

w′ =− aw −
n∑

i=1

biz −
n∑

i=1

ciy −
n∑

i=1

hi(x) +M(t),(1.2)

where

M(t) =aw − f(t, x, y, z, w)w +
n∑

i=1

bi

∫ 0

−τi

w(t+ θ)dθ −
n∑

i=1

ψi(t, y(t− τi), z(t−τi))

+
n∑

i=1

biz(t− τi) +
n∑

i=1

ci

∫ 0

−τi

z(t+ θ)dθ −
n∑

i=1

gi(t, x(t− τi), y(t−τi))

+
n∑

i=1

ciy(t− τi) +
n∑

i=1

∫ 0

−τi

hi
′(x(t+ θ))y(t+ θ)dθ + P (.),(1.3)

a, b and c are real constants and
∑n

i=1 ci = c,
∑n

i=1 bi = b.
In this research work, we establish new sufficient conditions, which make enable

the UAS, the UB, the UUB of solutions and the EPSs of the DDE (1.1) by defining
and using a suitable LKF. The results of this research work generalize some former
results in the literature and have new the complementary inputs in relation to the
qualitative theory of the DDEs of higher order.

2. Main results

The main results of this paper are given in the following theorems, Theorem 2.1
and Theorem 2.2, respectively.
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Theorem 2.1. Suppose that gi(t, x, 0) = 0 = ψi(t, y, 0), there exist positive con-
stants a, bi, ci, di, δi, K such that ab − c > 0, s = abc − c2 − a2d > 0, s∗ =
s+2ad(ab−c)b−1 and the following conditions hold for all t ∈ [0,∞) , x, y, z, w ∈ ℜ:
(C1)

0 < f(t, x, y, z, w) ≤ a;

(C2)

0 <
ψi(t, y, z)

z
≤ bi, (z ̸= 0);

(C3)

0 <
gi(t, x, y)

y
≤ ci, (y ̸= 0);

(C4)

δi ≤ hi
′(x) ≤ di,

n∑
i=1

di = d,

n∑
i=1

δi = δ, d− 2asc−1 < δ;

(C5)

di

(
1− sici

s∗i abi

)
< Ki <

hi(x)

x
, (x ̸= 0), B

n∑
i=1

Ki = K.

Then, the zero solution of the system (1.2) is uniformly asymptotically stable for
sufficiently small τi, i = 1, 2, ..., n, and P (.) ≡ 0.

Theorem 2.2. Suppose that (C1)-(C5) of Theorem 2.1 hold and there are positive
constants ∆ > 0 and ∆1 > 0 such that

(2.1) |P (.)| ≤ ∆+∆1(|x|+ |y|+ |z|+ |w|).
Then, every solution of the system (1.2) is uniformly bounded and uniformly ulti-
mately bounded for sufficiently small τi, i = 1, 2, ..., n.

Corollary 2.3. Subject to conditions (C1)-(C5) of Theorem 2.2, the system (1.2)
admits of at least one T -periodic solution if f, ψi, gi and P are periodic in t with the
period T , T > τi (see, Tejumola and Tchegnani [42]).

Remark 2.4. The results given above are new, they generalize the results of Teju-
mola and Tchegnani [42] and have new the complementary inputs in relation to the
qualitative theory of the DDEs of fourth order, some of them are available in the
references of this research work.

To prove Theorem 2.1 and Theorem 2.2, we define an LKF

V = V (x, y, z, w, xt, yt, zt, wt)

as the basic tool of the proofs by

(2.2) V = V1(x, y, z) + V2(x, y, z) + V3(xt, yt, zt),

where

2V1 =m1(w +m1z +m1dc
−1y)

2
+ c(z +m1y +m1c

−1
n∑

i=1

hi(x))
2

+m1dσc
−2(y + cm1ασ

−1z)
2
+m2z

2,
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2V2 =a(w + az + (ab− n1)a
−1y + βx)

2
+ n1(z + ay + an1

−1
n∑

i=1

hi(x))
2

+ υa−1(y + an1βυ
−1x)

2
+ n2x

2 + 2k1

n∑
i=1

∫ x

0
hi(ξ)dξ − dk1x

2

+ (d2x2 −

(
n∑

i=1

hi(x)

)2

)(a2n1
−1 +m1

2c−1),

V3 =

n∑
i=1

3γi
τi

∫ 0

−τi

∫ 0

s
[y2(t+ θ) + z2(t+ θ) + w2(t+ θ)]dθds,

where the constants γi > 0 are determined later in the proof.
According to the conditions ab− c > 0, s = abc− c2− a2d > 0, s∗ = s+2ad(ab−

c)b−1, there exist constants α, β > 0 such that

0 < α < s(bc− ad)−1, 0 < β < s(ab− c)−1,

m1 = (a− α) > 0, k1 = ab− n1 + dm1
2c−1 > 0, n1 = c− β > 0,

0 < m2 = sc−1 + (ad− bc)αc−1 + αm1
2m3σ

−1 + αdm1c
−1,

m3 = σ − αdm1 > 0, σ = m1bc−m1
2d− c2 > 0,

n3 = υ − βn1, υ = abn1 − n1
2 − a2d > 0,

n2 = dsn1
−1 + aβn1n3υ

−1 − dβ(ab− c)n1
−1 + dβ > 0.

In order to complete the proofs of Theorem 2.1 and Theorem 2.2, we need fol-
lowing lemma.

Lemma 2.5. Suppose that (C1)-(C5) of Theorem 2.1 and (2.1) hold. Then, the
LKF V = V (x, y, z, w, xt, yt, zt, wt) defined above satisfies the following estimates:

(C6) There exist positive constants d1, d2 and d3 such that

d1(x
2 + y2 + z2 + w2)

1
2 ≤ V (x, y, z, w, xt, yt, zt, wt)(2.3)

≤ d2(x
2 + y2 + z2 + w2)

1
2 + d3(xt

2 + yt
2 + zt

2 + wt
2)

1
2 ;(2.4)

(C7) for every solution (x, y, z, w) of the system (1.2), there exist the positive
constants di = di(a, b, c, d, δ1, δ2) > 0, i = 4, 5, such that

(2.5) V ′ ≤ −2d4(x
2 + y2 + z2 + w2) + ∆d5(|x|+ |y|+ |z|+ |w|).

Indeed, if the LKF V and its time derivative satisfy the estimates (2.3) and (2.5),
then the trivial solution of the DDE (1.1) is uniformly asymptotically stable when
P ≡ 0, (∆ = 0) and every solution of the DDE (1.1) is uniformly bounded and
uniformly ultimately bounded. Moreover, when the nonautonomous functions in the
DDE (1.1) are T -periodic, then the DDE (1.1)) has at least one T -periodic solution.

In the proofs of Theorem 2.1 and Theorem 2.2, we have the following derivative
relation:

V ′
i =

∂Vi
∂x

y +
∂Vi
∂y

z +
∂Vi
∂y

w +
∂Vi
∂z

w′.
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Hence, the derivatives of the components V1, V2, V3 of (2.2) along solutions of
the system (1.2) are calculated as the following, respectively:

V ′
1 =m1y

n∑
i=1

hi
′(x)

(
z +m1y +m1c

−1
n∑

i=1

hi(x)

)
+m1

2dc−1z
(
w +m1z +m1dc

−1y
)

+m1cz

(
z +m1y +m1c

−1
n∑

i=1

hi(x)

)
+m1dσc

−2z
(
y +m1cασ

−1z
)

+m1
2w
(
w +m1z +m1dc

−1y
)
+ cw

(
z +m1y +m1c

−1
n∑

i=1

hi(x)

)
+m1

2c−1dαw
(
y +m1cασ

−1z
)
+m2zw +

(
m1w +m1

2z +m1
2dc−1y

)
ẇ ;

V ′
2 =aβy

(
w + az + (ab− n1)a

−1y + βx
)

+ ay
n∑

i=1

hi
′(x)

(
z + ay + an1

−1
n∑

i=1

hi(x)

)

+ n1βy
(
y + an1βυ

−1x
)
+ n2xy + k1y

n∑
i=1

hi(x)− dk1xy

+
(
a2n1

−1 +m1
2c−1

)(
d2xy − y

n∑
i=1

hi(x)
n∑

i=1

hi
′(x)

)
+ z(ab− n1)

(
w + az + (ab− n1)a

−1y + βx
)

+ an1z

(
z + ay + an1

−1
n∑

i=1

hi(x)

)
+ υa−1z

(
y + an1βυ

−1x
)
+ a2w

(
w + az + (ab− n1)a

−1y + βx
)

+ n1w

(
z + ay + an1

−1
n∑

i=1

hi(x)

)
+
(
aw + a2z + (ab− n1)y + aβx

)
ẇ ;

V ′
3 =

n∑
i=1

3γi
τi

∫ 0

−τi

[y2 + z2 + w2 − y2(t+ θ)− z2(t+ θ)− w2(t+ θ)]dθ.

Proceeding some elementary calculations, we obtain

V ′ =V ′
1 + V ′

2 + V ′
3 = − U(x, y, z, w)

+ [(m1 + a)w + (m1
2 + a2)z + k1y + aβx]M(t)

+
n∑

i=1

3γi
τi

∫ 0

−τi

[y2 + z2 + w2 − y2(t+ θ)− z2(t+ θ)− w2(t+ θ)]dθ,(2.6)

U(x, y, z, w) =m1αw
2 + n3y

2 + aβ
n∑

i=1

hi(x)

x
x2 + T (x, y, z),
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T (x, y, z) =m1c
−1m3z

2 + (m1
2 + a2)

[
n∑

i=1

(di − hi
′(x))

]
y2

+ (m1 + a)

[
n∑

i=1

(di − hi
′(x))

]
yz

=

[
d−

n∑
i=1

hi
′(x)

]{(
m1y +

z

2

)2
+
(
ay +

z

2

)2}

+

{
m1c

−1m3 −
1

2

[
d−

n∑
i=1

hi
′(x)

]}
z2.

Using the conditions δi ≤ hi
′(x) ≤ di and

∑n
i=1 di = d, it can be easily shown that

T (x, y, z) ≥ 1

2

[
n∑

i=1

hi
′(x)− (d− 2m1m3c

−1)

]
z2.

By substituting the last inequality in U(x, y, z, w) and choosing

D3 = min{m1α, n3, aβK,
1

2
[δ − (d− 2m1m3c

−1)]} > 0

and

D4 = max{(m1 + a), (m1
2 + a2), k1, aβ} > 0

then it follows that

U(x, y, z, w) ≥ D3(x
2 + y2 + z2 + w2).

By substituting the above inequalities into (2.6), we have

V ′ ≤−D3(x
2 + y2 + z2 + w2) +D4(|x|+ |y|+ |z|+ |w|)

× [a |w|+ |f(t, x, y, z, w)| |w|+
n∑

i=1

bi

∫ 0

−τi

|w(t+ θ)| dθ

+
n∑

i=1

|ψi(t, y(t− τi), z(t− τi))|+
n∑

i=1

bi |z(t− τi)|

+
n∑

i=1

ci

∫ 0

−τi

|z(t+ θ)| dθ +
n∑

i=1

|gi(t, x(t− τi), y(t− τi))|

+
n∑

i=1

ci |y(t− τi)|+
n∑

i=1

∫ 0

−τi

∣∣hi′(x(t+ θ))
∣∣ |y(t+ θ)|dθ + |P2|]

(2.7) +

n∑
i=1

3γi
τi

∫ 0

−τi

[y2 + z2 + w2 − y2(t+ θ)− z2(t+ θ)− w2(t+ θ)]dθ.

Using (C2) and (C3) of Theorem 2.1, we obtain

n∑
i=1

|ψi(t, y(t− τi), z(t− τi))|+
n∑

i=1

bi |z(t− τi)| ≤ 2b
n∑

i=1

|z(t− τi)|,
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n∑
i=1

|gi(t, x(t− τi), y(t− τi))|+
n∑

i=1

ci |y(t− τi)| ≤ 2c

n∑
i=1

|y(t− τi)|.

From the last inequalities, (C4) of Theorem 2.1 and (2.7), we derive

V ′ ≤−D3(x
2 + y2 + z2 + w2) +D4(|x|+ |y|+ |z|+ |w|)

× [(a+ |f(t, x, y, z, w)|) |w|+
n∑

i=1

bi

∫ 0

−τi

|w(t+ θ)| dθ + 2b
n∑

i=1

|z(t− τi)|

+ 2c
n∑

i=1

|y(t− τi)|+
n∑

i=1

ci

∫ 0

−τi

|z(t+ θ)| dθ + d
n∑

i=1

∫ 0

−τi

|y(t+ θ)| dθ + |P (.)|]

+
n∑

i=1

3γi
τi

∫ 0

−τi

[y2 + z2 + w2 − y2(t+ θ)− z2(t+ θ)− w2(t+ θ)]dθ.

(2.8)

Consider the terms 2b
∑n

i=1 |z(t− τi)| and 2c
∑n

i=1 |y(t− τi)|. From the equalities

|z(t− τi)| = |z(t)| −
∫ 0

−τi

|w(t+ θ)| dθ,

|y(t− τi)| = |y(t)| −
∫ 0

−τi

|z(t+ θ)| dθ(2.9)

we obtain

2

n∑
i=1

bi |z(t− τi)| ≤ 2b |z(t)|+ 2b

n∑
i=1

∫ 0

−τi

|w(t+ θ)| dθ,(2.10)

2

n∑
i=1

ci |y(t− τi)| ≤ 2c |y(t)|+ 2c

n∑
i=1

∫ 0

−τi

|z(t+ θ)| dθ.(2.11)

Using (C1) of Theorem 2.1, (2.5), (2.10) and the inequality (2.1) into (2.8), it
follows that

V ′ ≤−D3(x
2 + y2 + z2 + w2) + ∆D4(|x|+ |y|+ |z|+ |w|)

+D4(|x|+ |y|+ |z|+ |w|)

[
3b

n∑
i=1

∫ 0

−τi

|w(t+ θ)| dθ

+ 3c

n∑
i=1

∫ 0

−τi|z(t+θ)|dθ
+d

n∑
i=1

∫
−τ0i |y(t+θ)|dθ

]

+D4(|x|+ |y|+ |z|+ |w|)[∆1|x|+ (∆1 + 2c)|y|
+ (∆1 + 2b)|z|+ (∆1 + 2a)|w|]

+

n∑
i=1

3γi
τi

∫ 0

−τi

[y2 + z2 + w2 − y2(t+ θ)− z2(t+ θ)− w2(t+ θ)]dθ.(2.12)

If we choose
∆2 = max{∆1,∆1 + 2c,∆1 + 2b,∆1 + 2a},

k = D4max{3b, 3c, d,∆2},
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then from (2.12) we get

V ′ ≤−D3(x
2 + y2 + z2 + w2) + ∆D4(|x|+ |y|+ |z|+ |w|)

+ k(|x|+ |y|+ |z|+ |w|)

×

[
n∑

i=1

∫ 0

−τi

{|y(t+ θ)|+ |z(t+ θ)|+ |w(t+ θ)|} dθ + (|x|+ |y|+ |z|+ |w|)

]

+

n∑
i=1

3γi
τi

∫ 0

−τi

[y2 + z2 + w2 − y2(t+ θ)− z2(t+ θ)− w2(t+ θ)]dθ.(2.13)

Using the inequality 2 |x| |y| ≤ x2 + y2, it follows that

k(|x|+ |y|+ |z|+ |w|)2 ≤ 4k(x2 + y2 + z2 + w2).

By substituting the last inequality into (2.13), we obtain

V ′ ≤−D3(x
2 + y2 + z2 + w2) + ∆D4(|x|+ |y|+ |z|+ |w|) + 4k(x2 + y2 + z2 + w2)

+ k

n∑
i=1

∫ 0

−τi

(|x|+ |y|+ |z|+ |w|) {|y(t+ θ)|+ |z(t+ θ)|+ |w(t+ θ)|} dθ

(2.14) +

n∑
i=1

3γi
τi

∫ 0

−τi

[y2 + z2 + w2 − y2(t+ θ)− z2(t+ θ)− w2(t+ θ)]dθ.

If we take D3 − 4k = 5D > 0 and choose γi, µi as

γi =
D

2n
−
(
D2 − 4k2τi

2
)1/2

2n
≥ 0,

µi =
D

2n
+

(
D2 − 4k2τi

2
)1/2

2n
≥ 0,

then, from (2.14) we find

V ′ ≤− 2D(x2 + y2 + z2 + w2) + ∆D4(|x|+ |y|+ |z|+ |w|)

−
n∑

i=1

1

τi

∫ 0

−τi

[
µix

2 +
3

4
γiy

2(t+ θ)− kτi |x| |y(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µix

2 +
3

4
γiz

2(t+ θ)− kτi |x| |z(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µix

2 +
3

4
γiw

2(t+ θ)− kτi |x| |w(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiy

2 +
3

4
γiy

2(t+ θ)− kτi |y| |y(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiy

2 +
3

4
γiz

2(t+ θ)− kτi |y| |z(t+ θ)|
]
dθ
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−
n∑

i=1

1

τi

∫ 0

−τi

[
µiy

2 +
3

4
γiw

2(t+ θ)− kτi |y| |w(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiz

2 +
3

4
γiy

2(t+ θ)− kτi |z| |y(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiz

2 +
3

4
γiz

2(t+ θ)− kτi |z| |z(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiz

2 +
3

4
γiw

2(t+ θ)− kτi |z| |w(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiw

2 +
3

4
γiy

2(t+ θ)− kτi |w| |y(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiw

2 +
3

4
γiz

2(t+ θ)− kτi |w| |z(t+ θ)|
]
dθ

−
n∑

i=1

1

τi

∫ 0

−τi

[
µiw

2 +
3

4
γiw

2(t+ θ)− kτi |w| |w(t+ θ)|
]
dθ.(2.15)

Each of the integrals above in the inequality (2.15) is positive definite (because the
discriminant of each integral is −2k2τi

2 < 0). Therefore, we can conclude

V ′ ≤ −2D(x2 + y2 + z2 + w2) + ∆D4(|x|+ |y|+ |z|+ |w|)

and hence the inequality (2.5) holds. From the results obtained above, it can be said
that the zero solution of the system (1.2) is uniformly asymptotically stable. From
Chukwu [11, Theorem 1.1, Theorem 1.2]), it can be concluded that the DDE (1.1)
has at least one periodic solution and its solutions are bounded. We omit the details
of the mathematical calculations.
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[51] C. Tunç, On the stability of solutions to a certain fourth-order delay differential equation,
Nonlinear Dynam. 51 (2008), 71–81.
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