VARIATIONAL PROBLEMS WITH GENERALIZED FRACTAL DERIVATIVE OPERATOR

ALIREZA KHALILI GOLMANKHANEH

Abstract

In this paper, the fractal Frechet derivative is defined. the fractal generalized Euler-Lagrange equation and the fractal Dubois-Reymond optimality condition are given by utilizing fractal calculus and comparing its results with the fractional space approach which shows the effect of fractal space with fractional dimension on a given problem in variational calculus.

1. Introduction

Fractals are often shapes with fractional dimensions and self-similar properties and many processes in physics have fractal structures $[6,7,16]$. Analysis on fractal has been formulated by many researchers such as fractional space, measure theory, harmonic analysis, fractional calculus, and probability theory [1,2,6,7,13,16,20-23]. In the seminal paper fractal calculus was formulated [17-19]. Fractal calculus was used to model physical processes in fractional space and time [9]. Stability and method of solving fractal differential equations were defined such as fractal Laplace, Fourier transforms and fractal Euler numerical method [9-12]. The Calculus of variations and optimal conditions have found many applications in physics and engineering $[3,4,8,14,15]$. The local fractal derivative operator was introduced and applied implications in classical systems through the Lagrangian and Hamiltonian formalisms [5].In Section 2 we fractalize variational calculus and corresponding dynamics and results through the paper using fractal calculus.

2. Variational problems with generalized fractal derivative OPERATOR

In this section, fractal calculus is formulated base of ordinary calculus which includes functions with fractal support [9].

Definition 2.1. Fractal derivative of $q(t)$ at t is defined by

$$
\begin{equation*}
D_{F}^{\nu} q(t)=F-\lim _{t_{1} \rightarrow t} \frac{g\left(t_{1}\right)-g(t)}{S_{F}^{\nu}\left(t_{1}\right)-S_{F}^{\nu}(t)}, t \in F \tag{2.1}
\end{equation*}
$$

where F is fractal time set (see for details in [9]). Consider fractal action as

$$
\begin{equation*}
J^{\nu}(q(.))=\int_{a}^{b} L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right) d_{F}^{\nu} t \tag{2.2}
\end{equation*}
$$

[^0]where $q(.) \in C^{\infty}\left(F, R^{n}\right)$ and
\[

$$
\begin{align*}
D^{\nu} & =D_{F}^{\nu}+\alpha\left(D_{F}^{\nu} q+\beta \frac{q}{S_{F}^{\nu}(t)}\right) \frac{\partial}{\partial q}+ \\
& \gamma\left(D_{F}^{2 \nu} q+\delta \frac{D_{F}^{\nu} q}{S_{F}^{\nu}(t)}+\lambda \frac{q}{S_{F}^{\nu}(t)^{2}}\right) \frac{\partial}{\partial\left(D_{F}^{\nu} q\right)} \tag{2.3}
\end{align*}
$$
\]

we suppose $\left(S_{F}^{\nu}(t), u, v\right) \rightarrow L\left(S_{F}^{\nu}(t), u, v\right)$ to be a $C^{\nu}(F)$-function [9].
Definition 2.2. The fractal Frechet derivative is defined by

$$
\begin{align*}
D^{\nu} J^{\nu}[q](h) & =F-\lim _{\epsilon \rightarrow 0} \frac{J^{\nu}(q+\epsilon h)-J^{\nu}(q)}{S_{F}^{\nu}(\epsilon)} \\
& =\int_{a}^{b}\left[\left(1+\frac{\alpha \beta}{S_{F}^{\nu}(t)}\right) \frac{\partial L^{\nu}}{\partial q} h+(1+\alpha) \frac{\partial L^{\nu}}{\partial D^{\nu} q} h\right] d_{F}^{\nu} t \tag{2.4}
\end{align*}
$$

where $h \in C^{\infty}\left(F, R^{n}\right)$.
Theorem 2.3. The fractal Euler-Lagrange equation is given by

$$
\begin{equation*}
\left(1+\frac{\alpha \beta}{S_{F}^{\nu}(t)}\right) \frac{\partial L^{\nu}}{\partial q}-(1+\alpha) D_{F}^{\nu}\left(\frac{\partial L^{\nu}}{\partial D_{F}^{\nu} q}\right)=0, q \in C^{2}\left(F, R^{n}\right) \tag{2.5}
\end{equation*}
$$

Theorem 2.4. The fractal Dubois-Reymond optimality condition is given by

$$
\begin{align*}
D_{F}^{\nu}\left[L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)\right. & \left.-(1+\alpha) D_{F}^{\nu} q \cdot \frac{\partial L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)}{\partial D_{F}^{\nu} q}\right] \\
& =\left(1-\frac{\alpha \beta}{S_{F}^{\nu}(t)^{2}} q\right) D_{F, t}^{\nu} L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right) \tag{2.6}
\end{align*}
$$

Theorem 2.5. Let us consider a fractal functional as follows

$$
\begin{equation*}
J^{\nu}[q]=\int_{a}^{b} \ln \left[L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)\right] d_{F}^{\nu} t \tag{2.7}
\end{equation*}
$$

where $q \in C^{2}\left(F, R^{n}\right)$ and $L^{\nu}(., .,.) \in C^{2}\left(F, R^{n} \times R^{n}\right)$. If $q($.$) is an extremal, then$ we have

$$
\begin{align*}
& \left(1+\frac{\alpha \beta}{S_{F}^{\nu}(t)}\right) \frac{\partial L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)}{\partial q} \\
& \quad+(1+\alpha)\left[\frac{D_{F, t}^{\nu} L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)}{L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)}-D_{F}^{\nu}\left(\frac{\partial L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)}{\partial D_{F}^{\nu} q},\right)\right]=0 \tag{2.8}
\end{align*}
$$

which is called the fractal Euler-Lagrange equation.
Definition 2.6. Fractal functional (2.2) is called to be fractal s-invariant under of group of diffeomorphism $\Psi_{i}=\left\{\psi_{i}(s, .)\right\}_{s \in R}, i=1,2$ if it satisfies

$$
\begin{aligned}
& \quad L^{\nu}\left(S_{F}^{\nu}(t), q(t),(1+\alpha) D_{F}^{\nu} q(t)+\frac{\alpha \beta}{S_{F}^{\nu}(t)} q(t)\right) \\
& \quad=L^{\nu}\left(\psi_{1}(s, t), \psi_{2}(s, q(t)),(1+\alpha) \frac{D_{F, t}^{\nu} \psi_{2}(s, q(t))}{D_{F, t}^{\nu} \psi_{1}(s, t)}+\frac{\alpha \beta}{S_{F}^{\nu}(t)} \frac{\psi_{2}(s, q(t))}{\psi_{1}(s, t)}\right) \\
& \quad \times D_{F, t}^{\nu} \psi_{1}(s, t)
\end{aligned}
$$

for any $q(.) \in \tilde{W}^{1, p}$ where $\tilde{W}^{1, p}$ is the fractal Sobolev space [9].
Theorem 2.7. If fractal functional (2.2) is invariant under Eq.(2.9), then we have

$$
\begin{aligned}
& \left(1-\frac{\alpha \beta}{S_{F}^{\nu}(t)^{2}} q(t)\right) D_{F, t}^{\nu} L^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right) D_{F, t}^{\nu} \psi_{1}(0, t) \\
& +\left(1+\frac{\alpha \beta}{S_{F}^{\nu}(t)}\right) \frac{\partial L^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right)}{\partial q} \cdot \frac{\partial \psi_{2}}{\partial s}(0, q(t)) \\
& +(1+\alpha) \frac{\partial L^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right)}{\partial D_{F}^{\nu} q}\left(D_{F, t}^{\nu} \frac{\partial \psi_{2}}{\partial s}(0, q(t))-D_{F, t}^{\nu} q(t) D_{F}^{\nu} \frac{\partial \psi_{1}}{\partial s}(0, t)\right)
\end{aligned}
$$

$$
\begin{equation*}
+L^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right)\left(D_{F, t}^{\nu} \frac{\partial \psi_{1}}{\partial s}(0, t)\right)+F \cdot\left(\frac{\partial \psi_{2}}{\partial s}(0, t)-D_{F}^{\nu} q \frac{\partial \psi_{1}}{\partial s}(0, t)\right) \tag{2.10}
\end{equation*}
$$

Theorem 2.8. If the fractal Lagrange equation is as

$$
\begin{equation*}
D_{F, t}^{\nu}\left(\frac{\partial L^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right)}{\partial D_{F}^{\nu} q}\right)=F \cdot\left(\frac{\partial \psi_{2}}{\partial s}(0, t)-D_{F}^{\nu} q \frac{\partial \psi_{1}}{\partial s}(0, t)\right) \tag{2.11}
\end{equation*}
$$

then the quantity $C^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right)$ is defined by:
$(2.12)+f^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right)$,
is a constant of motion.
Example 2.9. Consider the fractal Lagrangian as

$$
\begin{equation*}
L^{\nu}\left(S_{F}^{\nu}(t), q(t), D^{\nu} q\right) \equiv L^{\nu}\left(S_{F}^{\nu}(t),(1+\alpha) D_{F}^{\nu} q\right) \tag{2.13}
\end{equation*}
$$

then using Eq.(2.12), and $\partial \psi_{1} / \partial s=1, \partial \psi_{2} / \partial s=0$ we have
(2.14) $L^{\nu}\left(S_{F}^{\nu}(t),(1+\alpha) D_{F}^{\nu} q\right)-(1+\alpha) D_{F}^{\nu} q \cdot \frac{\partial L^{\nu}\left(S_{F}^{\nu}(t),(1+\alpha) D_{F}^{\nu} q\right)}{\partial D_{F}^{\nu} q} \equiv$ constant.

If $\partial \psi_{1} / \partial s=0, \partial \psi_{2} / \partial s=1$. Then

$$
\begin{equation*}
\frac{\partial L^{\nu}\left(S_{F}^{\nu}(t),(1+\alpha) D_{F}^{\nu} q(t)\right)}{\partial D_{F}^{\nu} q(t)} \equiv \text { constant. } \tag{2.15}
\end{equation*}
$$

Example 2.10. Consider the fractal functional in the following form

$$
\begin{equation*}
J^{\alpha}[q(\cdot)]=\frac{1}{2} \int_{a}^{b}\left(\left\|D^{\nu} q(t)\right\|^{2}+\|q(t)\|^{2}\right) d_{F}^{\nu} t \tag{2.16}
\end{equation*}
$$

By minimizing Eq.(2.16), we arrive at

$$
\begin{align*}
(1+\alpha)^{3} D_{F}^{2 \nu} q(t) & +(1+\alpha)\left(\frac{\alpha^{2} \beta}{S_{F}^{\nu}(t)}-\frac{\alpha^{2} \beta^{2}}{S_{F}^{\nu}(t)^{2}}\right) D_{F}^{\nu} q(t) \\
& +\left(\alpha \beta \frac{-(1+\alpha)^{2}-\alpha \beta}{S_{F}^{\nu}(t)^{2}}-\frac{\alpha^{3} \beta^{3}}{S_{F}^{\nu}(t)^{3}}-\frac{\alpha \beta}{S_{F}^{\nu}(t)}-1\right) q(t)=0 \tag{2.17}
\end{align*}
$$

Figure 1. Graph of Eq.(2.20) for case of $\nu=\frac{1}{2}$
Simplifying Eq.(2.17) and setting $\alpha=\beta=0.1$ and neglecting $\alpha^{2} \beta$ and $\alpha^{2} \beta^{2}$ terms we arrive at

$$
\begin{equation*}
1.030301 D_{F}^{2 \nu} q(t)+\left(-\frac{0.01}{S_{F}^{\nu}(t)^{2}}-\frac{0.01}{S_{F}^{\nu}(t)}+1\right) q(t)=0 \tag{2.18}
\end{equation*}
$$

The solution of Eq.(2.18) is

$$
q(t)=e^{0.981585 S_{F}^{\nu}(t)} S_{F}^{\nu}(t)^{0.99} \times\left(c_{5} U\left(0.9895-0.00492593 i, 1.96117,1.97037 S_{F}^{\nu}(t)\right)\right.
$$

$$
\begin{equation*}
\left.+c_{6} L_{-0.99-0.00492583 i}^{0.9895}\left(1.97037 S_{F}^{\nu}(t)\right)\right) \tag{2.19}
\end{equation*}
$$

By using $S_{F}^{\nu}(t) \leq t^{\nu}$ we have

$$
\begin{align*}
q(t) & \propto e^{0.981585 t^{\nu}} t^{0.99 \nu} \times\left(c_{5} U\left(0.9895-0.00492593 i, 1.96117,1.97037 t^{\nu}\right)\right. \\
& \left.+c_{6} L_{-0.99-0.00492583 i}^{0.9895}\left(1.97037 t^{\nu}\right)\right) \tag{2.20}
\end{align*}
$$

where $U(., .,$.$) is the confluent hypergeometric function of the 2^{n} d$ kind and $L_{a}^{n}(x)$ is the associated Laguerre polynomial (see Figure 1). For the case of $\alpha=\beta=0$, we have $q(t)=c_{3} \exp \left(S_{F}^{\nu}(t)\right)+c_{4} \exp \left(-S_{F}^{\nu}(t)\right)$.

In the table 1 , two methods, i.e. fractional and fractal space models, are compared.

3. Conclusion

In this paper, the fractal Frechet derivatives have been defined. The fractal generalized Euler-Lagrange equation and fractal Dubois-Reymond optimality condition have been given and compared fractal space approach by fractional space model to present the effect of space with fractional dimension on dynamics.

TABLE 1. Comparison of generalized derivative operator [5] and generalized fractal derivative operator

Generalized Derivative Operator [23]	Generalized Fractal Derivative
$J_{\chi}[q]=\int_{a}^{b} L(t, q, D q) t^{\chi-1} d t$	$J^{\nu}[q]=\int_{a}^{b} L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right) d_{F}^{\nu} t$
$\begin{aligned} & D J_{\chi}[q](h) \\ & =\int_{a}^{b}\left[\left(1+\frac{\alpha \beta}{t}\right) \frac{\partial L(t, q, D q)}{\partial q} \cdot h\right. \\ & \left.+(1+\alpha) \frac{\partial L(t, q, D q)}{\partial \dot{q}} \cdot \dot{h}\right] t^{\chi-1} d t \end{aligned}$	$\begin{aligned} & D^{\nu} J^{\nu}[q](h) \\ & =\int_{a}^{b}\left[\left(1+\frac{\alpha \beta}{S_{F}^{\nu}(t)}\right) \frac{\partial L^{\nu}}{\partial q} h\right. \\ & \left.+(1+\alpha) \frac{\partial L^{\nu}}{\partial D^{\nu} q} h\right] d_{F}^{\nu} t \end{aligned}$
$\begin{aligned} & \left(1+\frac{\alpha \beta}{t}\right) \frac{\partial L}{\partial q} \\ & -(1+\alpha) \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \\ & =\frac{(1+\alpha)(\chi-1)}{t} \frac{\partial L}{\partial \dot{q}} \end{aligned}$	$\begin{aligned} & \left(1+\frac{\alpha \beta}{S_{F}^{\nu}(t)}\right) \frac{\partial L^{\nu}}{\partial q} \\ & -(1+\alpha) D_{F}^{\nu}\left(\frac{\partial L^{\nu}}{\partial D_{F}^{\nu} q}\right)=0 \end{aligned}$
$\begin{aligned} & \frac{d}{d t}\left[L-(1+\alpha) \dot{q} \cdot \frac{\partial L}{\partial \dot{q}}\right] \\ & =\left(1-\frac{\alpha \beta}{t^{2}} q\right) \frac{\partial L}{\partial t} \\ & +q \cdot \frac{(1+\alpha)(\chi-1)}{t} \frac{\partial L}{\partial \dot{q}} \end{aligned}$	$\begin{aligned} & D_{F}^{\nu}\left[L^{\nu}-(1+\alpha) D_{F}^{\nu} q \cdot \frac{\partial L^{\nu}}{\partial D_{F}^{\nu} q}\right] \\ & =\left(1-\frac{\alpha \beta}{S_{F}^{\nu}(t)^{2}} q\right) D_{F, t}^{\nu} L^{\nu} \end{aligned}$
$J_{\chi}[q]=\int_{a}^{b} \ln \left[L(t, q, D q) t^{\chi-1}\right] d t$	$J^{\nu}[q]=\int_{a}^{b} \ln \left[L^{\nu}\left(S_{F}^{\nu}(t), q, D^{\nu} q\right)\right] d_{F}^{\nu} t$
$\begin{aligned} & \left(1+\frac{\alpha \beta}{t}\right) \frac{\partial L}{\partial q} \\ & +(1+\alpha)\left[\frac{\dot{L}}{L}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \\ & =\frac{(1+\alpha)(\chi-1)}{t} \frac{\partial L}{\partial \dot{q}} \end{aligned}$	$\begin{aligned} & \left(1+\frac{\alpha \beta}{S_{F}^{\nu}(t)}\right) \frac{\partial L^{\nu}}{\partial q} \\ & \quad+(1+\alpha)\left[\frac{D_{F, t}^{\nu} L^{\nu}}{L^{\nu}}-D_{F}^{\nu}\left(\frac{\partial L^{\nu}}{\partial D_{F}^{\nu} q}\right)\right]=0 \end{aligned}$
$\begin{aligned} & \frac{\partial L}{\partial \dot{q}}(t,(1+\alpha) \dot{q}) \\ & \quad+\int_{a}^{b} \frac{\chi-1}{t} \frac{\partial L}{\partial \dot{q}}(t,(1+\alpha) \dot{q}) d t \equiv \text { const. } \end{aligned}$	$\begin{aligned} & L^{\nu}\left(S_{F}^{\nu}(t),(1+\alpha) D_{F}^{\nu} q\right) \\ & -(1+\alpha) D_{F}^{\nu} q \cdot \frac{\partial L^{\nu}\left(S_{F}^{\nu}(t),(1+\alpha) D_{F}^{\nu} q\right)}{\partial D_{F}^{\nu} q} \equiv \text { const. } \end{aligned}$

References

[1] A. S. Balankin, A continuum framework for mechanics of fractal materials I : From fractional space to continuum with fractal metric, Eur. Phys. J. B, 88 (2015): 90.
[2] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory Relat. Fields 79 (1988), 543-623.
[3] F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer, 2013.
[4] B. Dacorogna, Direct Methods in the Calculus of Variations, Vol. 78, Springer Science, 2007.
[5] R. A. El-Nabulsi, A. K. Golmankhaneh and P. Agarwal, On a new generalized local fractal derivative operator, Chaos, Solitons \& Fractals Volume 161 (2022): 112329.
[6] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley \& Sons, 2004.
[7] U. Freiberg, M. Zähle, Harmonic calculus on fractals-a measure geometric approach I., Potential Anal. 16 (2002), 265-277.
[8] I. M. Gelfand and R. A. Silverman, Calculus of Variations, Courier Corporation, 2000.
[9] A. K. Golmankhaneh, Fractal Calculus and its Applications, World Scientific, 2022.
[10] A. K. Golmankhaneh, On the calculus of parameterized fractal curves, Turk. J. Phys., 41 (2017), 418-425.
[11] A. K. Golmankhaneh and D. Baleanu, Non-local integrals and derivatives on fractal sets with applications, Open Physics, 14 (2016), 542-548.
[12] A. K. Golmankhaneh and C. Tunc, Sumudu transform in fractal calculus, Appl. Math. Comput. 350 (2019), 386-401.
[13] J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.
[14] G. Leitmann, The Calculus of Variations and Optimal Control: An Introduction, Springer, 2013.
[15] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Introduction, Princeton University Press, 2011.
[16] B. B. Mandelbrot, The Fractal Geometry of Nature, WH Freeman, New York, 1983.
[17] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line-I: formulation, Fractals 17 (2009), 53-81.
[18] A. Parvate and A. D. Gangal, Calculus on fractal subsets of real line II: Conjugacy with ordinary calculus, Fractals 19 (2011), 271-290.
[19] A. Parvate, S. Satin and A. D. Gangal, Calculus on fractal curves in R^{n}, Fractals 19 (2011), 15-27.
[20] T. Sandev and Ž Tomovski, Fractional Equations and Models: Theory and Applications, Springer Nature, 2019.
[21] F. H. Stillinger, Axiomatic basis for spaces with noninteger dimension, J. Math. Phys. 18 (1977), 1224-1234.
[22] R. S. Strichartz, Differential Equations on Fractals: A Tutorial, Princeton University Press, Princeton, NJ, USA, 2006.
[23] M. Zubair, M. J. Mughal and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer, New York, NY, USA, 2012.

Manuscript received December 5 2022
revised December 17 2022

A. K. Golmankhaneh
Department of Physics, Urmia Branch, Islamic Azad University, PO Box 969, Urmia, Iran E-mail address: alirezakhalili2005@gmail.com

[^0]: 2020 Mathematics Subject Classification. 28A80, 37K58, 47J30, 34H05.
 Key words and phrases. Fractal time, generalized local fractal derivative operator, fractal Noether's theorem, fractal calculus of variations.

