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conformable type fractional Lasota Wazewska model with delay piecewise constant
argument. Section 4 presents the results for the existence and asymptotic stability of
equilibrium of conformable type fractional Lasota Wazewska model with advanced
piecewise constant argument. In section 5, we obtain the existence and instability of
equilibrium of conformable type fractional Lasota Wazewska model with advanced
delay piecewise constant argument.

2. Preliminaries

Let us introduce the following definition of conformal fractional derivative.

Definition 2.1 ([9]). Let f : [t0, +∞) → R be a function. Then for α ∈ (0, 1) and
t ≥ t0 left conformable fractional derivative of function f with order α is defined by
the limit

T t0
α = lim

ε→0

f
(
t+ ε(t− t0)

1−α
)
− f(t)

ε
if the limit exists. Let us denote Tα := T t0

α for t0 = 0.

If the function f is differentiable, then we have the identity

T t0
α (f(t)) = (t− t0)

1−αf ′(t),

where f ′(t) is first derivative of the function f(t).

3. Stability of conformable type Lasota Wazewska fractional model
with delay piecewise constant argument

Let us consider the following conformable type Lasota Wazewkska fractional
model with delay piecewise constant argument.

T [t]
α (N(t)) = −µN(t) + βe−γN([t]), t ≥ 0.(3.1)

Here, T
[t]
α denotes the conformable type fractional derivative of order α ∈ (0, 1).

µ ∈ (0, 1), and γ, β, r ∈ (0, +∞) are constants.
For t ∈ [n, n + 1), n ∈ N using the relation between conformable fractional

derivative and integer order derivative we rewrite equation (3.1) as

(t− n)1−αdN(t)

dt
= −µN(t) + βe−γN(n),

or

dN(t)

dt
+

µ

(t− n)1−α
N(t) =

β

(t− n)1−α
e−γN(n).

By multiplying the last equation with the integration multiplier exp
(µ
α(t− n)α

)
we

obtain the equation

d

dt

(
N(t)e

µ
α
(t−n)α

)
=

β

(t− n)1−α
e

µ
α
(t−n)α−γN(n).

By integrating this equation over the interval [n, n+ 1) we have discrete equation

N(n+ 1)eµ/α −N(n) =
β

µ
e−γN(n)

(
eµ/α − 1

)
,
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or

N(n+ 1) = e−µ/αN(n) +
β

µ

(
1− e−µ/α

)
e−γN(n)(3.2)

for n = 0, 1, 2, . . . It is easy to see that the equilibrium point of this equation
satisfies the equation

x∗ =
β

µ
e−γx∗

.(3.3)

Set xn := γ (N(n)− x∗) . Then, we obtain the discrete equation

xn+1 = γ (N(n+ 1)− x∗) = γ

(
e−µ/αN(n) +

β

µ

(
1− e−µ/α

)
e−γN(n) − x∗

)
= e−µ/α (xn + γx∗) +

γβ

µ
e−γx∗

(
1− e−µ/α

)
e−xn − γx∗

or

xn+1 = e−µ/αxn − γx∗
(
1− e−µ/α

) (
1− e−xn

)
, n = 0, 1, 2, . . .(3.4)

and this equation has the equilibrium point zero.
Let us introduce asymptotic stability of the zero solution of equation (3.4).

Theorem 3.1. If the inequality

1 + e−µ/α

1− e−µ/α
> γx∗

holds, then the zero solution of equation (3.4), therefore the equilibrium point x∗ of
equation (3.2), is asymptotically stable.

Proof. Using Taylor expansion of the function e−xn around the point zero we lin-
earize equation (3.4) as

xn+1 =
(
e−µ/α−γx∗(1−e−µ/α)

)
xn, n = 0, 1, 2, . . .

In order to have the asymptotical stability of the zero solution of this equation, it
is sufficient that the inequality∣∣∣e−µ/α − γx∗

(
1− e−µ/α

)∣∣∣ < 1

is satisfied. It is easy to see that e−µ/α − γx∗
(
1− e−µ/α

)
< 1 holds for all µ, α ∈

(0, 1), γ > 0, x∗ > 0. Moreover, by simple calculation, the inequality

−1 < e−µ/α − γx∗
(
1− e−µ/α

)
is satisfied if and only if

1 + e−µ/α

1− e−µ/α
> γx∗

holds. The proof is complete. □
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4. Stability of conformable type Lasota Wazewska fractional model
with advanced piecewise constant argument

Let us consider the following conformable type Lasota Wazewkska fractional
model with advanced piecewise constant argument.

T [t]
α (N(t)) = −µN(t) + βe−γN([t+1]), t ≥ 0.(4.1)

Here, T
[t]
α denotes the conformable type fractional derivative of order α ∈ (0, 1).

µ ∈ (0, 1), and γ, β, r ∈ (0, +∞) are constants.
For t ∈ [n, n + 1), n ∈ N using the relation between conformable fractional

derivative and integer order derivative we rewrite equation (4.1) as

(t− n)1−αdN(t)

dt
= −µN(t) + βe−γN(n+1),

or

dN(t)

dt
+

µ

(t− n)1−α
N(t) =

β

(t− n)1−α
e−γN(n+1).

By multiplying the last equation with the integration multiplier exp
(µ
α(t− n)α

)
we

obtain the equation

d

dt

(
N(t)e

µ
α
(t−n)α

)
=

β

(t− n)1−α
e

µ
α
(t−n)α−γN(n+1).

By integrating this equation over the interval [n, n+ 1) we have discrete equation

N(n+ 1)eµ/α −N(n) =
β

µ
e−γN(n+1)

(
eµ/α − 1

)
,

or

N(n+ 1) = e−µ/αN(n) +
β

µ

(
1− e−µ/α

)
e−γN(n+1),(4.2)

in closed form for n = 0, 1, 2, . . .. It is easy to see that the equilibrium point of
this equation satisfies the equation

x∗ =
β

µ
e−γx∗

.(4.3)

Set xn := γ (N(n)− x∗) . Then, we obtain the discrete equation

xn+1 = γ (N(n+ 1)− x∗) = γ

(
e−µ/αN(n) +

β

µ

(
1− e−µ/α

)
e−γN(n+1) − x∗

)
= e−µ/α (xn + γx∗) +

γβ

µ
e−γx∗

(
1− e−µ/α

)
e−xn+1 − γx∗

or

xn+1 = e−µ/αxn − γx∗
(
1− e−µ/α

) (
1− e−xn+1

)
(4.4)

in closed form for n = 0, 1, 2, . . . and this equation has the equilibrium point zero.
Let us introduce asymptotic stability of the zero solution of equation (4.4).

Theorem 4.1. The zero solution of equation (4.4), therefore the equilibrium point
x∗ of equation (4.2), is asymptotically stable.
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Proof. Using Taylor expansion of the function e−xn+1 around the point zero we
linearize equation (4.4) as

xn+1 = e−µ/αxn − γx∗
(
1− e−µ/α

)
xn+1, n = 0, 1, 2, . . .

or

xn+1 =
e−µ/α

1 + γx∗
(
1− e−µ/α

)xn, n = 0, 1, 2, . . .

In order to have the asymptotical stability of the zero solution of this equation, it
is sufficient that the inequality∣∣∣∣∣ e−µ/α

1 + γx∗
(
1− e−µ/α

)∣∣∣∣∣ < 1

is satisfied. As exp (−µ/α) ∈ (0, 1) for all µ, α ∈ (0, 1), and γx∗ > 0, this inequality
always holds. The proof is complete. □

5. Stability of conformable type Lasota Wazewska fractional model
with advanced delay piecewise constant argument

Let us consider the following conformable type Lasota Wazewkska fractional
model with advanced delay piecewise constant argument

T [t]
α (N(t)) = −µN(t) + βe−γN([t+ 1

2 ]), t ≥ 0.(5.1)

Here, T
[t]
α denotes the conformable type fractional derivative of order α ∈ (0, 1).

µ ∈ (0, 1), and γ, β, r ∈ (0, +∞) are constants.
For t ∈ [0, 1/2), using the relation between conformable fractional derivative and

integer order derivative we rewrite equation (5.1) as

t1−αdN(t)

dt
= −µN(t) + βe−γN(0),

or

dN(t)

dt
+

µ

t1−α
N(t) =

β

t1−α
e−γN(0).

By multiplying the last equation with the integration multiplier exp
(µ
α t

α
)
we obtain

the equation

d

dt

(
N(t)e

µ
α
tα
)
=

β

t1−α
e

µ
α
tα−γN(0).

By integrating this equation over the interval [0, 1/2) we have discrete equation

N

(
1

2

)
exp

( µ

α2α

)
−N(0) =

β

µ
e−γN(0)

(
exp

( µ

α2α

)
− 1

)
,

or

N

(
1

2

)
= exp

(
− µ

α2α

)
N(0) +

β

µ

(
1− exp

(
− µ

α2α

))
e−γN(0).(5.2)
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Similarly, for t ∈
[
n− 1

2 , n
)
and t ∈

[
n, n+ 1

2

)
, n = 1, 2, . . . using the relation

between conformable fractional derivative and integer order derivative we rewrite
equation (5.1) as

(t− n+ 1)1−α dN(t)

dt
= −µN(t) + βe−γN(n), t ∈

[
n− 1

2
, n

)
(t− n)1−αdN(t)

dt
= −µN(t) + βe−γN(n), t ∈

[
n, n+

1

2

)
,

or

dN(t)

dt
+

µ

(t− n+ 1)1−αN(t) =
β

(t− n+ 1)1−α e
−γN(n), t ∈

[
n− 1

2
, n

)
dN(t)

dt
+

µ

(t− n)1−α
N(t) =

β

(t− n)1−α
e−γN(n), t ∈

[
n, n+

1

2

)
.

By multiplying the last equation correspondingly with the integration multipliers
exp

(µ
α (t− n+ 1)α

)
and exp

(µ
α(t− n)α

)
we obtain the equations

d

dt

(
N(t)e

µ
α
(t−n+1)α

)
=

β

(t− n+ 1)1−α e
µ
α
(t−n+1)α−γN(n), t ∈

[
n− 1

2
, n

)
d

dt

(
N(t)e

µ
α
(t−n)α

)
=

β

(t− n)1−α
e

µ
α
(t−n)α−γN(n), t ∈

[
n, n+

1

2

)
.

By integrating these equations over the intervals
[
n− 1

2 , n
)
and

[
n, n+ 1

2

)
corre-

spondingly we have discrete equations

N(n) exp
(µ
α

)
−N

(
n− 1

2

)
exp

( µ

α2α

)
=

β

µ
e−γN(n)

(
exp

(µ
α

)
− exp

( µ

α2α

))
,

N

(
n+

1

2

)
exp

( µ

α2α

)
−N(n) =

β

µ
e−γN(n)

(
exp

( µ

α2α

)
− 1

)
,

or

(5.3)

N(n) = exp

(
−µ

α

(
1− 1

2α

))
N

(
n− 1

2

)
+

β

µ

(
1− exp

(
−µ

α

(
1− 1

2α

)))
e−γN(n),

(5.4)

N

(
n+

1

2

)
= exp

(
− µ

α2α

)
N(n) +

β

µ

(
1− exp

(
− µ

α2α

))
e−γN(n)

for n = 1, 2, . . .. It is easy to see that the equilibrium point of this equation satisfies
the equation

x∗ =
β

µ
e−γx∗

.(5.5)

Set zn := γ (N(n)− x∗) . Then, we obtain the discrete equations

zn = γ (N(n)− x∗)
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= γ exp

(
−µ

α

(
1− 1

2α

))
N

(
n− 1

2

)
+
βγ

µ

(
1− exp

(
−µ

α

(
1− 1

2α

)))
e−γN(n) − γx∗

= exp

(
−µ

α

(
1− 1

2α

))(
zn−1/2 + γx∗

)
+
βγ

µ
e−γx∗

(
1− exp

(
−µ

α

(
1− 1

2α

)))
e−zn − γx∗

zn+1/2 = γ

(
N

(
n+

1

2

)
− x∗

)
= γ

(
exp

(
− µ

α2α

)
N(n) +

β

µ

(
1− exp

(
− µ

α2α

))
e−γN(n) − x∗

)
= exp

(
− µ

α2α

)
(zn + γx∗) +

βγ

µ
e−γx∗

(
1− exp

(
− µ

α2α

))
e−zn − γx∗

or using (5.5)

zn = −γx∗
(
1− exp

(
−µ

α

(
1− 1

2α

)))(
1− e−zn

)
+ exp

(
−µ

α

(
1− 1

2α

))
zn−1/2,

zn+1/2 = −γx∗
(
1− exp

(
− µ

α2α

)) (
1− e−zn

)
+ exp

(
− µ

α2α

)
zn, n = 1, 2, . . .

and these equations have the equilirium point zero.
By combining these two equations for n = 1, 2, . . . we have the equation

zn+1 = −γx∗
(
1− exp

(
−µ

α

(
1− 1

2α

)))(
1− e−zn+1

)
(5.6)

+ exp

(
−µ

α

(
1− 1

2α

))
zn+1/2

= −γx∗
(
1− exp

(
−µ

α

(
1− 1

2α

)))(
1− e−zn+1

)
+ exp

(
−µ

α

(
1− 1

2α

))
(
−γx∗

(
1− exp

(
− µ

α2α

)) (
1− e−zn

)
+ exp

(
− µ

α2α

)
zn

)
in closed form.

Let us introduce asymptotic stability of the zero solution of equation (5.6).

Theorem 5.1. The zero solution of equation (5.6), therefore the equilibrium point
x∗ of equations (5.3) and (5.4), is unstable.

Proof. Using Taylor expansion of function e−zn and e−zn+1 around the point zero
we linearize equation (5.6) as

zn+1 = −γx∗
(
1− exp

(
−µ

α

(
1− 1

2α

)))
zn+1
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+exp

(
−µ

α

(
1− 1

2α

))(
−γx∗

(
1− exp

(
− µ

α2α

))
+ exp

(
− µ

α2α

))
zn

or

zn+1 =
1 + γx∗

(
1− exp

(
−µ

α

(
1− 1

2α

)))
exp

(
−µ

α

(
1− 1

2α

)) (
−γx∗

(
1− exp

(
− µ

α2α

))
+ exp

(
− µ

α2α

))zn
In order to have the stability of the zero solution of this equation, it is sufficient

that the inequality

(5.7) ∣∣∣∣∣ 1 + γx∗
(
1− exp

(
−µ

α

(
1− 1

2α

)))
exp

(
−µ

α

(
1− 1

2α

)) (
−γx∗

(
1− exp

(
− µ

α2α

))
+ exp

(
− µ

α2α

))∣∣∣∣∣ < 1

is satisfied. Let p = µ
α

(
1− 1

2α

)
and q = µ

α2α . We have two cases: either

h := (−γx∗ (1− exp (−q)) + exp (−q))

is positive or negative. If it is positive, by simple calculation we obtain
γx∗ (1− e−p−q) < e−p−q − 1. Then, this is a contradiction as the left hand side
of this inequality is positive, while the right hand side is negative. Hence, h cannot
be positive. If it is negative, inequality (5.7) can be rewritten as(

ep + e−q
)
<

γx∗

1 + γx∗

Then, we have a contradiction as the left hand side of this inequality is greater than
1, while the right hand side is less than 1. The proof is complete. □
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