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computed. Zhang and Zhou [20] took advantage of this projection technique and
the spectral gradient method [6] to propose a new method called spectral gradient
projection method for approximating solutions of (1.1). The method of Zhang and
Zhou can also be viewed as a modification of that of Cruz and Raydan [12]. Upon
implementation, the method in [20] demonstrates great efficiency and seems to have
added to the robustness of the method of Solodov and Svaiter [19]. A very recent
work related to [20] can be found in [1].

Implicit one-step discretization of a second order differential system describing the
motion of a ball rolling under its own inertia, called “heavy ball with friction” (see,
e.g., [2–5]), or “the method of a small heavy sphere” as used by Polyak [17], gives rise
to the so-called inertial proximal method for maximal monotone maps, which speed
up the convergence of the classical proximal algorithms. Polyak [17] is, perhaps,
the first to make this connection. Recently, the idea inertial algorithms is utilized
by numerous authors in accelerating convergence of many numerical algorithms for
optimization and other problems, see, for example, [8–11,13,15,16,18].

In this paper, it is our purpose to incorporate inertial terms in the algorithm of
Zhang and Zhou [20] and prove global convergence to a solution of (1.1). We also
conduct numerical experiments to see the effects of the inertial terms with regard
to speeding up convergence.

2. Algorithm and mathematical preliminaries

In this section we give some lemmas that will be used in the proof of our main
theorem and state the inertial algorithm.

2.1. Mathematical Preliminaries.

Lemma 2.1 (See, e.g., [7]). Let H be a real Hilbert space and let K1 and K2 be
defined as K1 := {x ∈ H : ⟨u, x⟩ ≤ α} and K2 := {x ∈ H : ⟨u, x⟩ = α}, u ∈ H and
α ∈ R fixed. If K = K1 or K = K2, then the projection onto K, PK , is defined as

PKx =

{
x, x ∈ K

x+ α−⟨x, u⟩
∥u∥2 u, x ∈ Kc.

Lemma 2.2 ([4]). Let φk ≥ 0 and δk ≥ 0 be such that φk+1 ≤ φk+αk(φk−φk−1)+
δk, with

∑∞
k=0 δk < ∞ and 0 ≤ αk ≤ α < 1. Then the following hold:

(i)
∑∞

k=0[φk − φk−1]+ < ∞, where [t]+ = max{t, 0},
(ii) there exists a real number φ∗ ≥ 0 such that limk→∞ φk = φ∗.
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2.2. Algorithm. Choose any x0, x1 ∈ H with x0 ̸= x1. Fix r > 0, σ, β ∈
(0, 1) and {λk}k≥1 ⊆ [0, 1). Define {xk}k≥0 in H as follows:

uk = xk + λk(xk − xk−1),

θk =


∥uk−uk−1∥2

⟨F (uk)−F (uk−1),uk−uk−1⟩+r∥uk−uk−1∥2
, xk = xk−1

∥xk−xk−1∥2
⟨F (xk)−F (xk−1), xk−xk−1⟩+r∥xk−xk−1∥2

, xk ̸= xk−1,

dk =

{
−F (uk), k = 1

−θkF (uk), k ≥ 2.

If dk = 0, then xk+i = uk, i ≥ 1. Otherwise,

(2.1) xk+1 = uk −
⟨F (zk), uk − zk⟩

∥F (zk)∥2
F (zk), k ≥ 1,

where, zk = uk + αkdk and αk = βmk , with

mk = min{m ∈ N : −⟨F (uk + βmdk), dk⟩ ≥ σβm∥dk∥2}.

Remark 2.3.

(i) If xk = xk−1 for some k > 1 (as x1 ̸= x0), then either xj = uk−1 ∀ j ≥ k
(this being the case if dk−1 = 0) or xk ̸= uk−1 (this being the case if
dk−1 ̸= 0). For the case dk−1 = 0, the sequence is well-defined. If dk−1 ̸= 0,
then xk = xk−1 implies u k = xk and xk ̸= uk−1 (by definition of uk).
Consequently, uk ̸= uk−1. Thus, whenever dk−1 ̸= 0, we have θk is well
defined.

(ii) If dk ̸= 0, then by continuity of F and that of the inner product, there exists
at least one m ∈ N such that

(2.2) −⟨F (uk + βmdk), dk⟩ ≥ σβm∥dk∥2.

Therefore, mk is well-defined and consequently, the step-length αk is well-
defined.

(iii) In view of (i) and (ii) above, the scheme above is well-defined. Moreover,
by monotonicity of F , for any v, w ∈ H, we have

⟨F (v)− F (w), v − w⟩+ r∥v − w∥2 ≥ r∥v − w∥2.(2.3)

In addition, by the Lipschitz continuity of F , there exists a constant L > 0
such that

∥F (v)− F (w)∥ ≤ L∥v − w∥, ∀ v, w ∈ H.

Hence, we have

⟨F (v)− F (w), v − w⟩+ r∥v − w∥2 ≤ L∥v − w∥2 + r∥v − w∥2

= (L+ r)∥v − w∥2.
(2.4)
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So, we have from (2.1), (2.3) and (2.4) (setting v = xk and w = xk−1 or
v = uk and w = uk−1) we obtain

(2.5)
∥F (uk)∥
L+ r

≤ ∥dk∥ ≤ ∥F (uk)∥
r

.

3. Convergence property

In this section we present the main theorem of the paper. The following two
lemmas will be used in the convergence analysis. We only indicate the proof of one
of the lemmas as the proof of the other one is immediate.

Lemma 3.1. Let u, v ∈ X, X a real inner product space. Then 2⟨u, v⟩ ≥ −σ∥u∥2−
1
σ∥v∥

2, ∀σ > 0.

Lemma 3.2. Let H be a real Hilbert space and let F : H → H be monotone and
non zero. Suppose x′, x̂, y ∈ H such that ⟨F (y), x′ +α(x′ − x̂)− y⟩ > 0, α > 0. Let

x+ = x∗ − ⟨F (y), x∗ − y⟩
∥F (y)∥2

F (y), where x∗ = x′ + α(x′ − x̂).

Then for any x̄ ∈ H such that F (x̄) = 0, the inequality

(3.1) ∥x+ − x̄∥2 ≤ ∥x∗ − x̄∥2 − ∥x+ − x∗∥2

holds.

Proof. Let x̄ ∈ H be any point such that F (x̄) = 0. By monotonicity of F, ⟨F (y), x̄−
y⟩ ≤ 0. It follows from the hypothesis that the hyperplane

Hf
α := {s ∈ H : ⟨F (y), s− y⟩ = 0}

strictly separates x∗ from x̄, i.e.,

(3.2) ⟨F (y), x∗ − y⟩ > 0 ≥ ⟨F (y), x̄− y⟩.

Also, from Lemma 2.1, x+ is the projection of x∗ onto the halfspace

T := {s ∈ H : ⟨F (y), s− y⟩ ≤ 0}.

Thus,

(3.3) ⟨x∗ − x+, x+ − s⟩ ≥ 0, ∀ s ∈ T.

Therefore,

∥x∗ − x̄∥2 = ∥x∗ − x+∥2 + ∥x+ − x̄∥2 + 2⟨x∗ − x+, x+ − x̄⟩
≥ ∥x∗ − x+∥2 + ∥x+ − x̄∥2 (since x̄ ∈ T ).

Hence,

∥x+ − x̄∥2 ≤ ∥x∗ − x̄∥2 − ∥x∗ − x+∥2.

□
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Theorem 3.3. Suppose that F : Rn → Rn is a monotone and Lipschitz continuous
non-zero map. Let {xk} be a sequence generated by Algorithm 1. Suppose that the
set S := {x ∈ H : F (x) = 0} is not empty. For x̄ ∈ S, it holds that

∥xk+1 − x̄∥2 ≤ ∥uk − x̄∥2 − ∥xk+1 − uk∥2 for all k.

Furthermore, if {λk}k≥1 is nondecreasing and 0 ≤ λk ≤ min
{
λ, (1−b−a)(a−λ)

ϵ0λ

}
for

some ϵ0 > 1, with 0 < λ < a < 1 and 0 < b < 1 − a, then {xk} converges to some
x∗ ∈ S.

Proof. If dk0 = 0 for some k0 ∈ N, then xk = uk ∀ k > k0. By definition of uk0 in the
algorithm, dk0 = 0 implies F (uk0) = 0. Hence the assertions of the theorem follow
trivially in this case.

We now assume that dk ̸= 0 for all k. We have from (2.2) that

(3.4) ⟨F (zk), uk − zk⟩ = −αk⟨F (zk), dk⟩ ≥ σα2
k∥dk∥2 > 0.

Then for any x̄ ∈ S, by (2.1) and Lemma 3.2, it follows that for all k ≥ 1,

(3.5) ∥xk+1 − x̄∥2 ≤ ∥uk − x̄∥2 − ∥xk+1 − uk∥2.

Using the technique of Alvarez and Attouch [4], let φk = ∥xk − x̄∥2, ∀ k ≥ 1. Then

∥uk − x̄∥2 = ∥xk + λk(xk − xk−1)− x̄∥2

= ∥xk − x̄∥2 + 2λk⟨xk − x̄, xk − xk−1⟩+ λ2
k∥xk − xk−1∥2, k ≥ 1.

(3.6)

Also,

φk−1 = ∥xk−1 − x̄∥2 = ∥(xk−1 − xk) + (xk − x̄)∥2

= ∥xk−1 − xk∥2 + ∥xk − x̄∥2 + 2⟨xk−1 − xk, xk − x̄⟩
= φk + ∥xk−1 − xk∥2 + 2⟨xk−1 − xk, xk − x̄⟩.

(3.7)

This implies,

(3.8) φk = φk−1 − ∥xk−1 − xk∥2 + 2⟨xk − xk−1, xk − x̄⟩, for all k ≥ 1.

Thus, ⟨xk − x̄, xk − xk−1⟩ = 1
2(φk − φk−1) +

1
2∥xk − xk−1∥2 and so (3.6) yields

∥uk − x̄∥2 = ∥xk − x̄∥2 + 2λk

(
1

2
(φk − φk−1) +

1

2
∥xk − xk−1∥2

)
+ λ2

k∥xk − xk−1∥2

= ∥xk − x̄∥2 + λk(φk − φk−1) + λk∥xk − xk−1∥2 + λ2
k∥xk − xk−1∥2.

(3.9)

Therefore,

(3.10) ∥uk − x̄∥2 = φk + λk(φk − φk−1) + (λk + λ2
k)∥xk − xk−1∥2.

Hence, using (3.5), we have

(3.11) ∥xk+1− x̄∥2 ≤ φk +λk(φk −φk−1)+ (λk +λ2
k)∥xk −xk−1∥2−∥xk+1−uk∥2.
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Thus,

φk+1 ≤ φk + λk(φk − φk−1) + (λk + λ2
k)∥xk − xk−1∥2

− ∥xk+1 − xk − λk(xk − xk−1)∥2

= φk + λk(φk − φk−1) + (λk + λ2
k)∥xk − xk−1∥2 − ∥xk+1 − xk∥2

− λ2
k∥xk − xk−1∥2 + 2λk⟨xk+1 − xk, xk − xk−1⟩

= φk + λk(φk − φk−1) + λk∥xk − xk−1∥2

− ∥xk+1 − xk∥2 − 2λk⟨xk+1 − xk, xk−1 − xk⟩
≤ φk + λk(φk − φk−1) + λk∥xk − xk−1∥2 − ∥xk+1 − xk∥2

+ λk

(
ρ∥xk+1 − xk∥2 +

1

ρ
∥xk − xk−1∥2

)
,

where ρ = ϵ0λ
a−λ . The last inequality follows from Lemma 3.1. It follows that

(3.12) φk+1 ≤ φk+λk(φk−φk−1)+λk

(
1 +

1

ρ

)
∥xk−xk−1∥2+(λkρ−1)∥xk+1−xk∥2.

Let µk = φk − λkφk−1 + γk∥xk − xk−1∥2, k ≥ 1. Then using the assumption that
{λk}k is monotone nondecreasing, we get

µk+1 − µk = φk+1 − λk+1φk + γk+1∥xk+1 − xk∥2 − (φk − λkφk−1 + γk∥xk − xk−1∥2)
≤ φk+1 − (1 + λk)φk + λkφk−1 + γk+1∥xk+1 − xk∥2 − γk∥xk − xk−1∥2.

(3.13)

From (3.12) we obtain

(3.14) φk+1 − (1 + λk)φk + λkφk−1 − γk∥xk − xk−1∥2 + γk+1∥xk+1 − xk∥2

≤ (λkρ− 1 + γk+1)∥xk+1 − xk∥2,

where γk = λk

(
1 + 1

ρ

)
. By virtue of (3.14), we have

(3.15) µk+1 − µk ≤ (λkρ− 1 + γk+1)∥xk+1 − xk∥2.

We next show that

(3.16) λkρ− 1 + γk+1 ≤ −b ∀ k ≥ 1.

Indeed, we first note that by the definition of ρ and λk,

γk = λk

(
1 +

1

ρ

)
= λk +

λk

ρ
≤ λ+

λ

ρ
< a ∀ k ≥ 1.

Therefore, to justify the claim, it suffices to show that λkρ − 1 + a ≤ −b ∀ k. By
definition of {λk}, λk ≤ 1−b−a

ρ ∀ k ≥ 1. So, ρ ≤ 1−b−a
λk

. This gives λkρ−1+a ≤ −b.

From (3.15) and (3.16) we obtain,

(3.17) µk+1 − µk ≤ −b∥xk+1 − xk∥2 ∀ k ≥ 1.
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It follows that the sequence (µk)k≥1 is nonincreasing. Since γk ≥ 0 and λk ≤ λ ∀ k,
we have from the definition of µk that

φk − λφk−1 ≤ µk ≤ µ1 ∀ k ≥ 1.(3.18)

We therefore have,

φk ≤ λφk−1 + µ1

≤ λ(λφk−2 + µ1) + µ1

≤ λ(λ(λφk−3 + µ1) + µ1) + µ1

= λ3φk−3 + λ2µ1 + λµ1 + µ1

...

≤ λkφ0 + µ1

k−1∑
i=0

λi

φk ≤ λkφ0 + µ1 ·
1(1− λk)

1− λ

≤ λkφ0 +
µ1

1− λ
∀ k ≥ 1.

Thus,

φk ≤ λkφ0 +
µ1

1− λ
∀ k ≥ 1.

Combining (3.17) and (3.18) we get for all k ≥ 1,

b
n∑

k=1

∥xk+1 − xk∥2 ≤ µ1 − µn+1

= µ1 − (φn+1 − λn+1φn + γn+1∥xn+1 − xn∥2)
≤ µ1 − φn+1 + λn+1φn

≤ µ1 + λφn

≤ µ1 + λ

(
λnφ0 +

µ1

1− λ

)
= λn+1φ0 +

µ1

1− λ
.

Since λ ∈ [0, 1), it follows that

(3.19)
∞∑
k=1

∥xk+1 − xk∥2 < +∞.

Setting δk := (λk + λ2
k)∥xk − xk−1∥2, k ≥ 1, we obtain from (3.11) that

φk+1 ≤ φk + λk (φk − φk−1) + δk, k ≥ 1.

We conclude, in view of (3.19) and Lemma 2.2, that limφk exists in R which gives
{∥xk − x̄∥} is convergent.
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Convergence of {∥xk − x̄∥} implies boundedness of {xk} and this in turn gives
boundedness of {uk}. Therefore, using (2.2) and the Lipschitz continuity of F , we
get that {dk} is bounded and so is {zk}. Using (3.11), we get

∥xk+1 − uk∥2 ≤ φk − φk+1 + λk (φk − φk−1) + δk, ∀ k ≥ 1.

From the facts that limφk ∈ R,
∑

δk < +∞ and supλk < +∞, we have

lim sup
k→∞

∥xk+1 − uk∥2 ≤ (lim supλk)(0) = 0.

It follows that
lim
k→∞

∥xk+1 − uk∥2 = 0.

Now by Lipschitz continuity of F and boundedness of {zk}, there exists a constant
C > 0 such that ∥F (zk)∥ ≤ C. Thus we obtain from (2.1) and (3.4) that

(3.20) ∥xk+1 − uk∥ =
|⟨F (zk), uk − zk⟩|

∥F (zk)∥
≥ σ

C
α2
k∥dk∥2 > 0.

Therefore, 0 < σ
Cα

2
k∥dk∥2 ≤ ∥xk+1 − uk∥ → 0 as k → ∞. From this inequality, we

have

(3.21) lim
k→∞

αk∥dk∥ = 0.

We have two cases:
Case 1. lim inf ∥dk∥ = 0; From (2.5) we have lim inf ∥F (uk)∥ = 0. This implies that
there exists a subsequence {ukj} of {uk} such that limj→∞ ∥F (ukj )∥ = 0. Since {ukj}
is bounded, there exists a subsequence {ukjl} of {ukj} such that ukjl → û ∈ Rn.

Hence, liml→∞ ∥F (ukjl )∥ = ∥F (û)∥. Since liml→∞ ∥F (ukjl )∥ = limj→∞ ∥F (ukj )∥ =

0, we conclude that ∥F (û)∥ = 0. So, û ∈ S and therefore {∥xk − û∥} converges.
Since û is an accumulation point of {xk}, with thanks to the fact that xk+1−uk → 0
and x̂ is an accumulation point of {uk}, it holds that {xk} converges to û and that
concludes the proof.

Case 2. lim inf ∥dk∥ > 0; From (2.5) we have lim inf ∥F (uk)∥ > 0. By (3.21), it
holds that

(3.22) lim
k→∞

αk = 0.

Definition of mk in the Algorithm 1 implies that

(3.23) −⟨F (uk + βmk−1dk), dk⟩ < σβmk−1∥dk∥2.

Since {uk}, {dk} are bounded, there exist û and d̂ such that ukj → û and dkj → d̂
for some subsequences {ukj} of {uk} and {dkj} of {dk}. From (3.23) and the fact
that β ∈ (0, 1), we obtain

(3.24) −⟨F (û), d̂⟩ ≤ 0.

On the other hand,

(3.25) −⟨F (û), d̂⟩ > 0.

Indeed,
−⟨F (uk + βmdk), dk⟩ → −⟨F (uk), dk⟩ as m → ∞.
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From dk = −θkF (uk) in the algorithm we have

F (uk) = − 1

θk
dk

= −


⟨F (uk)−F (uk−1), uk−uk−1⟩+r∥uk−uk−1∥2

∥uk−uk−1∥2
dk, xk = xk−1

⟨F (xk)−F (xk−1), xk−xk−1⟩+r∥xk−xk−1∥2
∥xk−xk−1∥2

dk, xk ̸= xk−1.

Therefore, by virtue of the monotonicity of F ,

−⟨F (uk), dk⟩ =


⟨F (uk)−F (uk−1), uk−uk−1⟩+r∥uk−uk−1∥2

∥uk−uk−1∥2
∥dk∥2, xk = xk−1

⟨F (xk)−F (xk−1), xk−xk−1⟩+r∥xk−xk−1∥2
∥xk−xk−1∥2

∥dk∥2, xk ̸= xk−1

≥


r∥uk−uk−1∥2
∥uk−uk−1∥2

∥dk∥2, xk = xk−1

r∥xk−xk−1∥2
∥xk−xk−1∥2

∥dk∥2, xk ̸= xk−1

= r∥dk∥2 > 0.

The fact that lim inf ∥dk∥ > 0, gives the desired inequality. Therefore we have (3.24)
and (3.25) which is a contradiction. Hence lim infk→∞ ∥F (uk)∥ > 0 is not possible,
that is, Case 2 is not possible. □

4. Numerical results

In this section, we conduct numerical experiments to compare the performance
of Spectral Gradient Projection Method (SGPM) of Zhang and Zhou [20] and our
method (Algorithm 1), i.e., the inertial version of it hereafter referred to as Iner-
tial Spectral Gradient Projection Method (ISGPM). The algorithms were coded in
MATLAB R2014a and run on personal computer with 2.60GHz CPU processor.

For the purpose of implementation, Algorithm 1 above is restated to suit im-
plementation.

ISGPM

Step 0: Choose any x0, x1 ∈ Rn with x0 ̸= x1, r > 0, σ, β ∈ (0, 1) and {λk}k≥1 ⊆
[0, 1). Let k := 1 and let the tolerance ϵ > 0 be given.

Step 1: Compute dk by

dk =

{
−F (uk), k = 1

−θkF (uk), k ≥ 2,

where, uk = xk + λk(xk − xk−1) and
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θk =


∥uk−uk−1∥2

⟨F (uk)−F (uk−1),uk−uk−1⟩+r∥uk−uk−1∥2
, xk = xk−1

∥xk−xk−1∥2
⟨F (xk)−F (xk−1), xk−xk−1⟩+r∥xk−xk−1∥2

, xk ̸= xk−1.

Stop if dk = 0, else proceed to Step 2.

Step 2: Compute zk = uk + αkdk, where αk = βmk , with mk being the smallest
nonnegative integer m such that

mk = min{m ∈ N : −⟨F (uk + βmdk), dk⟩ ≥ σβm∥dk∥2}.

Step 3: Compute

xk+1 = uk −
⟨F (zk), uk − zk⟩

∥F (zk)∥2
F (zk).

Step 4: Stop if ∥F (xk)∥ ≤ ϵ, else set k := k + 1 and go to Step 1.
We use the following two examples which verify the assumptions on F in Theo-

rem 3.3. These example were the functions used by by Zhang and Zhou [20].

Example 4.1. Let F : Rn → Rn be defined as F (x) = (F1(x), F2(x), . . . , Fn(x))
T ,

x = (x1, x2, . . . , xn)
T , where Fi(x) = xi − sin |xi|, i = 1, 2, . . . , n.

Table 1. Test results for SGPM and ISGPM on Example 1

S/N Initial points SGPM ISGPM

x0 x1 Iter. Time(s) Iter. Time(s)
1 (10, 10, . . . , 10)T (9, 9, . . . , 9)T 143 0.0282 39 0.0090
2 (1, 1, . . . , 1)T (2, 2, . . . , 2)T 141 0.0287 47 0.0115
3 (1, 1

2 , . . . ,
1

500 )
T (−1,−1, . . . ,−1)T 54 0.0096 4 0.0012

4 (−10, . . . ,−10)T (−2,−2, . . . ,−2)T 27 0.0081 49 0.0098
5 (−0.1, . . . ,−0.1)T (0.009, 0.009 . . . , 0.009)T 15 0.005 1 0.0002
6 (−1,−1, . . . ,−1)T (−1.9,−1.9 . . . ,−1.9)T 15 0.0050 40 0.0090
7 (5, 5, . . . , 5)T (−2,−2, . . . ,−2)T 127 0.0472 61 0.0137
8 (1, 1

2 ,−1, . . . , 1
500 )

T (−1,−1, . . . ,−1)T 120 0.0191 5 0.0002
9 (−8,−8, . . . ,−8)T (0, 0, . . . , 0)T 35 0.0102 1 0.0009
10 (6, 6, . . . , 6)T (2, 2, . . . , 2)T 127 0.0287 56 0.0554
11 ( 13 ,

1
3 , . . . ,

1
3 )

T (1.1, 1.1, . . . , 1.1)T 122 0.0297 64 0.0132
12 (0.6, 0.6, . . . , 0.6) (1, 1, . . . , 1)T 126 0.0255 46 0.0088

We test Example 4.1 with different initial points, we also set β = 0.4, σ =
0.01, r = 0.001, nmax = 10, 000 and n = 500 (dimension) and λn = 0.4. We use
stopping criterion ∥F (xk)∥ < 0.0001.
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Example 4.2. Let F : Rn → Rn be defined as F (x) = (F1(x), F2(x), . . . , Fn(x))
T ,

x = (x1, x2, . . . , xn)
T , where

F1(x) = 2x1 + sin(x1)− 1,

Fi(x) = −2xi−1 + 2xi + sin(xi)− 1, i = 1, 2, . . . , n− 1,

Fn(x) = 2xn + sin(xn)− 1.

We also test Example 4.2 with different initial points, we set β = 0.4, σ =
0.01, r = 0.1, nmax = 10, 000 and n = 500 (dimension) and λn = 0.4. We use
stopping criterion ∥F (xk)∥ < 0.0001. In the two tables above, x0 and x1 are the

Table 2. Test results for SGPM and ISGPM on Example 2

S/N Initial points SGPM ISGPM

x0 x1 Iter. Time(s) Iter. Time(s)
1 ( 13 ,

1
3 , . . . ,

1
3 )

T (1, 1, . . . , 1) 495 0.2000 133 0.0137
2 (1, 1, . . . , 1)T (0, 0, . . . , 0)T 835 0.3002 311 0.1262
3 (1, 1

2 , . . . ,
1

500 )
T (0.1, 0.1, . . . , 0.1)T 743 0.2825 81 0.0725

4 ( 12 ,
1
2 , . . . ,

1
2 )

T (−0.4,−0.4, . . . ,−0.4)T 631 0.2206 99 0.0870
5 (1, 1

2 , . . . ,
1

500 )
T (−0.2,−0.2, . . . ,−0.2)T 899 0.3080 79 0.0434

6 (0.8, 0.8, . . . , 0.8)T (1, 1, . . . , 1)T 151 0.0700 78 0.0324
7 (0.1, 0.1, . . . , 0.1)T (0.2, 0.2, . . . , 0.2)T 736 0.2555 122 0.0671
8 (0, 0, . . . , 0)T (−0.3,−0.3, . . . ,−0.3)T 530 0.1889 88 0.0403
9 (−1,−1, . . . ,−1)T (0.1, 0.1, . . . , 0.1)T 652 0.0700 78 0.0324
10 ( 17 ,

1
7 , . . . ,

1
7 )

T (1, 1, . . . , 1)T 1068 0.3750 133 0.0822

two initial points for the ISGPM while x0 (only) serves as the the initial point of
SGPM. Iter. denotes number of iterations and Time denotes the time for execution
of the algorithm. With regard to Example 1, we observe from Table 1 that except
in serial number 4 and 6, the time and number of iterations for ISGPM are less than
those of SGPM . The same situation obtains with regard to Example 2 where we
observe from Table 2 that in all the entries of the table, ISGPM has far less number
of iterations and less time than the SGPM. These results indicate that, as expected,
the inertial version of Spectral Gradient Projection Method gives better convergence
performance than the method without inertial term.

5. Conclusion

In conclusion, we are able to incorporate inertial term in the algorithm of Zhang
and Zhou [20] SGPM and prove global convergence of the resulting inertial algorithm
ISGPM to a solution of problem (1.1), given existence of a solution. The proof did
not put the assumption of convergence of the series

∑
k λk∥xk−xk−1∥, a assumption

found in some inertial algorithms (see, e.g., [3, 4, 15, 16]). Furthermore, from the
numerical experiments, the ISGPM has exhibited faster convergence than the SGPM
thereby making the whole work of adding inertial term live up to expectation.
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