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AN INERTIAL SPECTRAL GRADIENT PROJECTION METHOD
FOR ZEROS OF MONOTONE MAPS

MA’ARUF MINJIBIR AND MUHAMMAD SALISU

ABSTRACT. An algorithm for approximating zeros of monotone maps is devel-
oped. The algorithm incorporates an inertial term into a scheme that combines
a modified spectral gradient method and projection method. The sequence gen-
erated is shown to converge globally to a zero of the said map. Numerical tests
conducted exhibit great promise and significant improvement in performance of
the algorithm as compared with the non-inertial methods.

1. INTRODUCTION
We consider the problem of solving the (nonlinear) equation
(1.1) F(z) =0,
where F': R® — R"” is monotone, that is, I’ satisfies
(F(z) = F(y),z —y) > 0 for all z,y € R",

where (-, ) denotes the Euclidean inner product in R"™ (if we replace R™ with ar-
bitrary real Hilbert space H, the same definition persists). The class of monotone
functions constitutes a great part of the functions for which solutions of (1.1) are
found without smoothness assumptions. In fact, several problems in applications
reduce to (1.1) with F monotone. For instance, the evolution equation % +Au=0
which describes a system evolving with time, reduces to Au = 0 at equilibrium
and the operator A is monotone (or more generally accretive). In connection with
optimization, solutions of (1.1) may also correspond to the optimizers of certain
functional f : R™ — R. When the function f is convex, then the set of its minimiz-
ers coincides with the set of solutions of the inclusion 0 € Jf(x), where Jf denotes
the subdifferential of f. For Gateaux differentiable, say, the mentioned inclusion
becomes (1.1) with F' denoting the Gateuax derivative of f which is necessarily
monotone.

Solodov and Svaiter [19] proposed a novel Newton-type method for approximation
of solutions of (1.1) in the case F' is monotone. In their method, utilizing the
classical proximal point algorithm, in each iteration they constructed an appropriate
hyperplane which strictly separates the current iterate from the set of solutions of
(1.1). Then the next iterate is obtained as a projection of the current iterate onto
another carefully defined hyperplane. While projections usually add to difficulties
and time consumption in iterative methods, it is noted that the projection in the
method of Solodov and Svaiter is onto a hyperplane which is readily and easily
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computed. Zhang and Zhou [20] took advantage of this projection technique and
the spectral gradient method [6] to propose a new method called spectral gradient
projection method for approximating solutions of (1.1). The method of Zhang and
Zhou can also be viewed as a modification of that of Cruz and Raydan [12]. Upon
implementation, the method in [20] demonstrates great efficiency and seems to have
added to the robustness of the method of Solodov and Svaiter [19]. A very recent
work related to [20] can be found in [1].

Implicit one-step discretization of a second order differential system describing the
motion of a ball rolling under its own inertia, called “heavy ball with friction” (see,
e.g., [2-5]), or “the method of a small heavy sphere” as used by Polyak [17], gives rise
to the so-called inertial proximal method for maximal monotone maps, which speed
up the convergence of the classical proximal algorithms. Polyak [17] is, perhaps,
the first to make this connection. Recently, the idea inertial algorithms is utilized
by numerous authors in accelerating convergence of many numerical algorithms for
optimization and other problems, see, for example, [8-11,13,15,16, 18].

In this paper, it is our purpose to incorporate inertial terms in the algorithm of
Zhang and Zhou [20] and prove global convergence to a solution of (1.1). We also
conduct numerical experiments to see the effects of the inertial terms with regard
to speeding up convergence.

2. ALGORITHM AND MATHEMATICAL PRELIMINARIES

In this section we give some lemmas that will be used in the proof of our main
theorem and state the inertial algorithm.

2.1. Mathematical Preliminaries.

Lemma 2.1 (See, e.g., [7]). Let H be a real Hilbert space and let K; and Ko be
defined as K1 :={x € H : (u,z) < a} and Ky :={z € H : (u,x) = a}, u € H and
a € R fired. If K = K1 or K = Ky, then the projection onto K, Pk, is defined as

P x, reK
KT = _
T ”Sﬁ"Q“)u, r e K°.

Lemma 2.2 ([4]). Let ¢ > 0 and 0, > 0 be such that i1 < pp+ar(vr—pr—1)+
O, with Y12 o0k < 00 and 0 < oy, < o < 1. Then the following hold:

(1) Yortoler — wr—1l+ < oo, where [t]+ = maz{t,0},
(ii) there exists a real number ©* > 0 such that limy_,o @ = p*.
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2.2. Algorithm. Choose any zg, 1 € H with 9 # z;. Fixr > 0, o, § €
(0,1) and {Ag}x>1 € [0,1). Define {zy}r>0 in H as follows:

up = o, + Mp(2p — 8—1),
l|eer —wge—1 1>
(F(ug)—F(up—1)up—ug—1)+rllug—up_1]>’

T = Tk—1
0, =

[T
(Flan)—F(@r1), ap—zp_1)+rlor—ap1 2’ Tk # Tp-1,

g = ) w), k=1
B —0kF(ug), k>2.

If di, = 0, then xgy; = ug, ¢ > 1. Otherwise,

(F(21), ur — 2k)
1 F (z1)1?

(2.1) Tpt1l = Uk — F(zg), k> 1,

where, zp = up + ardp and oy = ™%, with
mg = min{m eN: —(F(uk + 5mdk),dk> > UﬁdekHQ}

Remark 2.3.

(i) If 2, = a1 for some k > 1 (as x1 # xg), then either z; = up_1 Vj > k
(this being the case if dy_1 = 0) or xp # wug_1 (this being the case if
di—1 # 0). For the case di_1 = 0, the sequence is well-defined. If dj_1 # 0,
then zp = xp_1 implies u = z} and z; # ug_1 (by definition of wug).
Consequently, ur # ug_1. Thus, whenever di_1 # 0, we have 0 is well
defined.

(ii) If di, # 0, then by continuity of F' and that of the inner product, there exists
at least one m € N such that

(2.2) —(F(ug, + 8™ dy), di) > o f™||dy||*.

Therefore, my, is well-defined and consequently, the step-length «y is well-
defined.

(iii) In view of (i) and (ii) above, the scheme above is well-defined. Moreover,
by monotonicity of F, for any v,w € H, we have

(2.3) (F(v) = F(w),v = w) +rllv — w|* > rllv —w]*.

In addition, by the Lipschitz continuity of F', there exists a constant L > 0
such that

[F(v) = F(w)|| < Ljlv —wl|, Yo,w e H.
Hence, we have
(F(v) = F(w),v —w) +rlv—w|® < Ljv = w|® + rljv — w]?

4
(2.4) = (L +7)||v—w|?
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So, we have from (2.1), (2.3) and (2.4) (setting v = z and w = x}_1 or
v = ug and w = uk_1) we obtain

3. CONVERGENCE PROPERTY

In this section we present the main theorem of the paper. The following two
lemmas will be used in the convergence analysis. We only indicate the proof of one
of the lemmas as the proof of the other one is immediate.

Lemma 3.1. Let u,v € X, X a real inner product space. Then 2{u,v) > —o|ul|* —
L], Vo >o0.

Lemma 3.2. Let H be a real Hilbert space and let F' : H — H be monotone and
non zero. Suppose x', &,y € H such that (F(y), 2’ +a(z’ — &) —y) >0, a > 0. Let

v x (Fly), =" —y)

=a* — WF(y), where z* = 2’ + a(z’ — ).
Then for any T € H such that F(z) = 0, the inequality
(3.1) lz* = z|* < 2" - 2|* — [|la* — 2*||?
holds.

Proof. Let & € H be any point such that F'(z) = 0. By monotonicity of F, (F(y),z—
y) < 0. It follows from the hypothesis that the hyperplane

H] = {s € H: (Fy), s —y) = 0}
strictly separates x* from Z, i.e.,
(3.2) (F(y), 2" —y) > 0= (F(y), 7 —y).
Also, from Lemma 2.1, 2™ is the projection of z* onto the halfspace

T:={seH:(F(y), s—y) <0}

Thus,
(3.3) (x* —aT 2T —s) >0, Vs T.
Therefore,
lz* = z|* = ll2* — «*|* + [l2* - 2|* + 2(2" — 2™, 2" —7)
> ||z* — 2| + ||zt — z||? (since Z € T)).
Hence,

lz = 2* < [la* = 2)* = 2" -«
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Theorem 3.3. Suppose that F : R™ — R" is a monotone and Lipschitz continuous
non-zero map. Let {x}} be a sequence generated by Algorithm 1. Suppose that the
set S:={x € H: F(x)=0} is not empty. For z € S, it holds that

lener = 2 < g — 212 lansr — il for all k.

Furthermore, if {\g}r>1 is nondecreasing and 0 < X\ < min{)\, %} for

some €g > 1, with0 < A <a <1 and0<b<1—a, then {z} converges to some
zreds.

Proof. If dy, = 0 for some ko € N, then xj, = u, V& > ko. By definition of uy, in the
algorithm, dy, = 0 implies F'(uy,) = 0. Hence the assertions of the theorem follow
trivially in this case.

We now assume that dj # 0 for all k. We have from (2.2) that

(3.4) <F(Zk), Uk — Zk> = —Ozk<F(Zk), dk> > O‘Oéi”dkHQ > 0.

Then for any € S, by (2.1) and Lemma 3.2, it follows that for all £ > 1,

(3.5) k1 = 2l < luk — 21 = lowsr — ugll®.

Using the technique of Alvarez and Attouch [4], let oy, = ||z, — Z||?, Yk > 1. Then

g, — Z||* = |log + Me(z — 2p-1) — Z||

(3.6) o - ) )
= ||lzx — Z||* + 2 e (x — T, vk — Tp—1) + Aollzk — ze—1||7, B> 1.
Also,
Pr-1 = ||wp—1 — 2l = [(xr—1 — zx) + (x — 2)|
(3.7) = |lwp—1 — @il* + llzk — 2)° + 2(xp—1 — 2k, Tk — T)

= ok + |1 — zill® + 2{@p—1 — Tp, 28 — ).
This implies,
(3.8) Ok = Pp—1 — ka,1 - kaZ + 2<1‘k — Tp_1,Tk — §3>, for all £ > 1.
Thus, (2 — 2,25 — Tp—1) = 3(9k — Pr—1) + 5|2k — zx—1]|* and so (3.6) yields
(3.9)
_1n2 —112 1 1 2 2 2
e = 217 = llaw = 217+ 22 | 500k = or—1) + g llon — 217 ) + Aellzwe — zpl]
= |lor — 2)* + Me(or — @r—1) + Melloe — zp—1|I” + Aillze — @ |-
Therefore,
(3.10) lug — 2|12 = or + Mok — re—1) + Ok + AD) |z — 2p—1]

Hence, using (3.5), we have

(3:11) (|21 —Z[* < or + Aklor = 1) + e+ X)) [ — @t |2 = [lgr — .
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Thus,

Pre1 < @k + Mook — Pr1) + (A + A0 lze — 21|
— o1 =z — Me(@ — 2p—1)|)?
= ok + Mok — or1) + Ak + AP lee — 21 |? = o — 2l
— Mllze = ze— | + 20 (@hg1 — T, T — TR—1)
= ok + Me(0k — 1) + Mellzk — 21 ||
— || @har — 2kl — 2k (@hg1 — T, Tho1 — )

< ok + Mo(or — 1) + Ml — 2po1 ]2 = |2ps1 — 2
1
Y (puxm — P + 2o - x“u?) ,

where p = %. The last inequality follows from Lemma 3.1. It follows that

312) pr < gt (14 ) fonmaual*+Onp-Dlow -l

Let pup = ©x — Mer—1 + Yellor — 7x—1?, k& > 1. Then using the assumption that

{Ak}x is monotone nondecreasing, we get

(3.13)

P — ke = Prr1 — M1k + Ve lzrrn — 2al® = (or — Aror—1 + Yellee — 21 [)?)
< @rt1 — (L+ M) @k + M=t + Vet 1 Tha1 — 2ll* — ellze — ze—a .

From (3.12) we obtain

(3.14)  prr1 — (L4 M)k + Mewr—1 — Wellore — zr—1]® + Vo1 | 2e1 — 2xl?
< (M =1+ i) |og1 — l’k”27

where v, = A, (1 + ). By virtue of (3.14), we have
p

(3.15) pi — e < (Akp — 1+ veg1) lzwrn — .
We next show that

(3.16) Ap—1+v41 < -bVEk>1.
Indeed, we first note that by the definition of p and Ag,

1 A
'Yk:Ak<1+):)\k+k§)\+)\<aVk21.
p p p

Therefore, to justify the claim, it suffices to show that \pp — 1+ a < —b Vk. By
definition of {A\x}, A\x < % Vk>1.S0,p< 1_/\171:“. This gives Agp—1+a < —b.
From (3.15) and (3.16) we obtain,

(3.17) pr1 = e < =bllegn —ap|? VE > 1
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It follows that the sequence (jix)r>1 is nonincreasing. Since vy, > 0 and A\, < A V&,
we have from the definition of y that

(3.18) Ok — A1 < pp < Yk > 1.

We therefore have,
Yk < Apg—1 + 11
<A A@r—2 + p1) + 1
< AAApr—s + ) + ) +
= Nop_3 + N2y + Ay +

k—1
< Mg+ Y N
1=0

1(1— k)

< \k e Sl A
2 L

< Mg + 1/11)\ >
Thus,

M1
1—A
Combining (3.17) and (3.18) we get for all k£ > 1,

or < Mg + VEk>1.

n
bz lTxs1 — iL"kHQ < p1 — fpgl
k=1

= M1 — (<Pn+1 — Ant1¥n + %+1H$n+1 - anz)
< U1 — Pns1 + )\n—&-lson

< 1+ Apn
Sm—i—)\()\”(po-l- 1/ilx>
= Ao + llil)\.

Since A € [0, 1), it follows that

(3.19) i 21 — ax]? < +o0.

k=1
Setting &y, := (A + A?)||xx — zk—1]|%, k > 1, we obtain from (3.11) that
Pr+1 < o+ M (P8 — Pr—1) + 0k, k> 1.

We conclude, in view of (3.19) and Lemma 2.2, that lim ¢}, exists in R which gives
{||zx — ||} is convergent.
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Convergence of {||zy — Z||} implies boundedness of {z}} and this in turn gives
boundedness of {uy}. Therefore, using (2.2) and the Lipschitz continuity of F', we
get that {dy} is bounded and so is {zj}. Using (3.11), we get

41— wkl® < @ — orrr + Ak (0r — Q1) + 0, Vo2 1.
From the facts that lim ¢ € R, > < +00 and sup A\ < 400, we have

limsup [[zg11 — ug|* < (limsup Ay )(0) = 0.
k—00

It follows that

lim a1 — ugl]? = 0.

k—o0

Now by Lipschitz continuity of F' and boundedness of {z}, there exists a constant
C > 0 such that ||F'(z)|| < C. Thus we obtain from (2.1) and (3.4) that

[(F(2x), ux — 21)]
1 (2)

Therefore, 0 < Zo|di||* < [|#p41 — uxll = 0 as k — co. From this inequality, we
have

(3.21) lim ay||dy]| = 0.
k—o0

g
(3.20) [zhg1 — urll = > Zailldi]* > 0.

We have two cases:

Case 1. liminf ||dg|| = 0; From (2.5) we have liminf || F'(ug)|| = 0. This implies that
there exists a subsequence {uy; } of {ux} such that lim; o || F'(ug; )|| = 0. Since {uy, }
is bounded, there exists a subsequence {ug, } of {ug,} such that uy, — @ € R".
Hence, limy.uo ||F (g, )| = [ F(8)]. Since limyyog || Ftst, )| = limj oo | Fus, )| =
0, we conclude that ||F'(a)|| = 0. So, u € S and therefore {||z — 4|/} converges.
Since 4 is an accumulation point of {z} }, with thanks to the fact that zp11—up — 0
and Z is an accumulation point of {uy}, it holds that {zj} converges to @ and that
concludes the proof.

Case 2. liminf ||dg| > 0; From (2.5) we have liminf || F(ug)| > 0. By (3.21), it
holds that
(3.22) lim o = 0.

k—o0

Definition of my, in the Algorithm 1 implies that
(3.23) —(F(uk + Bmk_ldk), dk> < Jﬁmk_lndk”Q.
Since {ug}, {dr} are bounded, there exist @ and d such that ug; — @ and di; — d

for some subsequences {ug;} of {ux} and {dy,} of {dy}. From (3.23) and the fact
that 8 € (0,1), we obtain

(3.24) —(F(4),d) < 0.
On the other hand,

(3.25) —(F (1), d) > 0.
Indeed,
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From dj, = —0;F(uy) in the algorithm we have

1
F(Uk) = —%dk

(F(ug)—=F(up—1), up—up—1)+rlug—up—_1|? dy
)

T = Ll
lug—up—1]? k k—1

(F(op)—F (zr-1), zp—vp—1)+r|lzs—zp_1]? dy
)

x Tl—1-
lzr—zn_1]] k?é k—1

Therefore, by virtue of the monotonicity of F,

(F(ug) = F(ug—1), wp—tp—1)+r]lug—ug 1| g%,

Nur—ur_1]? Tp = Tpo1
_<F(uk’)7dk’> =
F “F(ap_1), tp—ap_1)+ T
| Fl=Feyencae it g 2,y # 2
— 2
sl g2, gy = 2y
>
_ 2
ol 4,12, 2y £ 2y

= THdkHQ > 0.

The fact that liminf ||dg|| > 0, gives the desired inequality. Therefore we have (3.24)
and (3.25) which is a contradiction. Hence lim infy_, || F'(ug)|| > 0 is not possible,
that is, Case 2 is not possible. O

4. NUMERICAL RESULTS

In this section, we conduct numerical experiments to compare the performance
of Spectral Gradient Projection Method (SGPM) of Zhang and Zhou [20] and our
method (Algorithm 1), i.e., the inertial version of it hereafter referred to as Iner-
tial Spectral Gradient Projection Method (ISGPM). The algorithms were coded in
MATLAB R2014a and run on personal computer with 2.60GHz CPU processor.

For the purpose of implementation, Algorithm 1 above is restated to suit im-
plementation.

ISGPM

Step 0: Choose any xg, x1 € R” with zg # z1, r > 0, 0, S € (0,1) and {A\g}r>1 C
[0,1). Let k& :=1 and let the tolerance € > 0 be given.

Step 1: Compute di by

d = _F(uk)7 k=1
T —0uF(ur), k> 2,

where, up = 2 + A\p(xr — 1) and
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llus—ug_1|?
(F(up)—F (ug—1),up—up—1)+rllug—ugp_1]]%’

T = Tk—1

O, =

llzk—wr—1]?
(Flan)—F(zr1), sh—ax_1)trlon—azp 127 Tk 7 Th-1.

Stop if di, = 0, else proceed to Step 2.

Step 2: Compute 2z = ug + apdg, where o, = ™%, with m; being the smallest
nonnegative integer m such that

my, = min{m € N : —(F(ug + 8™dy), di) > o™||dr|*}.

Step 3: Compute
(F(2k), ug — z1)
Tp+1 = Uk —
|5 (2x) |2

F(zg).

Step 4: Stop if ||[F(zg)| <€, else set k:=k + 1 and go to Step 1.
We use the following two examples which verify the assumptions on F' in Theo-
rem 3.3. These example were the functions used by by Zhang and Zhou [20].

(2F1(x), Fy(x),...,Fy(x)T,

Example 4.1. Let F': R™ — R” be defined as F(z) =
r = (z1,22,...,2,)7, where Fj(z) = 2; —sin |z, i = 1,

TABLE 1. Test results for SGPM and ISGPM on Example 1

S/N Initial points SGPM ISGPM

Zo x1 Iter. | Time(s) | Iter. | Time(s)
1 [(10,10,...,10)T 9,9,...,97T 143 | 0.0282 | 39 | 0.0090
2 [ (1,1,...,D)T (2,2,...,2)7 141 | 0.0287 | 47 | 0.0115
3 1 (L3 m9)” (-1,-1,...,-DT 54 | 0.0096 4 0.0012
4 | (-10,...,-10)T (-2,-2,...,-2)7T 27 | 0.0081 | 49 | 0.0098
5 | (-0.1,...,-0.1)T (0.009,0.009...,0.009)T | 15 | 0.005 1 0.0002
6 | (-1,—-1,...,— DT | (-1.9,-1.9...,—-1.97 [ 15 [ 0.0050 | 40 | 0.0090
7 1(5,5,...,5)7 (-2,-2,...,-2)T 127 | 0.0472 | 61 | 0.0137
8 | (L3,-1,...,z)" [(-1,—-1,...,—DT 120 | 0.0191 5 0.0002
9 |(-8,-8,...,—8)T |(0,0,...,0)T 35 | 0.0102 1 0.0009
10 | (6,6,...,6)T 2,2,...,2)T 127 | 0.0287 | 56 | 0.0554
11 (3, 5,...9)7 (1.1,1.1,...,1.0)T 122 | 0.0297 | 64 | 0.0132
12 [(0.6,0.6,...,0.6) (1,1,..., )T 126 | 0.0255 | 46 | 0.0088

We test Example 4.1 with different initial points, we also set § = 0.4, o =
0.01, » = 0.001, nmax = 10,000 and n = 500 (dimension) and A, = 0.4. We use
stopping criterion ||F'(z)| < 0.0001.



INERTIAL ALGORITHM FOR ZEROS OF MONOTONE MAPS 441

Example 4.2. Let F : R” — R" be defined as F(x) = (Fy(z), Fa(z),..., Fn(x))7T,
r = (z1,22,...,2,)7, where

Fi(x) =2z + sin(x1) — 1,

Fi(z) = —2x;_1 + 2z; +sin(z;) — 1, i =1,2,...,n — 1,

Fo(x) = 2xy, + sin(zy,) — 1.
We also test Example 4.2 with different initial points, we set § = 0.4, 0 =

0.01, » = 0.1, nmax = 10,000 and n = 500 (dimension) and A, = 0.4. We use
stopping criterion ||F(xg)|| < 0.0001. In the two tables above, xp and x; are the

TABLE 2. Test results for SGPM and ISGPM on Example 2

S/N Initial points SGPM ISGPM
Zo x Iter. | Time(s) | Iter. | Time(s)
1 1 Gyg--3)T (1,1,...,1) 495 | 0.2000 | 133 | 0.0137
2 [ (1,1,...,)T (0,0,...,0)T 835 | 0.3002 | 311 | 0.1262
3 1 (Ls, L, z9)7" (0.1,0.1,...,0.0)T 743 | 02825 | 81 | 0.0725
4 1G,5.--..3)7 (—0.4,-0.4,...,—0.4)T | 631 | 0.2206 | 99 | 0.0870
5 (3 m9)" (-0.2,-0.2,...,-02)T [ 899 | 0.3080 | 79 | 0.0434
6 |(0.8,0.8,...,0.8)T [ (1,1,...,1)T 151 [ 0.0700 | 78 | 0.0324
7 [(0.1,0.1,...,0.1)7 [ (0.2,0.2,...,0.2)T 736 | 0.2555 | 122 | 0.0671
8 1(0,0,...,0)T (—0.3,-0.3,...,-0.3)T [ 530 | 0.1889 | 88 | 0.0403
9 [(-1,-1,....,-1)T[(0.1,0.1,...,0.1)T 652 | 0.0700 | 78 | 0.0324
10 [(3,2,..,9)7 (1,1,..., )T 1068 | 0.3750 | 133 | 0.0822

two initial points for the ISGPM while z (only) serves as the the initial point of
SGPM. Iter. denotes number of iterations and Time denotes the time for execution
of the algorithm. With regard to Example 1, we observe from Table 1 that except
in serial number 4 and 6, the time and number of iterations for ISGPM are less than
those of SGPM . The same situation obtains with regard to Example 2 where we
observe from Table 2 that in all the entries of the table, ISGPM has far less number
of iterations and less time than the SGPM. These results indicate that, as expected,
the inertial version of Spectral Gradient Projection Method gives better convergence
performance than the method without inertial term.

5. CONCLUSION

In conclusion, we are able to incorporate inertial term in the algorithm of Zhang
and Zhou [20] SGPM and prove global convergence of the resulting inertial algorithm
ISGPM to a solution of problem (1.1), given existence of a solution. The proof did
not put the assumption of convergence of the series >, Ag||zr—2x—1]], a assumption
found in some inertial algorithms (see, e.g., [3,4,15,16]). Furthermore, from the
numerical experiments, the ISGPM has exhibited faster convergence than the SGPM
thereby making the whole work of adding inertial term live up to expectation.
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