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AN INERTIAL SELF-ADAPTIVE ITERATIVE PROCEDURE FOR
MINIMUM NORM SOLUTIONS OF SPLIT GENERALIZED
MIXED EQUILIBRIUM AND FIXED POINT PROBLEMS

MURTALA HARUNA HARBAU AND GODWIN CHIDI UGWUNNADI

ABSTRACT. In this paper, we introduce an inertial self-adaftive iterative algo-
rithm for approximating minimum solutions of split generalized mixed equilib-
rium problem and fixed point of demimetric mapping in real Hilbert spaces.
Strong convergence theorem of the propose scheme is established. Our results
generalize and improve many recent results in the literature.

1. INTRODUCTION

Let H be a real Hilbert space and K be a nonempty, closed convex subset of H. A
mapping S : K — K is called nonexpansive if ||Sx — Sy|| < ||z — y|| Vz,y € K. A
point z € K is a fixed point of S if x = Sz. We denote by F'(.S) the set of all fixed
points of S ie. F(S) ={x € K : x = Sx}. S is quasi nonexpansive if F(S) # ()
and ||Sz —z|| < ||z —z|| Vo € K and z € F(S). S is (¢,()—generalized hybrid, [27]
if there exists real numbers ¥,  such that for all x,y € K

DSz - Syl? + (1— )z — Syl

(1.1) < ISz —yl* + (1= lle —yll*.

The mapping S is called 7—demicontractive, see [17] if F(S) # 0 and for some
7 € (0,1), we have

1Sz — 2||> < ||z — 2||? + 7|z — Sz||?, Vo € K, z € F(S).
S is called T7—demimetric, see [42] if F(S) # () and for some 7 € (—o0, 1), we have
1—7
2

Remark 1.1. It is clear from (1.1) that if J = 1 and ¢ = 0, then S is nonexpansive.
Hence the class of nonexpansive mappings is contained in the class of generalized
hybrid mappings. Moreover, the class of 7—demicontractive mappings contains
the class of nonexpansive and quasi nonexpansive mappings. Furtheremore, every
T—demecontractive mapping is 7—demimetric mapping.

(x — z,x — Sx) > |z — Sz|?, Vo € K, z € F(S).

Numerous studies have been conducted and are ongoing in fixed point theory of
various classes of nonlinear mappings due to its applications such as in theory
of differential equations, image recovery and signal processing, game theory and
market economy and so on, (see for example Byrne [4], Chidume et al. [6], Nash
[32,33], Suantai et al. [41]).
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Let f,g: K x K — R be two bifunctions, B : K — H be a nonlinear operator and
1 : K — R be real valued function. The Generalized Mixed Equilibrium Problem
(GMEP), see [8,16] is to find z € K such that

(1.2) f(z,9) +9(2,y) —g(z,2) +(Bz,y — 2) +¢(y) —¢(2) >0 Vy € K.

We denote by GM EP(f, g, B) the set of solutions of generalized mixed equilibrium
problem, GMEP.

Remark 1.2. We observe that

(1) If v» = 0, then GM EP (1.2) reduces to the problem studied by Harbau et
al. [16], i.e., find z € K such that

(1.3) f(zy) +9(z,y) —g(z,2) + (Bz,y —2) 20 Vy € K.

(2) If v = 0,B = 0, then GM EP problem (1.2) reduces to the following gen-
eralized equilibrium problem see for example [24], i.e., find z € K such
that

(1.4) f(z,9) +9(2y) —g(z,2) 20 Vy € K.

(3) If g = 0, then then GMEP problem (1.2) reduces to mixed equilibrium
problem as follows: find z € K such that

(1.5) f(zoy) +(Bzy — 2) +¢(y) —¢(2) 2 0 Vy € K.

(4) If v = 0,B = 0 and g = 0, then GMEP problem (1.2) reduces to the
following classical equilibrium problem introduced by Blum and Oettli [3],
i.e., find z € K such that

(1.6) f(z,y) > 0Vy € K.

Equilibrium problems and their generalizations have been studied by numerous
mathematicians due to its importance in solving problems arising from linear and
nonlinear programming, optimization problems, variational inequalities and also
problems in physics, economics, engineering and so on, see for example [18,19, 28,
36,44] and the references contained therein.

In 2012, He [13] introduced the following split equilibrium problems in Hilbert
spaces:

Let K1, Ko be nonempty closed convex subsets of real Hilbert spaces Hy, Ho
respectively. Let f1 : K1 x K1 — R, fo : K9 x K9 — R be two bifunctions and
A : Hy — Hs be a bounded linear map, then the split equilibrium problem (SEP)
is

find z € Kj such that fi(z,y) >0V y € K;,
(1.7) and v' = Az € Ky solves fo(v',v) >0V v € Ko.

Kazmi and Rizvi [25] considered the following split generalized equilibirium problem
which is a generalization of split equilibrium problem studied by He [13] in (1.7):

find z € Kj such that fi(z,y) +g1(z,y) >0V y € Ky,
(1.8) and v’ = Az € Ky solves fo(v',v) + g2(v',v) > 0V v € Ko,

where g1 : K1 x K1 — R, and ¢ : Ko X K9 — R are bifunctions.
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Split equilibrium problem contains two equilibrium problems in two different subsets
of spaces, under which solutions are splitted such that the image of one equilibrium
problem under a given bounded linear map is a solution of another equilibirm prob-
lem, see for example [13] and the references contained therein. Many authors have
introduced iterative algorithms for finding solutions of split equilibrium problems
and their generalizations in real Hilbert spaces, see [9,10,21,23,26,34,43] and the
references continued therein.

Numerous authors have proposed modifcations of Picard [38], Mann [30] and
Ishikawa [14] iterative procedures to approximate fixed points of various classes of
nonlinear mappings, see for example [7,11,31,40]. Moreover, inertial extrapolation
method introduced by Polyak [37] to speed up the convergence rate of iteration
procedures has attracted attention of researchers, see for example [2,5,15,22] and
the references contained therein.

Recently, Husain and Asad [20] proposed the following algorithm for solving split
generalized equilibrium problem (1.8) in a real Hilbert space H:

ug, uy € Hy chosen arbitrarily,
wy = up + O (up — up—1),
(1.9) vk = (1 = &§)wg + EpFwy,
zp = (1 = CGr)v + GeFvg,
Unp+1 = .sz, vk Z 1.

Where Fj, = Tr(gl’gl)(l — yA*(I — T,g,{2’g2))A), v € (0, %), w is the spectral radius of
A* A, the authors proved weak convergence of (1.9) under the following conditions
imposed on the control sequences {0}, {&x}, {Ck}s

(1) Doh2 Okllug — up—1|l < oo;
(ii) 0 < liminfé, < limsupéy < 1;
k—o0 k—o0
(iii) 0 < liminf(y < limsup(; < 1.
k—o0 k—o0
We observe that apart from weak convergence of algorithm (1.9) established, the
step size v depends on the spectral radius of A*A which is difficult compute. More-
over, condition (i), i.e summability condition makes implementation of algorithm
(1.9) difficult.

Motivated and inspired by the above mentioned works, we study and analyze
an inertial self-adaftive iterative algorithm for approximating minimum solutions of
split generalized mixed equilibrium problem and fixed point of demimetric mapping
in real Hilbert spaces. To be specified, we consider the following Split Generalized
Mixed Equilibrium Problem (SGMEP): Find z € K; such that

fi(zy) + 91(2,9) — g1(2,2) + (Biz,y — 2) + ¥1(y) —¢1(2) >0V y € Ky
and v = Az € K5 solves
(1.10) fo(v',v)+g2(v',v) — g (v, ') + (Bav', v —v') + 92 (v) —1h2(v)) > 0V v € Ko.

Where By : K1 — Hy, By : K9 — Hy are nonlinear operators and 7 : K1 —
R, 9 : K9 — R are real valued functions.



414 M. H. HARBAU AND G. C. UGWUNNADI

We denote by I' the set of solutions of SGMEP, i.e.
I'={z € GMEP(f1,91,B1) : Az € GMEP(f3, g2, B2)}.

The algorithm constructed in this paper has the following properties:

(1) The step size n, in the propose method is chosen self-adaptively and does
not requires computation of spectral radius of A*A;

(2) In the propose algorithm, the summability condition, i.e.

Y peq Ollur —ug—1|| < oo of algorithm (1.9) of [20] is dispense with and this
make the propose method simple to implement;

(3) The propose algorithm solves split generalized mixed equilibrium problem
and fixed point of demimetric mapping as against (1.9) that solves split
generalized equilibrium problem;

(4) The convergence analysis of the propose method does not follow the usual
two cases approach that has been used by many authors in obtaining strong
convergence .

2. PRELIMINARIES

Let H be a real Hilbert space. Then following identities are well known:

(2.1) [Az+(1=Nyll* = Allz| [+ 1= N)[[y[? =21 =Nz —y|]%, Y2,y € H, A € R.
(2.2) [l —ylI* = llz|[* = [lyl]* - 2(z — y,y), Va,y € H.

(2.3) [l +yl* < |zl + 2(y,z +y) Yo,y € H.

It is also known that for any = € H, there exists a unique element denoted by Pox
in C, such that

(2.4) lz = Pox|| < [|lz —yll, VyeC.

The mapping Pc is called the metric projection from H onto C. In addition, Po
has the following characteristics, (see, for example Goebel and Reich [12]):

ii) for x € H, and z* € C,
2.5) " =Pox, & (x—z" 2" —y) >0, Vy € C,
iii) for x € H and y € C,
2.6) |z — Pox|[? + ||y — Pex|* < [la —yl|*.

i) (x —y, Pox — Poy) > ||Pcx — Poy|?, Va,y € H;
1

(
(
(
(
(

To solve the generalized equilibrium problem, see [29], we have the following as-
sumptions:

Let f,g: K1 x K1 - R, B: K — Hj and ¢ : K1 — R satisfiying the following
conditions:

(Cl) f(xz,x) =0 for all z, € Ki;

(C2) f is monotone; that is f(x,y) + f(y,z) <0 for all z,y € Ky;
(C3) for all z,y,z € Ky, limsupf(tz+ (1 —t)x,y) < f(x,y);
t—0
(C4)

C4) for all x € Ky, f(x,.) is convex and lower semicotinuous.
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(C5) g is skew symmetric, i.e.,

9(z,x) = g(z,y) = 9(y,x) + 9(y,y) 2 0, Y,y € Ky
(C6) for all z € Ky, g(z,.) is convex;
(C7) g is continuous.
(C8) B is continuous monotone
(C9) 1 is convex and lower semicontinuous

The following Lemmas will be needed in the proof of the main results.

Lemma 2.1 ([1]). Let H be a real Hilbert space and K be a nonempty closed convex
subset of H. Let T € (—00,1) and S : K — H be T—demimetric mapping such that
F(S) #0. Then F(S) is closed and convez.

Lemma 2.2 ([29]). Let f,g: K x K — R satisfiy conditions (C1)-(C9). Let r >0
and x € H, then there exists z € K such that

fzy) + 9(zy) —g(z2) +(Bzy - 2)
b))+ ly - me - 2) 20, Wy € K,

Lemma 2.3. Assume that f,g : K x K — R satisfiy conditions (C1)-(C9). For
r >0 and x € H, define a mapping T,Sf’g’B) : H — K as follows:

95 (z) = { €K ¢ J(ay)+9ery) — g(z2) + (Bay - 2)

1
b U+ - s ) 20, Wy E K )
Then, the following hold:

(i) T9B) 4 single-valued,

(ii) Tr(f’g’B) s firmly nonexpansive, i.e., for x,y € H,

T 9:B) g — 9By )2 < <Tr(f,g,B)x e By y> ,
(iii) F(I/*") = GMEP(f.9,B),

(iv) GMEP(f,g,B) is closed and convez.

Lemma 2.4 ([39]). Let {a,} be a sequence of nonnegative real numbers, {b,} be a
sequence of real numbers and {0y} be sequence of real numbers in (0,1) such that
>0 | 0p = 00. Suppose that

an+1 < (1= 0n)an + dpby, Yn > 1.
If limsupb,, < 0 for every subsequence {ay,} of {an} satisfying liminf(ay,+1 —
—00

k—o0 k
an,) > 0. Then lim a, = 0.
n—oo
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3. MAIN RESULTS

In this section we propose an inertial algorithm with self-adaptive step size for
approximating minimum norm solutions of fixed point of demimetric mapping and
split generalized mixed equilibrium problems in real Hilbert spaces;

Assumption 3.1. (D1) Kj, K» are nonempty closed convex subsets of the real
Hilbert spaces Hy, Hj respectively;

(D2) f1,91 : K1 x K1 — R, fa,92 : Ko x K9 — R are equilibrium bifunctions
satisfying assumptions (C1) — (C9), A : Hi — Hj is a bounded linear
operator with adjoint A* : Ho — Hy and S : K1 — H; be 7—demimetric
mapping and I — S demiclosed at 0 such that Q = F(S)NT # (), where
I'= {.7;* S GMEP(fl,gl,Bl) Ax* e GMEP(fQ,gg,Bg)};

(D3) {an}, {Bn}, {7}, {6n} are sequences in (0,1) {u,} is a positive sequence
such that p, = o(d,), nllngoén =0,Y00 1 0n =400, Yn+0n < 1, an, Bn, T €

(a,1 — a) for some a € (0,1) and iI;fl(l — Yo — 0p) > 0.

Algorithm 3.2. Choose zg,z1 € H;. Giyen the iterates x,_1 and z, for every
n > 1,0 > 0, select 6,, such that 0 <6,, <6, and

- min{—t2—0 0}, if zn # Tn
_1 = H"'En_x’ﬂflll ’
(3.1) On { 0, Otherwise,

Wp = Ty + an(xn - xn—l)’

Yn = (1 - an)wn + anjnwna

Zn = (1 - ﬁn)wn + annyna

Tnt1 = (L —yp — On)wp + ynTInzn, Yn >0,

where J,, = Sy, (Tghgl’Bl)(I —n A*(I — TT(IQ’QQ’BZ))A)), T € [6,00), €> 0,85, =

(L=X)I+ XS, A\, € (0,1) such that 0 < b < A\, <c¢<1—7and for n, £ > 0, the
step size 7, is chosen as follows:

(3.2)

min{ U= 129252y 4z |2
IIA*(] T(f2 292> BQ))A
7, Otherwise.

(f2,92,B2)
(3.3) 0< &<, = |2,77} if T Azy # Az

Remark 3.3. We note from (D3) that lim “—: = 0. Therefore, from (3.1) in
Algorithm 3.2, for each n > 1 with z,, # xn 1 we obtain 6,, < m, so that

0 < lim 5—"|]:cn Tn-1|] < l1m ’g” = 0.

n—o0 n
Remark 3.4. The step size n, is well defined. To show this we proceed as follows:
Let z* € §, then as Az* = T,SI2’92’B2))A$*, we have

(2 — a*, A = TU292BDY Az ) = (0 — 2, AN(T — T292:52)) Az,).
But
(2" — 2, A*(I — T;,{Q’QQ’BQ))A%) = (A*(z* — zp), (I — TT§7{2792’BQ))A27Z>
= <A*(x* — )+ (I — TT(T{%g%Bz))AZ”’ (I— T;T{Q’QQ’BZ))AZTJ
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= I = T B Az )
= (5 (1da7 = TG Az 24 (1 = T Az~ 40® — A=)
I = T o)) Az |
<~ = T Az P
Therefore,
(B4) o= 0" AT = T Az <~ (0 = T B) Ay
Observe that from (3.4), we have
o — 2™ A"( = T{f292:52)) Az, |

v

(zp — ™, A*(I — T,SIQ’QQ’B2))Azn)
1
(3.5) > ST - TP Ay 2

It is clear that if T7~(,{2’92’BZ)AZH # Az, then ||Az, — T,ST{Q’gQ’BQ)Aan > 0. Therefore,
from (3.5), we get ||z, —x*|| ||A*(I—T£T{2’92’BQ))Azn|| > 0, which shows that ||A*(I —
Tr(j%g?’BQ))Aan # 0.

Remark 3.5. From the Definition of Sy, in Algorithm 3.2, it is easy to see that
x € F(S),) if and only if € F(S).

Lemma 3.6. Let S be as in (D2) of Assumption 3.1 and Sy, as in Algorithm 3.2.
Then for x € Ky, * € Q, we have
1S3,z = 2| < [l = 2*[* = Xa(1 = 7 = ) [l — S]*.
Proof. Let x € K1 and z* € ). Then
Sy, z —z*||*> = ||(1 =)z + XSz — 2*||?

= ||z — 2" + \(Sz — )2

= |z — 2| 4+ 2\ (z — 2*, Sz — x) + \2||Sz — x|
|z — 2*||* = 2\ (2 — 2%, 2 — Sz) + \2||Sz — z|?
lz — 2*||* — (1 = 7)Anlz — Sz||* + A2 Sz — 2|
|z — ¥ = Au(1 =7 = \p) ||z — Sz

IN

Remark 3.7. (1) Since 0 < A, <1 —7, It follows from Lemma 3.6 that
(3.6) 1S3,z = 2*|* < fla — 27|,

(2) Since by Lemma 2.3 Tffl’gl’Bl) is firmly nonexpansive and I — n, A*(I —

T7§7{2’92’B2))A is nonexpansive, see [20], then for z* € Q, it follows from (3.6)

Jn is quasi nonexpansive.

Lemma 3.8. Assume conditions (C1) — (C9) hold. Let {x,} be as in Algorithm
3.2 such that Assumption 3.1 holds. Then {x,} is bounded.
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Proof. Let x* € Q. By Remark 3.3, {g—z”:ﬂn — Tp—1]|} is bounded. Therefore there
exists M; > 0 such that g—ZHxn — Tp—1]| < M; for all n > 1. From (3.2), we have
lwp —2%[| = [z + Onlzn — 2p-1) — 27|

= |lzn — 2" + Op(zn — Tn1) ||

IN

Jon = + 8 (32 o = 2]
(3.7) < lop — 2| 4 60 M.

Furthermore, from (3.2) we have the following estimates;

[(1 = an)(wn — 27) + an(Tnwn — ¥)||
(1 — an)|Jwn — || + anl| Tnwn — 27|
(1 = an)ljwn — 27| + anllwn — 27|
(3.8) = ||w, —z*|.

Using (3.8), we have

[yn — 27|

VANV

[

H(l - ﬁn)(wn - l‘*) + 6n(u7nyn - x*)H
(1= B)llwn — 2| + Bl Tnyn — 27|
(1= B)llwn — 2% + Bullyn — =7||
(1= Bu)llwn — 2| + Bullwn — 2|
[[wn — 2*]|.

IN AN IA

(3.9)
Observe that
(1= — 6n)(wn —2%) + W (Tn2n — 1‘*)”2
= (1= = 0n)llwn — 2™ + 72| Tz — 2|
+2(1 = vy — Op)Ynlwy, — %, Tpzn — ™)

< (L= = 00) lwn — &*||* + |20 — 2|
+2(1 = yn — On)ymllwn — 2|20 — 27|
< (1= 60)? wn — 2|2
Thus,
(3.10) 11 = = 0n)(wn = %) + Y (Tnzn — )| < (1 = 0n)[Jwn — 27.

Therefore, from (3.2), (3.7), (3.9) and (3.10) we obtain

11 =n = bn)(wn = 27) + W (Tnzn — 27) = dn2”™||
11 = v = ) (wn — ) + Y (Tnzn — )| + 6p |||
(1= 0n)l[wn — 2| + 0n |27

(1= dn)[llzn — ™[ + 0 M] + bn |27

(1= dn)llzn — ™[ + 0n (M1 + [l2"[])

max{|[z, — 2", My + [|l27] }.

|

IANIAINCIA A

By induction, we have {z,} is bounded. Consequently, {w,}, {yn} and {z,} are all
bounded. O
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Lemma 3.9. Under the conditions (C'1) — (C9), let {x,} be a sequence generated
by Algorithm 3.2 satisfying Assumption 3.1. Then

* * 0 *
lzngr = 2"|* < (1= Gn)llan = % + bn | = [0 = 2na || M + 27|
n

— (1 = ) Bl wn — Tnwnll® = (1 = B2) Buynllwn — Tnynl?
- (1 —Yn — 5n)7nHwn - jnanZ - 77n’>’nHA*(I - Tr(,{Q’QQ’B2))Aan2-

Proof. Let z* € Q. Then Algorithm 3.2, using (2.1), Remark 3.7(2) and 3.8, we
have

lyn = 2*[? = (1 = an)(wn — 27) + an(Tnwy — 2*)|
= (1—an)lw, — x*|]2 + an || Tnwn — m*H2 — (1 — ap)anllw, — jnwn”2

(3.11) < |wn —2*)? = (1 — ) ||wn — Tnwn .
And

20 = 21> = (1 = Ba) (wp — %) + Bu(Tnyn — =)
(1 = Bn)llwn — x*HZ + Bl Tnyn — x*Hz — (1 = Bn)Bullwn — jnynH2
(1 = Bn)llwn — x*HQ + Bullyn — x*||2 — (1 = Bn)Bullwn — jnynHZ
(1= Bu)llwn — x*||2 + Bn(llwn — $*||2 — (1 = an)anlw, — jnwnH2)
— (1= By)Bnllwn — jnyn||2
[|wn — $*||2 — (1 — an)anfpllwn — jnwnHQ
(3.12) — (1= By)Bnllwn — jnynHZ-
Observe from, (3.4)

o = 2* = AS(T = T2 Az |2 = 2 — 2|2

FARAY = T 0B) Ay |2 — 0 (3 — a2, A°(1 — TH09) Az,
12 — 27> + mp | A* (1 = T/29252)) Az, ||
(1 = T B Az, 2

= lzn = 2*(* = ma (| (1 = T2 52) Az |* — || A*(I = T2 P2)) Az, 7).
Therefore,

|20 — % — mu AS(I = T29252) Az, |I? < ||z, — 2|

(3.13) — 0 (([(I = T29252)) Az | — || A*(T = T29252)) Az, |1?).
From the Definition of Step size 7, we have

| A* (I — T292:52) Az, |2 < (I — T />9252)) Az, ||? and
0 < |A*(I — T\292:B2)) Az, |12

IN A

A

Thus,

M| A*(L = T292520) Az |2 < ||(1 = T29252)) Az |P — || AM(1 = T2 52) Az, |2,
so that

Ml A* (I =T 29 52) Az |2 < (| (T =T2952) Az || = | A* (T =T 292 52) Az, |2).
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Hence, from (3.13) we obtain

20 = " = A™(I = TP PN) Az | < |2 - o7

(3.14) | A = T2 B2)) A |2
Also from the Definition of 7, in algorithm 3.1, (3.6) and (3.14), we have
| Tz — x*HQ = ||Sy, (T(ZI,QLBI)(Z” — A (I — T7§7{2’92’B2))A2n)) _ x*”Q
< |7 (19180 (2, — nu A*(T — Trg{Q’gQ’Bz))Azn) —a*|?
< llon = @ = A (1 = TE2059) Az
(3.15) < lzn =@t = | A*(L = TH29252) Az, |2,

Now from Algorithm 3.2, (2.1), (3.15) and (3.12)
|Znt1 — = H2 (1 =Y — 6n)wn + Tnzn — 2" ||2
= H(l —Yn = 0n)(Wn — %) + Y (Tnzn — ) — nx*HQ
= (1= —dn)llwn — m*HQ + Y| Tnzn — x*HQ
+ 0|21 = (1 = = 8n)ynllwn — Tnznll®
(1= = dn)llwn — &1 + 320 — 2|
— | A*(I = T2 9 52)) Az |7 + 6,272
= (1 =y — 0n)val|wn — jnZnH2

IN

< (=90 —6n)llwn — x*HQ + Ynllwn — x*HQ
— (1 = an)anBnynlwn — annHz
— (1 = Bn) Bnynllwn — jnyn||2
— M| AN = T292520) Az | + 6 ||
= (1= v = 6n)ynllwn — jnzn”2
Thus,
nss — 212 < (1= 6,)llwn — 27
— (1 = an)an B yn|lwn — jnwn”2
= (1 = Bn) Brynllwn — JnynHQ
— Y| AN (L = TJ29252) Az | + 6| 2|
(3.16) — (1 =9 = 0n)ymllwn — jnanz-
But,
[ ”2 |2 — 2" + On(2n — Tn— 1)H2
< (lzn — 2| + Onll2n — $n—1”)
= len = 2*|? + 2600llzn — 2|20 — 2o || + 02l — 20|
= |lzn — $*|’2 + Onl|zn — 21| (2llzn — 27| + Onllzn — 2p—1]])
(3.17) < lon — x*H2 + 0y ||y, — Tp—1|| Mo,
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for some My > 0. Putting (3.17) in (3.16), we get

. 0
|Znt1 —2 ”2 < (1= 0p)||7n — x*HQ + dn, (Tonn — Tp—1|| M2 + ||w*H2
n

- (1 - an)anﬁn’)/nHwn - jnwnHz - (1 - 571)671’)%”“% - jnyn”Q
— (1= = 8u)vallwn = Tnzall® = vl A*(1 = T29252) Az |2,
O

Lemma 3.10. Let {x,} be defined as in Algorithm 3.2 satisfying Assumption 3.1.
Then for z* € 1, we have

o
2n1 =27 < (1= 8)l|lzn — 2™||* + dn [f\lxn — Tn-1|| M
n

+ 2(z*, 2" — acn+1)]
Proof. Let x* € Q, then from (2.3), (3.9) and Remark 3.7(2), we have
lznsr =21 = (1 =70 = 6n) (wn = 2%) + Y0 (Tn2n — 2*) = Spz™||?

11— = 5) (w00 — 2) + 3Tz — )]
- 25n<$*7 Tn+1 — $*>

IN

2
< (1100 =0 = n)wn = 2V + Ia(Tnzn — 21
+ 20, (z", 2" — zpt1)
* * 2
< (== 8)llwn — "Il + vz — 2*1))
+ 20, (z", 2" — zpt1)
* * 2
< (=30 = &)l — "1l + yullen — 2*1))

+ 20, (z", 2" — zpt1)
(3.18) < (1= 6p)||wp — 2| + 200 (z*, 2% — Tpp1).
Combining (3.17) and (3.18) we obtain
On

st =2 < (1= d)llan — 2|2+ 6 5
n

|20 — Tp_1|[ M2

+2(z*, 2" — $n+1>:|
as required. O

Theorem 3.11. Let {x,} be defined as in Algorithm 3.2 satisfying Assumption 3.1.

Then {x,,} converges strongly to an element ¥’ € Q such that ||z’|| = {min||d|| : d €

Proof. Let z* € . Then by Lemma 2.4 and 3.10, it suffices to show that

lim sup(z*, 2* — xp41) < 0 for any subsequence {||zp, — «*||} of {||z, — 2*||} satis-
k—ro0

fying lim inf (||, +1 — 2| — ||zn, — 2*|) > 0.
k—o0
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Now, suppose {||zn, —z*||} is a subsequence of {||z,, — 2*||} satisfying

Then

lim inf (|1 — 7| — 7, — 2°[) = 0
k—o0

lim inf (|21 — 2|2 — [0, — 2°]1%)
k—o0

(3.19)

>

timind (2,1 = ) + ., =@ D(lzne = ) = llea, —2*]))
—00

0.

Therefore, from Lemma 3.9, (D3) and (3.19) we have

a4limsup\|wnk - jnkwnk||2 < liinsup(ﬂxnk - x*H2 - “mnk"!‘l - J5*||2)
—00

k—o0
. 0
o 1im sup{ b, | 7% |, = Tt [Ma + 072 =, — 2]}
k—o0 ng

= —tminf(fen, 1 — a2 = [z, —2[?) < 0.
k—o0

This implies

(3'20) klggouw’ﬂk - j”kwnkH =0.
Similarly, we have

(3'21) klggoﬂwnk - jnkynkH =0.
(3.22) khjgo”w”k — Ty, 2n || = 0.
(3.23) lim [|A*( = T/29259) Az, || = 0.

k—o0

From Algorithm 3.2, we get

Hxnk+1 - wnkH < ”jnkwnk - wnkH + 5nkHwnkH

Since lim d,, =0, it follows from (3.20) that
k—oo

(3.24)
Also,

(3.25)

lim Hwnk+1 - wnk” =0.
k—o0
On,
|wn,, — Tn, || = On,, (57”3311;6 — fcnk,1||) — 0 asn— oo.
Nk

Combining (3.24) and (3.25), we obtain

(3.26)

lim ||xnk+1 - ’:UnkH =0.
k—o00

Furtheremore, from Algorithm 3.2 and (3.21) we get

(3.27)

Hznk - ’U)nk” - /BnkHJnkynk - wnk” — 0 asn — oo.

Observe that

[0, = 2| < |20y = W] + [, — 20
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Using (3.25) and (3.27), we obtain
(3.28) lim ||zp, — 2n, || = 0.
k—oo
From (3.22) and (3.27), it follows that
(3‘29) Hznk - jnkznkH < Hznk - wnkH + ”wnk - jnkznkH — 0 asn — oo.

Let t,, = T,Efi’gl’Bl)(znk — M, A1 — T,H(ZE’QQ’BQ))AZM). Then by Lemma 3.6, we
have

Wi =2 = 8, (TG0, g A1 = 9289 12,)) =
S ”TT(T{.;’gl’Bl)(ZTLk - nnkA*(I - TT(T{:’Q%BQ))Aan) _ I*HQ
(U= 7= Ay, — St |
< ”an -z - nnkA*(I — Tﬁfi’g%BZ))AznkHQ

- )\nk(]‘ - T )\nk)thk - StnkH2'
From (3.14), we obtain
Hjnkznk - x*HQ < Hznk - x*Hz - nnkHA*(I - T£5i7g2732))142nk”2

- )\nk(l - T )\nk)thk - StnkHZ

< ”an - :L‘*H2 - Ank(]‘ -7 Ank)thk - StnkH2‘
Hence,
(3‘30) /\nk(l - T )\nk)thlc - Stnk”2 < ||an - x*HQ - Hjnkznk - x*HQ
Now using (2.2)
Iz = T 2|1 = (20, = %) = (T2, — )P

= ”an - x*HQ - Hjnkznk - x*HQ - 2<an - jnkznk7‘7nkznk - x*>7

so that
20y, — &*I1” = | T 2y, — 212
= Hznk _jnkznk‘|2+2<znk = Iy Zng s Tng Zny, —z")
< Hznk - jnlcznkHQ + 2||znk - jnkznkH”jnkznk - .’E*”
(3‘31) < Hznk _jnkznk‘|2+2||znk —jnkznkH”an _‘T*H

Since {zp, } is bounded, it follows from (3.29) and (3.31) that
(3.32) tim ([, — 2|~ T 20, — %) = 0.
Combining (3.30) and (3.32), we obtain

(3.33) kh_}m(r>10||tn,C — Sty || = 0.

Bl) I _ T(f27927B2)

Since T,q;’gl’ is firmly nonexpansive and I — n,, A*( g )A is nonex-

pansive, then we have the following estimate;

It =2 = TP ey = A*(F = TP Az, ) = TP |
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< (tny — 7%, 20y — M AN = T 292P)) Az, — %)
= Mo = 12 o, = A" = T0P0) A —
Nt = 2o, = T AL = TL292:52)) Az, | 2]
e T o (O
TR AT — TP Az, |2
o 2o (g = 2 AL = TP92B)) Az )
e R T o L I

o 2|2, = b 1AL = T2 20 Az, .

This implies

thk - '7:*”2 < Hznk - x*HZ - thk - anH2

(3.34) + 20y 120y, =ty [[|A*(I = T2952) Az, ||.
On the other hand, using Lemma 3.6 and (3.34) we have
1 Tozn = 21 = 1S, (tn) — 2"

< |tnk - ‘T*H2 - )\nk(]‘ - T /\nk)”tnk - StnkH2
e
< lzng = 27 = ltny, = 20,12

+ 20 l|2n,, =ty | A*(L = TH29252) Az, |.

Therefore,

o e Bl VA
(3.35) + 200 |20, =ty | A*(1 = T29259) Az, ||.
Using (3.35), it follows from the boundedness of {z,, }, (3.23) and (3.32) that
(3.36) kILH;oHt"’“ — zn, || = 0.

From (3.28) and (3.36), we have
(3'37> Hxnk - tnkH < Hxnk - Z'nkH + Hznk - tnkH —+0asn — oo.
From (3.5), we have
(7 = T292520) Az |* < 2|2n, — ¥ [[| A*(1 = TS29252)) Az, |].
Using (3.23) and the boundedness of {z,, }, we obtain
(3.38) lim (I — /29282 Az, || = 0.
k—o0 "k

Since {xy,} is bounded, let {z,, } be a subsequence of {z,,} such that x,, — 2’ asn —
oo for some 2’ € Hy. Since K is closed and convex, we have 2’ € Kj.
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We now show that 2’ € Q. Observe from (3.28) and (3.37), we have z,, — 2’ asn —
oo and t,, — 2’ as n — co. Using (3.33) the assumption that I — S is demiclosed
at 0, we get 2’ € F(S). From t,, = T}T{;’gl’Bl)(I — M A (L — T,Sfi’gQ’Bz))A)znk, we
obtain

1
fl(tnk)y)+gl(tnk7y)+Ti<y_tnk7t an> <B1tnk7y_tnk>_gl(tnk7tnk)

nk
1 .
+ —(y — by M AN (I — Tg}i’gQ’BQ))Aznk> + Y1(y) — Yi1(tn,) >0, Vy € K.
n
Using condition (C2) of Assumption 3.1, we have
1 1
7<y - tnkvtnk - an> + r<y - tnk)nnkA*(I - Té{i’g2732))Aan>

Tn

k Nk
(3.39) + (Bitny, tn, —Y), Yy € K.

From (C4), (C7, (C8)), (3.23), (3.36) and allowing k — oo in (3.39) we obtain
fl(yvm/) - gl($/7y) + g1($/,aj‘/) + <le/7xl - y> + ¢1($/) - ¢1(3/) S 0 Vy € Kl:
so that
fily, o) + (Bia', 2" —y) + 1(2) = ¥u(y) < g1(2',y) — g1(a’,2") Yy € K.
Let ¢t € (0,1]. For each y € K1, let ys = ty + (1 — t)z’. Then, y; € K; and so
(340)  filye, o) + (B’ 2" —yo) + 1 (') — i) < g1(2',ye) — g1 (2, 2').
Therefore using condition (C'1), (C6) and (3.40) have
0 Fi(ys, ye) + (B’ ye — ye) + 1 (ve) — Y1 (ye)
< tfilysy) +(Biz',y —yi) + @01( ) — ¥1(yt)]
+ (1= )[filye o) + (Bra', 2" — ) + 1 (a) — 1 (we)]
tlf1(ye,y) + (Brx’,y — ye) + 1(y) — ¥1(we)]
+ (1 =g (@' ye) — g1 (a’, )]
tLf1(ye, y) + (B’ y — ye) + 1(y) — ¥1(ys)]
+ (1 =ttlgi(2,y) — g1 (2, 2)].
The fact that ¢ > 0, we obtain
A y) + 91(2' y) — g1 (2’ 2")(Bia',y — 2') + 1 (y) — (') > 0, Yy € K,
which implies ' € GM EP(f1, g1, B1).

We now show Az’ € GMEP(f2,g2,B2). Since z,, — z’ as k — oo and A is
bounded linear operator, then Az, — Az’ as k — oo. Hence it follows from

(3.38) that Tf{i’gQ’Bz)znk — Az’ as k — oo. Notice that from the Definition of
T(f2:92,82)

T"k

IN

IN

Zn,, we have

fo(T, f2792,Bz)A v) + gQ(T(f27927B2)AZ v) — QZ(T;T{?QQ’BQ)AZW’T}Iﬁ’g%BQ)Aan)

Tng, Ty,

+ 1o (v) — ho(TH292:B2) Az, ) 4 L<v - T(f2’92’32)Aznk,Té{z’QQ’BQ)Aznk — Azp,)

Tny, Ty Tny,
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+ (Bo(T 2925 Az, ) 0 = T292P) Az, ) > 0, Yo € Ko,

Thus, we have from (C7) — (C9), (3.38) and upper semicontinuity of f5 in the first
argument that

fo(Az' v) + g2(Aa’, v) — go(Aa’, Aa') + 1o (v) — tha(A2')
+ (By(Ax'),v — Ax") >0, Yv € Ko,

showing that Az’ € GM EP(fs, g2, B2). Therefore, 2/ € F(S)NT = Q. Next we

show lim sup(z/, 2’ — 2y, +1) < 0. Since ||2'|| < [|z*||, Vz* € €, then 2* = Py0. Now
k—o0
without loss of generality, for any 2* € 2, there exists a subsequece {2y, } of {zn, }

such that zp, — x* as ¢ — co. Hence using (2.5), we have

(3.41) limsup(z’, 2’ — z,, ) = lim (z/, 2’ — z,,, ) = (@', 2’ — 2*) <0.
k—o0 q—0 ¢

Combining (3.26) and (3.41), we get

limsup(z', 2’ — zp,+1) < limsup(z’ 2’ — z,,)
k—o00 k—o0

(3.42) + limsup(z’, zn, — @, +1) < 0.

k—o0

Now from Lemma 3.10, we have

Hxnk+1 - ZLJHQ < (1 - 67%)”ka - x,HQ

0
(3.43) 4 G, [(gnxnk — @1 | Mz + 2(z, 2 — xnw)] .
ny
Since lim g"—’“Hxnk — Zp,—1|| = 0, it follows from (3.42) that
k—00 "k
. 6
hzn_}sup((sﬂHxn,c — Ty—1||Ma + 2(2' 2’ — xnk+1>) <0.
00 ng

Therefore, by (3.43) and Lemma 2.4, we have li_>m |z, —2'|| =0, ie. z, — 2’ €T.
n—,oo

This completes the proof. O
By Remark 1.1, we have the following Corollary:

Corollary 3.12. Let S : K1 — Hy be 7—demicontractive Mapping. Let the As-
sumptions 3.1 hold and the sequence {x,} be as in Algorithm 3.2. Then {x,}
converges strongly to an element 2’ € Q such that ||2'|| = {min ||d|| : d € Q}.

If 91, ¥o = 0 and B;, Bz = 0, then the split generalized mixed equilibrium
problem, SGM EP (1.10) reduces to the following generalized equilibrium problem:

fi(zy) +g1(2,9) —g1(2,2) >0V y € K4
and v/ = Az € K> solves
(3.44) fo(v',0) + g2 (v, v) — ga(v,0") > 0V v € Ko.

HenceI' = {z € GEP(f1,91) : Az € GEP(f2,92)}. Alsoif S = I, identity mapping,
then Sy, = I. Therefore algorithm 3.1 reduces to the following:



SPLIT GENERALIZED MIXED EQUILIBRIUM AND FIXED POINT PROBLEMS 427

Algorithm 3.13. Choose zg,x1 € Hi. Given the iterates x,_1 and x, for every
n>1,0 > 0, select 6,, such that 0 < 6,, <46, and
0, = { min{ a0t i o # en

(3.45) 0, Otherwise,

Wy = Ty + en(xn - xn—1)7
Yn = (1 - an)wn + anjnwrm
3.46
( ) Zn = (1 - ﬁn)wn + /annyna
Tn+1 = (1 — Yn — 5n)wn + 'Ynjnznv Vn > 0,

where J,, = (fl’gl)(l — npA*(I — T}{Q’”))A), ™ € [€,00), € > 0. for n, £ >0, the
step size 7, is chosen as follows:

(fz,gz) 2
[Ty )Azn|| (f2,92)
n{ A= T 6o 92> Hz,n} if Tr Azn #* Az,

7, Otherwise.

(347) 0<&<m, =

Using Algorithm 3.13, Theorem 3.11 reduces to the following corollary:

Corollary 3.14. Let {z,} be defined as in Algorithm 3.13 satisfying Assumptions
3.1. Then {x,} converges strongly to an element ' € I" such that ||z'|| = {min ||d|| :
deTl}.
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