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on its dual space E∗ are both uniformly continuous on bounded sets, and
J∗ = J−1.

In the sequel, the following definitions and results are needed. Let E be a smooth
real Banach space with dual space E∗. The function ϕ : E × E → R is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2 ∀ x, y ∈ E,(1.1)

where J is the normalized duality mapping from E into E∗. It was introduced
by Alber and has been studied by Alber [3], Chidume et al. [17], Chidume [18],
Chidume and Ezea [19], Chidume et al. [22], Chidume and Idu [23], and numerous
authors.

If E = H, a real Hilbert space, equation (1.1) reduces to

ϕ(x, y) = ∥x− y∥2, ∀x, y ∈ H.

Consequently, it is clear from the definition of ϕ that

(1.2) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2, ∀x, y ∈ E.

Define a map V : E × E∗ → R by V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩ + ∥x∗∥2. Then, it is
easy to see that

(1.3) V (x, x∗) = ϕ(x, J−1(x∗)), ∀ x ∈ E, x∗ ∈ E∗.

Let C be a nonempty, closed, and convex subset of a smooth, strictly convex,
and reflexive real Banach space E. The generalized projection map introduced by
Alber [3] is a map ΠC : E → C such that for any x ∈ E, there corresponds a unique
element x0 := ΠC(x) ∈ C written as ϕ(x0, x) = miny∈C ϕ(y, x). If E = H is a real
Hilbert space, we remark that the generalized projection map ΠC coincides with
the metric projection map from H onto C.

Definition 1.1. Let C be a nonempty, closed, and convex subset of E, and let
T : C → E be a map. A point x∗ ∈ C is called a fixed point of T if T (x∗) = x∗.
The set of fixed points of T is denoted by F (T ). A point p ∈ C is said to be an
asymptotic fixed point of T if C contains a sequence {xn}∞n=1 that converges weakly
to p and limn→∞ ∥Txn−xn∥ = 0. The set of asymptotic fixed points of T is denoted

by F̂ (T ).

Definition 1.2. A map T : C → E is said to be relatively nonexpansive if the
following conditions hold (see, for example, Butnariu et al. [9], Matsushita and
Takahashi ( [45], [46]), Reich [49], and Yekini [53,54]):

(1) F (T ) ̸= ∅,
(2) ϕ(p, Tx) ≤ ϕ(p, x), ∀ x ∈ C and p ∈ F (T ),

(3) F̂ (T ) = F (T ).

Let E be a smooth real Banach space. The Lyapunov functional is defined as
follows:

(1.4) ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀ x, y ∈ E.

Clearly, we have from the definition of ϕ that

(i) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2,



NEW RECURSION FORMULAS FOR AVI AND FP PROBLEMS 395

(ii) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩,
(iii) ϕ(x, y) = ⟨x, Jx− Jy⟩+ ⟨y − x, Jy⟩ ≤ ∥x∥∥Jx− Jy∥+ ∥y − x∥∥y∥.

Remark 1.3. From Remark 2.1 in Matsushita and Takahashi [46], if E is a strictly
convex smooth Banach space, then we have that ϕ(x, y) = 0 if and only if x = y,
for any x, y ∈ E.

Variational inequality problem (V IP ) is a problem of finding a point u ∈ C such
that

(1.5) ⟨v − u,Au⟩ ≥ 0, ∀ v ∈ C,

where A : C → E∗ is a single-valued map. The set of solutions of the VIP is denoted
by V I(C,A). Lions and Stampacchia [40] in 1967 first studied VIP. Owing to its
numerous applications in operations research, engineering design, and economic
equilibrium, it has been widely studied. To solve a constrained VIP, the projection
method can play a crucial role. Moreover, the simplest method is the gradient
projection in which one projects onto the feasible set C at each iteration. However,
this method employs the fact that map A is inverse strongly monotone, which is
a restrictive assumption. Korpelecich [38] in 1976 introduced the extragradient
method for solving the saddle point problem with the following recursion formula:

(1.6)


x0 ∈ C,

yn = PC(xn − λA(xn)),

xn+1 = PC(xn − λA(yn)).

This method performs two projections onto the feasible subset C of a Banach space.
Assuming V I(C,A) ̸= ∅, the author demonstrated that the sequences generated by
recursion formula (1.6) converge to some point v ∈ V I(C,A). Various authors have
investigated the extragradient method (see, for example, Ceng et al. [10], Censor et
al. [12], Censor et al. [13], Fang et al. [26], Kraikaew and Saejung [39], Nedzehkina
and Takahashi [47], Tufa and Zegeye [52], and the references therein). To obtain a
common element of the set of fixed points and solutions of the V IP in Hilbert or
Banach spaces, numerous authors proposed and studied several iterative recursion
formulas (see, for example, Buong [8], Ceng et al. [10], Chen et al. [16], Chidume and
Ezea [19], Chidume et al. [20], Iiduka and Takahashi [30], Kraikaew and Saejung [39],
Nedzehkina and Takahashi [47], Takahashi and Toyoda [51], Tufa and Zegeye [52],
and the references therein).

The ideas of studying a common solution problem arise from its applications to
mathematical models whose constraints can be represented as V IP and/or fixed
point problems. In particular, this occurs in some practical problems, such as
signal processing, network resource allocation, and image recovery (see, for example,
Censor, Gilbali and Reich [11], Iiduka [26, 27], and Iiduka and Yamada [28, 29]).
Maing [43] proposed a hybrid-type method for finding an element of F (T )∩V I(C,A)
in a 2-uniformly convex and uniformly smooth Banach space, where T : C → C is
a relatively nonexpansive map and A : C → E∗ is an α-inverse strongly monotone
map satisfying the following condition:

(1.7) ∥Ay∥ ≤ ∥Ay −Au∥, ∀ y ∈ C and u ∈ V I(C,A).
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If A is an α-inverse strongly monotone, we remark that it is monotone and 1
α -

Lipschitz. The following problems naturally arise:

(P1) How to relax the inverse strongly monotonicity of A to monotonicity and
Lipschitz?

(P2) How can we drop condition (1.7)?

Nakajo [48] recently proposed the hybrid gradient projection method using the
following recursion formula:
(1.8)

x0 = x ∈ E,

yn = ΠCJ
−1(Jxn − λnA(xn)),

zn = Tyn,

Cn = {u ∈ C : ϕ(u, xn) ≤ ϕ(u, xn)− ϕ(yn, xn)− 2λn⟨yn − u,Axn −Ayn⟩},
Qn = {u ∈ C : ⟨xn − u, Jx− Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx,

where E is a 2-uniformly convex and uniformly smooth Banach space with the
2-uniform convexity constant c1, T : C → C is a relatively nonexpansive map,
A : C → E∗ is a monotone and Lipschitz map, and 0 < infn∈N λn ≤ supn∈N λn < c1

2L .
The author proved that the sequence {xn} generated by recursion formula (1.8)
converges strongly to ΠV I(C,A)∩F (T )x. In recursion formula (1.8), condition (1.7)
imposed by Liu [41] was removed and the inverse strong monotonicity of A was
successfully weakened to monotonicity and Lipschitz. Thus, the study conducted
by Nakajo [48] is of great significance. However, the set Cn in Nakajo’s recursion
formula appears to be difficult to compute.

Therefore, to solve problems (P1) and (P2), a new iterative algorithm that differs
from recursion formula (1.8) was constructed by applying the idea of Nedezhkina and
Takahashi [47]. By combining the hybrid and extragradient methods, Nedezhkina
and Takahashi [47] constructed the following recursion formula:

(1.9)



x0 = x ∈ C,

yn = PC(xn − λnA(xn)),

zn = αnxn + (1− αn)TPC(xn − λnAyn),

Cn = {v ∈ C : ||zn − v|| ≤ ||xn − v||},
Qn = {v ∈ C : ⟨xn − v, x0 − xn⟩ ≥ 0},
xn+1 = PCn∩Qnx0.

In fact, the following theorem was proved by the authors.

Theorem (Nedzhkina and Takahashi [47]). Let C be a nonempty, closed, and con-
vex subset of a Hilbert space H. Let A be a monotone and k-Lipschitz map of C into
H and T be a nonexpansive map of C into itself such that F (T ) ∩ V I(C,A) ̸= 0.
Let {xn}, {yn}, and {zn} be sequences generated by recursion formula (1.9). If
{λn} ⊂ [a, b] for some a, b ∈ (o, 1k ) and αn ∈ [0, c] for some c ∈ [0, 1), the sequences
{xn}, {yn}, and {zn} converge strongly to PF (T )∩V I(C,A)x.
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We remark that map A in recursion formula (1.9) is only monotone and Lips-
chitz as well as does not require condition (1.7). Furthermore, the form of Cn in
recursion formula (1.9) is simple compared to that of recursion formula (1.8), but
the convergence result of recursion formula (1.9) is only in Hilbert spaces.

Thus, the following problem arises.

(P3) How can one employ recursion formula (1.9) in more general Banach spaces?

To solve these problems ((P1), (P2), and (P3)), the following recursion formula
was studied by Liu and Kong [42]:

(1.10)



x0 = x ∈ C,

yn = ΠCJ
−1(Jxn − λnA(xn)),

tn = ΠCJ
−1(Jxn − λnA(yn)),

zn = J−1(αnJxn + (1− αn)JTtn),

Cn = {v ∈ C : ϕ(z, zn) ≤ ϕ(z, xn)},
Qn = {z ∈ C : ⟨xn − z, Jx0 − Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx0.

Moreover, the authors proved the following theorem.

Theorem (Liu and Kong [42]). Let C be a nonempty, closed, and convex subset
of 2-uniformly convex and uniformly smooth Banach space E with the 2-uniform
convexity constant c1. Let A be a monotone and k-Lipschitz map of C into E, and let
T be a relatively nonexpansive map of C into itself such that F (T )∩ V I(C,A) ̸= ∅.
Let {xn}∞n=1, {yn}∞n=1, and {zn}∞n=1 be sequences generated by recursion formula
(1.10). Then, {xn}∞n=1, {yn}∞n=1, and {zn}∞n=1 converge strongly to ΠF (T )∩V I(C,A)x1

Recursion formula (1.10) of Liu and Kong improves that of Nedzhkina and Taka-
hashi (1.9) and solves problems (P1), (P2), and (P3). We remark that these afore-
mentioned recursion formulas involve two sets, Cn and Qn, as well as a relative
nonexpansive map.

A convex feasibility problem is a problem of finding a point in the intersection of
nonempty, closed, and convex sets. Numerous real-life problems can be modeled into
these types of problems, such as radiation therapy treatment, image reconstruction,
and image restoration (Censor [14]). The new recursion formula introduced in one
of our theorems (Theorem 4.1) for a countable family of mappings is called block
interative algorithm, and the block iterative algorithm is used in solving convex
feasibility problems. See, for example, Aharoni and Censor [1], Aleyner and Reich
[4], Bruck [7], Chidume et al. [15], Maingé [44], and Suzuki [50].

We ask the following question.

(P4) Can one obtain new recursion formulas, which involve only one set, Cn,
in arbitrary Banach space that improve recursion formula (1.10) and solve
fixed point and variational inequality problems? Moreoevr, the fixed point
problem is also a convex feasibility problem involving a countable family of
mappings.

Motivated and inspired by these studies, this study introduces recursion formulas
that significantly improve (1.8), (1.9), and (1.10). Additionally, we solve problem
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(P4) and prove a strong convergence theorem for a common element for variational
inequality and fixed point of a relatively nonexpansive map in a 2-uniformly con-
vex and uniformly smooth real Banach space. Moreover, we extend our theorem
to a countable family of relatively nonexpansive maps that solves fixed point and
variational inequality problems. The fixed point problem is also a convex feasibility
problem. Furthermore, we apply our theorem to approximate a zero of α-inverse
strongly monotone map, solution of complementarity problem, and minimizer of a
continuously Fr辿 chet differentiable convex functional.

Remark 1.4. We compare our theorems with some recent results.

(1) Recursion formula (3.1) studied in Theorem 3.1 is much simpler than recur-
sion formulas (1.8), (1.9), and (1.10) studied in the theorems of Nakajo [48],
Nedzhkina and Takahashi [47], and Liu and Kong [42], respectively. Re-
cursion formula (3.1) requires fewer calculations. Moreover, at each stage
of the iteration process, the recursion formulas examined by Nakajo [48],
Nedzhkina and Takahashi [47], and Liu and Kong [42] compute two subsets
of C, Cn and Qn, and their intersection, Cn ∩ Qn, as well as project the
initial vector onto this intersection. The subset Qn has been dispensed with
in our iteration process. Furthermore, recursion formulas (1.9) and (1.10)
have 2 iteration parameters λn and αn that are to be computed at each step
of the iteration process. The iteration parameters in recursion formula (3.1)

of Theorem 3.1 are two fixed arbitrary constants λ ∈
(
0, c1k

)
and α ∈ [0, 1)

that are to be computed once and then used at each step of the iteration
process. Consequently, these make recursion formula (3.1) more efficient,
cost-effective, and applicable than recursion formulas (1.9) and (1.10).

(2) Theorem 4.1 is an extension of Theorem 3.1 from the case where T is a sin-
gle relatively nonexpansive map to that of a countable family of relatively
nonexpansive maps. Moreover, it solves fixed point and variational inequal-
ity problems. The fixed point problem is also a convex feasibility problem.
Consequently, Theorem 4.1 further extends the Theorems of Nakajo [48],
Nedzhkina and Takahashi, [47], and Liu and Kong [42] to countable families
of relatively nonexpansive maps.

2. Preliminarie

Definition 2.1. Let E be a real Banach space with dual space E∗. A map T :
E → E is said to be Lipschitz if for each x, y ∈ E, there exists L ≥ 0 such that
∥Tx− Ty∥ ≤ L∥x− y∥.

The modulus of convexity of a space E is the function δE : (0, 2] → [0, 1] defined
by

δE(ϵ) := inf
{
1−

∥∥∥x+ y

2

∥∥∥ : ∥x∥ = ∥y∥ = 1; ϵ = ∥x− y∥
}
.

The space E is uniformly convex if δE(ϵ) > 0, for every ϵ ∈ (0, 2]. If there exist a
constant c > 0 and real number p > 1 such that δE(ϵ) ≥ cϵp, then E is said to
be p-uniformly convex. Typical examples of such spaces are Lp, ℓp , and Sobolev
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spaces, Wm
p , for 1 < p < ∞, where

Lp (or lp) or Wm
p is

{
p− uniformly convex, if 2 ≤ p < ∞,
2− uniformly convex, if 1 < p ≤ 2.

Let S := {z ∈ E : ∥z∥ = 1}. A space E is said to have a Gâteaux differentiable
norm if

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists, for all x, y ∈ S and is said to have a uniformly Gâteaux differentiable norm
if for each y ∈ S, limit (2.1) exists and is attained uniformly, for x ∈ S. The space
E is said to have a Fréchet differentiable norm if, for each x ∈ S, limit (2.1) exists
and is attained uniformly for y ∈ S.

Definition 2.2. Let E be a real normed space of dimension ≥ 2. The modulus of
smoothness of E, ρE : [0,∞) → [0,∞), is defined by

ρE(τ) := sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ = 1, ∥y∥ = τ, τ > 0

}
.

The space E is called smooth if ρE(τ) > 0 ∀τ > 0, and is called uniformly smooth if

limt→0+
ρE(t)

t = 0.

In the sequel, we need the following lemmas.

Lemma 2.3 (Liu [41]). Let E be a uniformly convex and smooth Banach space,
and let {un} and {vn} be sequences in E. If ϕ(un, vn) −→ 0 as n → ∞ and either
{un} or {vn} is bounded, then un − vn −→ 0 as n → ∞.

Lemma 2.4 (Alber [3]). Let C be a nonempty, closed, and convex subset of a
smooth, strictly convex, and reflexive real Banach space E. Then,

ϕ(y,ΠC(x)) + ϕ(ΠC(x), x) ≤ ϕ(y, x) for all x ∈ E, y ∈ C.

Lemma 2.5 (Alber [2]). Let E be a reflexive, strictly, convex, and smooth Banach
space with E∗ as its dual. Then,

(2.2) V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.6 (Alber [2]). Let C be a nonempty, closed, and convex subset of a
smooth real Banach space E write x ∈ E and x0 ∈ C. Then, x0 := ΠCx if and only
if

⟨y − x0, Jx0 − Jx⟩ ≥ 0, for all y ∈ C.

Lemma 2.7 (Zegeye and Shahzad [55]). Let C be a nonempty, closed, and convex
subset of a real reflexive, strictly convex, and smooth Banach space E. If A : C → E∗

is a continuous monotone map, then V I(C,A) is closed and convex.

Lemma 2.8 (Nilsrakoo and Saejung [37]). Let C be a nonempty, closed, and convex
subset of a uniformly convex and uniformly smooth real Banach space E, and let
{Ti : C → E}∞i=1 be a sequence of map such that ∩∞

i=1F (Ti) ̸= ∅ and ϕ(p, Tix) ≤
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ϕ(p, x) ∀ x ∈ C and p ∈ ∩∞
i=1F (Ti), i ∈ N. Suppose that {βi}∞i=1 is a sequence in

(0, 1) such that
∑∞

i=1 βi = 1 and T : C → E is defined by

Tx = J−1
( ∞∑

i=1

βiJTix)
)

for each x ∈ C,

let {xn} be a bounded sequence in C. Then,

(a) xn − Txn → 0,
(b) xn − Tixn → 0 for each i ∈ N,
(c) F (T ) = ∩∞

i=1F (Ti).

Remark 2.9. We remark that (c) is both fixed point and convex feasibility problems
(see Matsushita and Takahashi [46]).

3. Main Results

Theorem 3.1. Let E be a uniformly smooth and 2-uniformly convex real Banach
space with dual E∗. Let C be a nonempty, closed, and convex subset of E with 2-
uniform convexity constant c1. Let A : C −→ E∗ be a monotone and k-Lipschitz
map, and let T : C −→ C be a relatively nonexpansive map. Assume that W :=
F (T ) ∩ V I(C,A) ̸= ∅, for arbitrary x1 ∈ C, let the sequence {xn}∞n=1 be iteratively
defined by the following recursion formula:

x1 ∈ C := C1,
yn = ΠCJ

−1(Jxn − λAxn),
tn = ΠCJ

−1(Jxn − λAyn),
zn = J−1(αJxn + (1− α)JTtn),
Cn+1 = {v ∈ Cn : ϕ(v, zn) ≤ ϕ(v, xn)},
xn+1 = ΠCn+1x1, ∀ n ≥ 1,

(3.1)

where ΠC denotes the generalized projection of E onto C, J : E → E∗ is the nor-
malized duality map, λ ∈ (0, c1k ), α ∈ [0, c) ⊂ [0, 1), and k is the Lipschitz constant
of A. Then, the sequences {xn}∞n=1, {zn}∞n=1, and {tn}∞n=1 converge strongly to some
x∗ ∈ W .

Proof. The proof is divided into 5 steps.

Step 1: ΠCn+1 is well defined.
It is sufficient to show that Cn+1 is closed and convex, for all n ≥ 1. The proof
follows by induction since C1 := C is closed and convex. Suppose Cn is closed and
convex for some n ≥ 1. Hence, ϕ(z, zn) ≤ ϕ(z, xn) if and only if ⟨z, Jxn − Jzn⟩ −
∥xn∥2 + ∥zn∥2 ≤ 0, so

Cn+1 = {z ∈ Cn : f(z) ≤ 0}
is closed and convex, where f(z) := ⟨z, Jxn − Jyn⟩ − ∥xn∥2 + ∥yn∥2. Therefore,
ΠCn+1 is well defined.

Step 2: {ϕ(xn+1, xn)}∞n=1 converges to 0.
Let v ∈ Cn for all n ≥ 1. By applying xn = ΠCnx1 and Lemma 2.4, we obtain that

ϕ(xn, x1) = ϕ(ΠCnx1, x1) ≤ ϕ(v, x1),
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which yields that {ϕ(xn, x1)}∞n=1 is bounded. The utilization of inequality (1.2)
gives that the sequence {xn}∞n=1 is also bounded. Moreover, for each n ∈ N, xn =
ΠCnx1 and xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn; thus, Lemma 2.4 gives

(3.2) ϕ(xn, x1) ≤ ϕ(xn+1, xn) + ϕ(xn, x1) ≤ ϕ(xn+1, x1).

Hence, ϕ(xn+1, xn) −→ 0 as n −→ 0. By applying Lemma 2.3, we have that

(3.3) lim
n→∞

∥xn+1 − xn∥ = 0.

Step 3: W ⊂ Cn, for each n ∈ N.
This proof is by induction. Obviously, W ⊂ C1 = C. Suppose that W ⊂ Cn for
some n ≥ 1, let u ∈ W be arbitrary. By utilizing Lemmas 2.4 and 2.5, monotonicity
of A, u ∈ V I(C,A), and tn = ΠCJ

−1(Jxn − λAyn), we obtain that

ϕ(u, tn) ≤ ϕ(u, J−1(Jxn − λAyn))− ϕ(tn, J
−1(Jxn − λAyn))

= ϕ(u, xn) + ϕ(xn, J
−1(Jxn − λAyn)) + 2⟨u− xn, Jxn − (Jxn − λAyn)⟩

−ϕ(tn, xn)− ϕ(xn, J
−1(Jxn − λAyn))− 2⟨tn − xn, λAyn⟩

= ϕ(u, xn) + 2⟨u− xn, λAyn⟩ − ϕ(tn, xn)− 2⟨tn − xn, λAyn⟩
= ϕ(u, xn) + 2λ⟨u− tn, Ayn⟩ − ϕ(tn, xn)

= ϕ(u, xn)− ϕ(tn, xn) + 2λ⟨u− yn, Ayn −Au⟩+ 2λ⟨u− yn, Au⟩
+2λ⟨yn − tn, Ayn⟩

≤ ϕ(u, xn)− ϕ(tn, xn)− 2λ⟨yn − u,Ayn −Au⟩+ 2λ⟨yn − tn, Ayn⟩
≤ ϕ(u, xn)− ϕ(tn, xn) + 2λ⟨yn − tn, Ayn⟩
= ϕ(u, xn)− ϕ(tn, yn)− ϕ(yn, xn)− 2⟨tn − yn, Jyn − Jxn⟩

+2λ⟨yn − tn, Ayn⟩
= ϕ(u, xn)− ϕ(tn, yn)− ϕ(yn, xn) + 2⟨tn − yn, Jxn − Jyn − λAyn⟩.(3.4)

Additionally, since yn = ΠCJ
−1(Jxn−λAxn), we have by applying Lemma 2.6 that

(3.5) ⟨tn − yn, Jxn − λAxn − Jyn⟩ ≤ 0.

The application of the fact that A is Lipschitz, Lemma 2.6, equation (3.5), and
Cauchy–Schwartz inequality gives

2⟨tn − yn, Jxn − λAyn − Jyn⟩ = 2⟨tn − yn, Jxn − λAxn − Jyn⟩
+2λ⟨tn − yn, Axn −Ayn⟩

≤ 2λ⟨tn − yn, Axn −Ayn⟩
≤ 2λk||tn − yn||||xn − yn||
≤ λk(||tn − yn||2 + ||xn − yn||2)

≤ λk(
ϕ(tn, yn)

c1
+

ϕ(yn, xn)

c1
)

=
λk

c1
(ϕ(tn, yn) + ϕ(yn, xn)).

≤ ϕ(tn, yn) + ϕ(yn, xn).(3.6)
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The combination of inequalities (3.4) and (3.6) gives

(3.7) ϕ(u, tn) ≤ ϕ(u, xn).

In addition, since zn = J−1(αJxn + (1 − α)JTtn) and u ∈ F (T ), we have from
inequality (3.7) that

ϕ(u, zn) = ϕ(u, J−1(αJxn + (1− α)JTtn))

= ||u||2 − 2⟨u, αJxn + (1− α)JTtn⟩+ ||αJxn + (1− α)JTtn||2

= ∥u∥2 − 2α⟨u, Jxn⟩ − 2(1− α)⟨u, JT tn⟩+ ∥αJxn + (1− α)JTtn∥2

≤ α∥u∥2 − 2α⟨u, Jxn⟩+ α∥Jxn∥2 + (1− α)∥u∥2

−2(1− α)⟨u, JT tn⟩+ (1− α)∥JTtn∥2

= α∥u∥2 − 2α⟨u, Jxn⟩+ α∥xn∥2 + (1− α)∥u∥2

−2(1− α)⟨u, JT tn⟩+ (1− α)∥Ttn∥2

= αϕ(u, xn) + (1− α)ϕ(u, T tn)

≤ αϕ(u, xn) + (1− α)ϕ(u, tn)

≤ ϕ(u, xn)− (1− α)(1− λk

c1
)(ϕ(tn, yn) + ϕ(yn, xn)

≤ ϕ(u, xn)(3.8)

It follows that u ∈ Cn+1. Hence, W := F (T ) ∩ V I(C,A) ⊂ Cn for all n ∈ N

Step 4: tn → x∗ ∈ F (T ).
Using the fact that xn+1 = ΠCn+1x1 ∈ Cn+1 ⊂ Cn and inequality (3.2), we get

(3.9) ϕ(xn+1, zn) ≤ ϕ(xn+1, xn) → 0 as n → ∞.

It follows from Lemma 3.3 and inequality (3.9) that

(3.10) ∥xn+1 − zn∥ → 0 as n → ∞.

By applying conditions (3.3) and (3.10), we observe that

(3.11) ∥xn − zn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − zn∥ → 0 as n → ∞.

The fact that J is norm-to-norm uniformly continuous on bounded subsets of E∗

gives that

(3.12) ∥Jxn − Jzn∥ → 0 as n → ∞,

(3.13) ∥Jxn+1 − Jzn∥ → 0 as n → ∞,

and

(3.14) ∥Jxn+1 − Jxn∥ → 0 as n → ∞.

The utilization of conditions (3.11) and (3.12) gives

ϕ(u, xn)− ϕ(u, zn) = 2⟨u, Jzn − Jxn⟩+ ∥xn∥2 − ∥zn∥2

≤ 2∥u∥∥Jzn − Jxn|∥+ (∥xn − zn∥)(∥xn∥+ ∥zn∥)
≤ 2∥u∥∥Jzn − Jxn∥+ β(∥xn − zn∥) → 0 as n → ∞.
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From inequalities (3.8) and (3.15), we have

(3.15) (1− α)(1− λk

c1
)ϕ(tn, xn) ≤ ϕ(u, xn)− ϕ(u, zn) → 0 as n → ∞

and

(3.16) (1− α)(1− λk

c1
)ϕ(yn, xn) ≤ ϕ(u, xn)− ϕ(u, zn) → 0 as n → ∞.

Thus, we get that

(3.17) ϕ(yn, xn) → 0 as n → ∞
and

(3.18) ϕ(tn, yn) → 0 as n → ∞.

Using Lemma 2.3, we see that

(3.19) ∥yn − xn∥ → 0 as n → ∞
and

(3.20) ∥tn − yn∥ → 0 as n → ∞.

By employing conditions (3.19) and (3.20), we get that

(3.21) ∥xn − tn∥ ≤ ∥yn − xn∥+ ∥tn − yn∥ → 0 as n → ∞.

Additionally, by utilizing conditions (3.11) and (3.21), we observe that

(3.22) ∥zn − tn∥ ≤ ∥zn − xn∥+ ∥xn − tn∥ → 0 as n → ∞.

The fact that J is norm-to-norm uniformly continuous on bounded subsets of E∗

gives that

(3.23) ∥Jtn − Jxn∥ → 0 as n → ∞
and

(3.24) ∥Jtn − Jzn∥ → 0 as n → ∞.

Since zn = J−1(αJxn + (1− α)JTtn), we have

(3.25) Jzn − Jtn = α(Jxn − Jtn) + (1− α)(JTtn − Jtn)

and

(3.26) (1− α)(JTtn − Jtn) = Jzn − Jtn − α(Jxn − Jtn).

Using conditions (3.23), (3.24), and (3.26), as well as the fact that 0 ≤ α < 1, we
see that

(1− α)∥JTtn − Jtn∥ = ∥Jzn − Jtn − α(Jxn − Jtn)∥
≤ α∥Jxn − Jtn∥+ ∥Jzn − Jtn∥ → 0 as n → ∞.

It follows that

(3.27) lim
n→∞

∥JTtn − Jtn∥ = 0.

Since J−1 is norm-to-norm uniformly continuous on bounded subsets of E∗, we get

(3.28) lim
n→∞

∥Ttn − tn∥ = 0.



404 C. EZEA AND E. AGBO

Besides, by applying conditions (3.28) and (3.21), we have

(3.29) tn → x∗ as n → ∞.

Since T is a relatively nonexpansive map, we obtain that x∗ ∈ F (T ).

Step 5: xn → x∗ ∈ V I(C,A).
Let x ∈ C. Clearly,

⟨xn − x, λAxn⟩ = ⟨xn − yn, λAxn⟩+ ⟨yn − x, λAxn⟩
= ⟨xn − yn, λAxn⟩+ ⟨yn − x, Jxn − Jyn⟩

−⟨yn − x, Jxn − λAxn − Jyn⟩
≤ λ∥Axn∥∥xn − yn∥+ ∥Jxn − Jyn∥∥yn − x∥

−⟨yn − x, Jxn − λAxn − Jyn⟩.(3.30)

Additionally, using yn = ΠCJ
−1(Jxn − λAxn) and Lemma 2.6, we see that

⟨yn − x, Jxn − λAxn − Jyn⟩ ≥ 0.

Equation (3.30) becomes

(3.31) ⟨xn − x,Axn⟩ ≤ λ∥Axn∥∥xn − yn∥+ ∥Jxn − Jyn∥∥yn − x∥.
Further, owing to the boundedness of {A(xn)} and condition (3.19), we get

lim sup
n→∞

⟨xn − x,Axn⟩ ≤ 0.

Since A is monotone, we have that

⟨x∗ − x,Ax⟩ = lim sup
n→∞

⟨xn − x,Ax⟩

≤ lim sup
n→∞

⟨xn − x,Axn⟩ ≤ 0, ∀ x ∈ C.

By combining the fact that x∗ ∈ C and inequality (1.5), we get that x∗ ∈ V I(C,A).
This completes the proof. □

4. Convergence theorems concerning countable families

We now prove the following strong convergence theorem.

Theorem 4.1. Let E be a uniformly smooth and 2-uniformly convex real Banach
space with dual space E∗. Let C be a nonempty, closed, and convex subset of E; let
A : C → E∗ be a monotone and k-Lipschitz map. Let Ti : C → E, i = 1, 2, . . . , be a
countable family of relatively nonexpansive maps. Assume that W := ∩∞

i=1F (Ti) ∩
V I(C,A) ̸= ∅, for arbitrary x1 ∈ C, let the sequence {xn}∞n=1 be iteratively defined
by 

x1 ∈ C := C1,
yn = ΠCJ

−1(Jxn − λAxn),
tn = ΠCJ

−1(Jxn − λAyn),
zn = αJxn + (1− α)J(J−1

∑∞
i=1 βiJTitn),

Cn+1 = {v ∈ Cn : ϕ(v, zn) ≤ ϕ(v, xn)},
xn+1 = ΠCn+1x1, ∀ n ≥ 1,

(4.1)
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where ΠC is the generalized projection of E onto C, J : E → E∗ is the normalized

duality map, λ ∈
(
0, c1k

)
, α ∈ [0, c) ⊂ [0, 1), k > 0 denotes the Lipschitz constant of

A, and {βi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 βi = 1. Then, the sequences
{xn}∞n=1 and {tn}∞n=1 converge strongly to some x∗ ∈ W .

Proof. We observe from Lemma 2.8 that the map T : C → E defined by

Ttn := J−1
∞∑
i=1

βiJTitn

is relatively nonexpansive and F (T ) = ∩∞
i=1F (Ti). It follows by employing Theorem

3.1 that the sequences {xn}∞n=1, {zn}∞n=1, and {tn}∞n=1 converge strongly to some
x∗ ∈ W := ∩∞

i=1F (Ti) ∩ V I(C,A) = F (T ) ∩ V I(C,A). □

Corollary 4.2. Let E = Lp, ℓp, and W p
m, 1 < p ≤ 2. Let C be a nonempty, closed,

and convex subset of E. Let A : C → E∗ be a monotone and k-Lipschitz map. Let
Ti : C → E, i = 1, 2, . . . , be a countable family of relatively nonexpansive maps.
Assume that W := ∩∞

i=1F (Ti)∩V I(C,A) ̸= ∅, for arbitrary x1 ∈ C, let the sequence
{xn}∞n=1 be iteratively defined by

x1 ∈ C := C1,
yn = ΠCJ

−1(Jxn − λAxn),
tn = ΠCJ

−1(Jxn − λAyn),
zn = αJxn + (1− α)J(J−1

∑∞
i=1 βiJTitn),

Cn+1 = {v ∈ Cn : ϕ(v, zn) ≤ ϕ(v, xn)},
xn+1 = ΠCn+1x1, ∀ n ≥ 1,

(4.2)

where ΠC is the generalized projection of E onto C, J : E → E∗ be the normalized

duality map, λ ∈
(
0, c1k

)
, α ∈ [0, c) ⊂ [0, 1), k > 0 denotes the Lipschitz constant of

A, and {βi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 βi = 1. Then, the sequences
{xn}∞n=1 and {tn}∞n=1 converge strongly to some x∗ ∈ W .

Proof. We observe that E is 2-uniformly convex and uniformly smooth. It fol-
lows from Theorem 3.1 that the sequences {xn}∞n=1, {zn}∞n=1, and {tn}∞n=1 converge
strongly to some x∗ ∈ W := ∩∞

i=1F (Ti) ∩ V I(C,A). □

We now consider more applications and state the theorems. Proofs of the theo-
rems follow as those of similar applications given in Chidume et al. [21] as well as
Iiduka and Takahashi [31]. For completeness, details of the sketches are provided.

5. Applications

5.1. Approximating a zero of an α-inverse strongly monotone map.

Theorem 5.1. Let E be a 2-uniformly convex and uniformly smooth real Banach
space with dual space E∗. Let A : E → E∗ be an α-inverse strongly monotone map,
and let Ti : E → E, i = 1, 2, . . . , be a countable family of relatively nonexpansive
maps. Assume that W := ∩∞

i=1F (Ti) ∩ A−10 ̸= ∅, where A−10 = {u ∈ E : Au =
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0} ̸= ∅, for arbitrary x1 ∈ E, let the sequence {xn}∞n=1 be iteratively defined by

x1 ∈ C := C1,
yn = ΠCJ

−1(Jxn − λAxn),
tn = ΠCJ

−1(Jxn − λAyn),
zn = αJxn + (1− α)J(J−1

∑∞
i=1 βiJTitn),

Cn+1 = {v ∈ Cn : ϕ(v, zn) ≤ ϕ(v, xn)},
xn+1 = ΠCn+1x1, ∀ n ≥ 1,

(5.1)

where J : E → E∗ is the normalized duality map, λ ∈
(
0, c1k

)
, α ∈ [0, c) ⊂ [0, 1),

k > 0 denotes the Lipschitz constant of A, and {βi}∞i=1 is a sequence in (0, 1) such
that

∑∞
i=1 βi = 1. Then, the sequences {xn}∞n=1 and {un}∞n=1 converge strongly to

some x∗ ∈ W := ∩∞
i=1F (Ti) ∩A−10.

Proof. We observe from Theorem 4.1 that the map T : E → E defined by

Ttn := J−1
∞∑
i=1

βiJTitn

is relatively nonexpansive and F (T ) = ∩∞
i=1F (Ti). Setting C1 = E and ΠE = I in

Theorem 3.1, we observe that

(5.2) tn = J−1(Jxn − λAyn) = ΠEJ
−1(Jxn − λAyn), n ≥ 1.

Further, V I(E,A) = A−10 and t ∈ A−10. It follows from Theorem 3.1 that {xn}∞n=1

and {tn}∞n=1 converge strongly to some x∗ ∈ W := ∩∞
i=1F (Ti) ∩A−10. □

5.2. Approximating a solution of complementarity problem. Let C be a
nonempty, closed, and convex subset of E; let A : C → E∗ be a map. Let the polar
in E∗ be defined by the set C∗ = {y∗ ∈ E∗ : ⟨x, y∗⟩ ≥ 0 for all x ∈ C}. Then,
we study the following problem: find t ∈ C such that At ∈ C∗ and

〈
t, At

〉
= 0.

This problem is called the complementarity problem (see, for example, Blum and
Oettli [6]). The set of solutions of the complementarity problem is denoted by
K(C,A).

Theorem 5.2. Let E be a 2-uniformly convex and uniformly smooth real Banach
space with dual space E∗. Let C be a nonempty, closed, and convex subset of E,
and let A : C → E∗ be an α-inverse strongly monotone map. Let Ti : C → E,
i = 1, 2, . . . , be a countable family of relatively nonexpansive maps. Assume that
W := ∩∞

i=1F (Ti) ∩K(C,A) ̸= ∅, for arbitrary x1 ∈ C, let the sequence {xn}∞n=1 be
iteratively defined by

x1 ∈ C := C1,
yn = ΠCJ

−1(Jxn − λAxn),
tn = ΠCJ

−1(Jxn − λAyn),
zn = αJxn + (1− α)J(J−1

∑∞
i=1 βiJTitn),

Cn+1 = {v ∈ Cn : ϕ(v, zn) ≤ ϕ(v, xn)},
xn+1 = ΠCn+1x1, ∀ n ≥ 1,

(5.3)

where ΠC is the generalized projection of E onto C, J : E → E∗ is the normalized

duality map, λ ∈
(
0, c1k

)
, α ∈ [0, c) ⊂ [0, 1), k > 0 denotes the Lipschitz constant of
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A and {βi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 βi = 1. Then, the sequences
{xn}∞n=1 and {tn}∞n=1 converge strongly to some x∗ ∈ W .

Proof. We observe from Theorem 4.1 that the map T : C → E defined by

Ttn := J−1
∞∑
i=1

βiJTitn

is relatively nonexpansive and F (T ) = ∩∞
i=1F (Ti). From Lemma 7.1.1 of Iiduka

and Takahashi [31], we obtain that V I(C,A) = K(C,A). It follows from Theorem
3.1 that the sequences {xn}∞n=1 and {tn}∞n=1 converge strongly to some x∗ ∈ W :=
F (T ) ∩K(C,A) ̸= ∅. □
5.3. Approximating a minimizer of a continuously Fréchet differentiable
convex functional.

Lemma 5.3 (Baillon and Haddad [5], see also Iiduka and Takahashi [31]). Let
E be a Banach space. Let f be a continuously Fréchet differentiable and convex
functional, and let ∇f denote the gradient of f . If ∇f is 1

α -Lipschitz continuous,
then ∇f is an α-inverse strongly monotone.

Theorem 5.4. Let E be a 2-uniformly convex and uniformly smooth real Banach
space with dual space E∗. Let C be a nonempty, closed, and convex subset of E; let
Ti : C → E, i = 1, 2, . . . , be a countable family of relatively nonexpansive maps. Let
f : E → R be a map satisfying the following conditions:

(1) f is a continuously Fréchet differentiable convex functional defined on E,
and ∇f is a 1

α -Lipschitz map;
(2) K = argminy∈C f(y) = {x∗ ∈ C : f(x∗) = miny∈C f(y)} ̸= ∅.

Assume that W := ∩∞
i=1F (Ti) ∩ K ̸= ∅. For arbitrary x1 ∈ C, let the sequence

{xn}∞n=1 be iteratively defined by

x1 ∈ C := C1,
yn = ΠCJ

−1(Jxn − λ∇f |Cxn),
tn = ΠCJ

−1(Jxn − λ∇f |Cyn),
zn = αJxn + (1− α)J(J−1

∑∞
i=1 βiJTitn),

Cn+1 = {v ∈ Cn : ϕ(v, zn) ≤ ϕ(v, xn)},
xn+1 = ΠCn+1x1, ∀ n ≥ 1,

(5.4)

where ΠC is the generalized projection of E onto C, J : E → E∗ is the normalized

duality map, λ ∈
(
0, c1k

)
, α ∈ [0, c) ⊂ [0, 1), k > 0 denotes the Lipschitz constant of

A, and {βi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 βi = 1. Then, the sequences
{xn}∞n=1 and {tn}∞n=1 converge strongly to some x∗ ∈ W .

Proof. We observe from Theorem 4.1 that the map T : C → E defined by

Ttn := J−1
∞∑
i=1

βiJTitn

is relatively nonexpansive and F (T ) = ∩∞
i=1F (Ti). Using condition (1) of Theorem

5.4, it follows from Lemma 5.3 that ∇f |C is an α-inverse strongly monotone map of



408 C. EZEA AND E. AGBO

C into E∗. Since f is differentiable and convex, we have, as in Chidume et al. [21]
and Iiduka and Takahashi [30], that V I(C,∇f |C) = K = argminy∈C f(y). By
applying Theorem 3.1, we obtain that the sequences {xn}∞n=1 and {tn}∞n=1 converge
strongly to some x∗ ∈ W := F (T ) ∩K ̸= ∅. □
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