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STRONG CONVERGENCE RESULTS FOR SPLIT FEASIBILITY
PROBLEM WITH MULTIPLE OUTPUT SETS IN BANACH
SPACES WITH APPLICATIONS

ABDULMALIK U. BELLO, JAMILU YAHAYA, AND MUSTAPHA ISYAKU

ABSTRACT. In this work, we prove strong convergence of a Halpern-Type algo-
rithm to a solution of split feasibility problem with multiple output in 2-uniformly
convex and uniformly smooth Banach spaces. We also give an application of our
main result in approximating solutions of Fredholm integral equation of first
kind. Our result compliments, extends and unifies several existing results in the
literature.

1. INTRODUCTION

Let C' and @ be nonempty closed and convex subsets of real Hilbert spaces H;
and Ho, respectively. Let T': Hy — Hs be a bounded linear operator with adjoint
T* : Hy — Hj. The split feasibility problem introduced by Censor and Elfving [7],
is to find

(1.1) x* € C such that Tz* € Q.

The split feasibility problem (SFP) arises naturally in different areas of applications
such as road design [3,6,11-13], medical imaging reconstruction [14-16, 28], signal
processing, optimization problems, radiation therapy [8], to mention but few. Sev-
eral generalizations of the SFP have been considered by many researchers. Such gen-
eralizations include, for instance, the multiple-set split feasibility problem (MSSFP)
(see eg., [8,21]), the split common fixed point problem (SCFPP) (see e.g., [9,22]),
the split common null point problem (SCNPP) (see e.g., [5,29,30]).

One of the most common method of approximating solution of the SFP is the C'Q
algorithms introduced by Byrne see [4]. The fact that the CQ algorithms requires
the computation of the orthogonal projection onto the sets C and Q) per iterations,
which can only be applied when the underlying sets are relatively simple, led to the
several generalizations of the CQ algorithms see e.g., Fukushima [17], Yang [36],
Censor and Segal [9] and Xu [34, 35].

In 2019, Reich and Tuyen [25] introduced the generalized split feasibility problem
(GSFP) as follows: Let H;, i =1,2,3,..., N, be real Hilbert spaces and let C;, i =
1,2,3,..., N, be closed and convex subsets of H;, respectively. Let A; : H; —
H;yq1, i=1,2,..., N — 1, be bounded linear operators on H;, for each i.

The GSFP is to find

z* € C1 such that A1x* € Oy, AQ(AlSU*) €Csz..., AN_1AN_9...A12" € Cy.
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The GSFP has practical applications in line balancing problem, where the quantity
of semi-finished products from the previous process has to be equal to that intended
for the next process, (see e.g [25]).

Recently, Reich et al. [24] considered a more general problem which they call split
feasibility problem with multiple output. The problem is formulated as follows: Let
H,H;,1=1,2,3,..., N be areal Hilbert spacesand let T; : H — H;,1=1,2,3,..., N
be bounded linear operators. Let C' and ); be nonempty closed and convex subsets
of H and H;, 1 =1,2,3,..., N. The split feasibility problem with multiple output is
to find

(1.2) 2% such that 2* € S = C N (N, T,1Q;) # 0, for each i = 1,2,3,..., N,
ie.,

" € C and T;2* € Q;, for eachi=1,2,3,...,N.
If welet H = H;, C = Cj, and Q; = Cijy1, i = 1,2,3,...., N with T} = Ay,
Ty = AsAq... and Tn_1 = AN_1AN_2...A1 we see that GSFP is a special case of

the split feasibility problem with multiple output.
It is easy to see that x* solve (1.2) if and only if

(1.3) 0 € Vg(z*) + No(z*)

where V is the gradient of the function g : H — R defined by g(z) = 2 S0 | ||(I —
Py,)T;z||* and Ne(x) is the normal cone of the set C at x.
Further, we see that equation (1.3) holds if and only if

N

xt — fyZTZ-*(I — Py,)Tix"
i=1

(1.4) ot = P

where v > 0. This characterization of solution of the generalized split feasibility
problem with multiple outputs led to the following iterative algorithms considered
in Reich et al [24]; given xo,y0 € C, let {x,} and {y,} be two sequences generated
by the methods

N
In — Tn ZTZ*(I - PQi)Tixn

i=1

(15) Tn+1 = PC

N
Yn =T YT (I = Po,)Tiyn
=1

(1'6) Yn+1 = anf(yn) + (1 - an)PC'

where f : C — C is a strict contraction of H; into itself, {v,} C (0,+0c0) and
{an} C (0,1). Weak and strong convergence of (1.5) and (1.6) were both established.
Our Contribution: In this work, we consider the general split feasibility prob-
lem with multiple outputs in 2-uniformly convex and uniformly smooth Banach
spaces. We apply our main result to approximate solution of some Fredholm inte-
gral equations of the first kind. We also give numerical examples to illustrate how
our algorithms works in Banach spaces. Furthermore, our result, extends, unifies
and compliments some existing results in the literature.
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2. PRELIMINARIES

In this section, we present some definitions and lemmas which we shall use in the
proof of our main theorem. Throughout this paper, F is real normed space with
its topological dual E*. Let Sg and Bg denote the unit sphere and the closed unit
ball of E, respectively. The modulus of smoothness of E, pg : [0,4+00) — [0, +00)
is defined by

T+y|| + ||z —
pE(t) = sup{” yl 5 Iz =yll 1:z € Sg, |yl :t}.

The space E is said to be smooth if

ety el

t—0 t

exists for all z,y € Sg. The space E is also said to be uniformly smooth if the
limit in (2.1) converges uniformly for all z,y € Sg; and FE is said to be 2-uniformly
smooth, if there exists a fixed constant ¢ > 0 such that pg(t) < ct?. It is well known

that every 2-uniformly smooth space is uniformly smooth. A real normed space F
is said to be strictly convex if

(z+y)
2

(2.1)

< 1for all z,y € Sg and x # y.

E is said to be uniformly convex if dg(e) > 0 for all € € (0,2], where dg is the
modulus of convexity of E defined by

(22)  dp(e) = inf {1 |zt

2

for all € € (0,2]. The space E is said to be 2-uniformly convex if there exists ¢ > 0
such that dg(€) > ce? for all € € (0,2]. It is obvious that every 2-uniformly convex
Banach space is uniformly convex. It is known that all Hilbert spaces are uniformly
smooth and 2-uniformly convex. It is also known that all the Lebesgue spaces L,
are uniformly smooth for 1 < p < 400, and 2-uniformly convex whenever 1 < p < 2
(see [10]).

Let E be a real normed space. The normalized duality mapping of E into E* is
defined by

H: xayEBEa ||x_yH 26}7

Jr:={z* € B*: {a*,x) = ||2*|” = ||*},
for all x € E. The normalized duality mapping J has the following properties (see,
e.g., [10]):
e if F is reflexive and strictly convex with the strictly convex dual space E*,
then J is single valued, one-to-one and onto mapping. In this case, we can
define the single-valued mapping J~! : E* — E and we have J ! = J*,
where J* is the normalized duality mapping on E*;
e if F is uniformly smooth, then J is norm-to-norm uniformly continuous on
each bounded subset of F.

Definition 2.1. Let F be a smooth real Banach space with its dual E*. The
functional ¢ : £ x E — R defined by

(2.3) ¢z, y) = |l=|* — 2 (z, Jy) + [lyl*,
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for all x,y € E, where J is the normalized duality map from F to E*, was introduced
by (Alber, [1]). It is easy to see that in a real Hilbert space ,H, the function ¢(z,y)
reduces to ||z — y||* for all 2,y € H.

Lemma 2.2. (Min et al. [23]) The following inequalities hold:
(2.4) (lall = ylD? < bz, y) < (llzll + [lyl))? for all z,y € E

and
(2.5) p(x, T anJy+(1—an)Jz) < and(z,y)+(1—an)(x, 2) for all z,y, 2 € E.

Lemma 2.3. (Schopter et al. [26]) For a p-uniformly convex space, the metric and
the Bregman distance has the following relations for any x,yinE:

(2.6) Tllz —yll” < o(z,y) < (z -y, J(x) = J"(y))

where 7 > 0 s a fixed number. In particular, for p = 2, we have in 2-uniformly
convex spaces that

Tllz = yll* < ¢la,y) < (z —y. J(z) = J()) -
Definition 2.4. (Schopter, [27]): The Bregman projection defined by
Moz = argming .o ¢(2,y), v € £
is the unique minimizer of the problem

min ¢(z,y).
min ¢(z, y)

The Bregman projection can also be characterized by the variational inequality:

(2.7) (z — ez, J(z — Hex)) <0,forall z € C,

and

(2.8) (z — ez, Jr — J(Ilgz)) < 0,for all z € C.
Definition 2.5. (Alber, [1]): Let V : E x E* — R defined by

(2.9) V(z,y) = ||z]|* — 2 (x,y) + ||y||* for all x € E and y € E*.
Then,

(2.10) V(z,y) = ¢(x, J 'y) for all z € E and y € E*.
Moreover, for all x € E and z, y € E*, we have

(2.11) V(z,2)+2(J 'z —2,9) < V(2,2 + 7).

Lemma 2.6 (Xu, [32]). Let z,y € E. If E is a 2-uniformly smooth space, then
there is a Cy > 0 such that

(2.12) [l = yl* < llz|l* = 2 {y, Jz) + Callyl|*.

Lemma 2.7 (Xu, [33]). Let {sn} be a sequence of nonnegative numbers, {ay} be
a sequence in (0,1) and {c,} be a sequence of real numbers satisfying the following
conditions:

(1) Spt+1 < (1 - an)sn + ancn;

(ii) Z:i% ap = 400, limsupn 1 00Cn < 0;endenumerate Then limy, 1 o8, = 0.
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Lemma 2.8 (Kamimura and Takahashi, [18]). Let E be a uniformly conver and
smooth Banach space and let {x,} and {y,} be two sequences of E. If ¢(xy,yn) — 0
and either {zn} or {yn} is bounded, then ||z, — yn|| — 0 as n — +oo.

Lemma 2.9 (Maingé, [20]). Let {sn} be a real sequence which does not decrease at
infinity in the sense that there exists a subsequence {sn, } such that s,, < sn,., for
all k > 0. Define an integer sequence {T(n)}, by 7(n) := max{ng < k <n:s,, <
Snger s where n > ng. Then, T(n) — 400 as n — 400 and for all n > ng and ng
large enough, we have max{s (), $n} < Sr(n)+1-

3. MAIN RESULT

In this section, we state and prove the main result of this paper.

Theorem 3.1. Let E and E;, for each i=1,2,5,..., N, be 2-uniformly convexr and
uniformly smooth spaces. Let C' and @); be nonempty closed and convex subsets
of E and E;, i = 1,2,3,...,N. Let T; : E — FE; be bounded linear operators and
T : EY — E* be the adjoint operators of T;, for each i=1,2,5, ..., N, where E and
E* are also uniformly smooth spaces. Suppose that problem (1.2) has a nonempty
solution set say, S. Let the sequences {z,} and {x,} be generated by x1, u € C and

(3 1) Zn = J_I(JSUTL_’YTL Zi\;l T;*‘]i(I_PQi)Tixn)v
. Ty = HeJ HapJu+ (1 —ap)Jz,), n>1andi=1,2,3, ..., N,
where {ay,} C (0,1) and {v,} C (0,400) satisfy the following conditions
(i) limy 400 y =0,
(ii) 329 ap = +o0,
(iii) 0<y<yn <a< c2Nmax1g2igN{HTi||2}7 i=1,2,3,..., N.
Then the sequence {x,} converges strongly to an element z=IIgu.
Proof. Let * € S and wy,; = (I — Pg,)T;xy, then using (3.1) we have
N

(32) ¢(l‘*a Zn) = ¢(x*’ J_I(an — Tn Z Tz*t]zwn,z))
i=1

N
=V(@*, Jon = Y _ T} Jiton,)

i=1
N
= []a”|12 = 202", S = 0 > T Tiwn)
i=1
N
(3.3) + HJ.%’n — Tn ZTi*JimeZ
i=1
N

= )2 = 2, Twn) + 29 S (T, Jiwns)
=1

N
+ Han — Tn Zﬂ*Jiwn7i||2'
=1



380 U. BELLO, J. YAHAYA, AND M. ISYAKU

Using Lemma 2.6, we get

(3.4)
N N
[J2n — T Zﬂ*Jiwn,i‘|2 < HwnHQ — 27 Z (Tizn, Jiwn;) + C2N’Y Z |5 J;
i=1 i=1
Substituting (3.4) in (3.3), we have
N
$(z", ) < [Ja7|]* = 2 (%, Jan) + 27 ) (Tiz", Jiwn,)
i=1
N N
+ H-’En||2 — 2, Z <,I%-Tna szn,z> + CQN’Y,?L Z ||T1L*szn,z||2
i=1 i=1
N N
(3.5) = ¢(", 2n) + 29 O (Tia* — Tian, Jiwn) + CoNyp Y ||T7 Jiawn i *.
i=1 i=1

Now, we have for each i = 1,2,3, ..., N, that
(Tix* — Tixy, Jiwn ;) = (Tix™ — Tixy, J;(I — Pg,)Tizy) ,
= (Tiw* — P, Ty, Ji(I — Po,)Tizn) — ||(I — Po,)Tianl|*.
Applying (2.7), for each i = 1,2,3..., N, we have
(3.6) (Tiw* — Tiwn, Ji(I — P,)Tyxy) < —||(I — Pg,)Tywnl[*.
Using (3.6) in (3.5), we get

N N
O(x*, 2n) < 9(2*,20) = 29 Y _ I = Po,)Tial|* + CoNp Y IIT} Jywn I

=1 =1
N
= ofa )~ 2 ol + CoNa2 e (TS P
=1 =1
B =8 e~ (2 CoVy s (I }) S -
=1

From condition (i77) we have

(2-@]\/% max{HTH }>Z|]me2>0 for all n > 1,
=1

so that

(3.8) o(x*, zp) < ¢z, zy), for all n > 1.
Also, using (3.1), we have
O(x*, xpt1) = (™, HCJ YapJu+ (1 — an)Jz,))
(z*, T HanJu + (1 — apn)Jz,))
« qS(x su) + (1 — an)o(z™, zn).

IN

(3.9)

IN
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Using (3.8) in (3.9), we get

P(@"; nt1) < and(a”, u) + (1 — an)@(x”, 2n)

< max{(b(x*? u)a ¢($*, $1)}

This implies, {¢(z*,zy)} is bounded. Hence, {x,} and {z,} are bounded.
Let z = Ilgu. Now, we divide the proof into two cases:

381

Case 1: Suppose that there exists ng € N such that {¢(z,z,)} is non-increasing.
Then {¢(z, x,)} converges and ¢(Z,zy) — ¢(Z,2p41) — 0 as n — +oo. Then from

(3.7), we obtain that

N
(3.10)  ym[2 — C2Np, @%%V{HTHIQ}] Y U = Po)Tianl* < 6(2,20) — 6(2, 20),

=1

from (3.9), we have

N
(311) 02— CoNv masx {|[TIPH D110 = Po,) Tl
=1

¢(Z7 xn) (Z xn—H) + an[¢(za u) - ¢(§, Zn)]

By condition (#i7) we have

N
0 <Y I = Po)Tizall < $(2,20) = $(Z, n41) + n[d(2, ) — 6(2, 20))-
=1

Using condition (), we see that

(3.12) nETOO ||(I — Pg,)Tixn|| =0, for eachi=1,2,3,...,N.
Also, from (3.1), we have

N
0 < |[J2n — Jau|® = [|T(T (Jan = 70 Y T Ji(I = Po,)Tizn)) — Jau||?
=1

N
=) T Ti(I = Po,) Ty
=1

N
< N2 TP = Po,)Than) |,
i=1
so that

(3.13) 0 < [|Jz = Jza|[* < Noy ZIITII (I = Po,)Tyzn)| .
=1
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Again, using condition (ii¢) in (3.13), we have
N

2
0 < ||Jzn — Jan||? < TilI?||(I — Po)Tzn)|?,
< |[Jzn nll” < cgN(maxlgiSN{|T¢||2})2;II 1711 @) Tin)||

by (3.12), we see that

N

2

0<||Jz, — Jzn||? < § T 2|(I — Pp)T; 250
< 120 zall” < C3 N (maxi<;<n{[| T3] [?})? i:1H P @.)Tizn)l

as n — —+00.
Hence,

(3.14) lim ||Jz, — Ja,|| = 0.
—+00

n

Since J~! is norm-to-norm uniformly continuous on bounded subsets of E*, we
obtain

(3.15) lim ||zp, —zy|| = 0.

n—-+o0o

Moreover, from (3.1) we also have

(3'16) ¢(zm$n+1) < an¢(znau) + (1 - Oén)ﬁb(zna Zn),
which shows that

lim  ¢(zp, Tpt1) =0,

n—-+oo
by lemma 2.8, we have

nll)r_{_loo [znt1 = znl[ = 0.
Hence,
(3.17) l|Zn+1 — zn|] = 0 as n — +oo.

Now, since {zy,} is bounded, let {x,, } be a subsequence of {z,} such that z,, — b.
Applying Lemma 2.3, we have

¢(b, Ilcb) < (b —1leb, Jb — Jllgb)
< (b — ap,, Jb— JIIb)
(3.18) + <l‘nk — b, Jb — JIIcb) .

Now, we see from (3.1) that {z,,} C C sois {zy, }, therefore applying (2.8) in (3.18),
we get

(b, 11cb) < (b — p,, Jb — JIlch) .

So that we get ¢(b,IIcb) = 0 as k — 400. Consequently, b = IIcb and so b € C.
By (3.12) we have

(3.19) |(I = Pg,)Tixn,|| = 0 as k — +oo.
Now for each i =1,2,3,..., N, we have

(3.20) 1( = Po,)Tibl[* = (Tib — Tian,, Ji(T;b — Po,Tib))
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+ (Tiwn, — PQ;Titn,, Ji(Tib — Po,Tib))
+ (Po,Titn, — Po,Tib. Ji(Tib — Po,T1b))

Since T; is linear and bounded and z,, — b, so by the continuity of T;, for each
i=1,2,3,...,N, we have Tjz,, — T;b as k — 4o00. Also, by using (3.19), (2.7) and
letting £ — 400 in (3.20), we have

||T3b — Po,Tib|| =0 for each i =1,2,3,...,N.

Therefore, T;b = P, T;b, that is T;b € Q; for each ¢ = 1,2,3,..., N. Hence we have
beS.
Let t, = J YapJu+ (1 — ay)Jz,),n > 1. Then,

Gz tn) = d(2n, I (o Ju + (1 = an).J2n))
again by (2.5), we have
O (2n, tn) = and(zn,u) = 0 as n — +oo.
Hence by Lemma 2.8, we have
(3.21) l|2n, — tn]] = 0 as n — +o0.

Consequently, ||z, — t,|| — 0 as n — 4o0.
Without lost of generality, we suppose that t,, — b as k — +oo(otherwise we go
down to another subsequence). Now by (2.8) and the fact that z = Ilgu, we have

(3.22)
limsup (¢, — 2, Ju — JZz) = lim (t,, — 2, Ju—Jz)=(b—2,Ju— JZ) <0.
n—+00 J—r+too

Now, from (3.1), we have

Cb(z, J)n+1) = Qb

<

z, e o Ju+ (1 — an)Jz,))
z, J N anJu + (1 — an)J2,))
(Z,andJu+ (1 — an)Jzp).

—

Il
< =

So, from (2.11), we have
V(Z,anJu+ (1 —apn)Jzm) < V(Z,anJu+ (1 —apn)dzn — an(Ju — JZ))
—2{J NanJu+ (1 — an)Jz,) — 2, —an(Ju — J2))
< ¢z, J HanJu+ (1 — an)Jzn) — o (Ju — JZ))
+ o (J HamJu + (1 — ap)J2,) — 2, (Ju — JZ))
(2.5) and (3.1) imply

(3.23) O(Z,nt1) < (1 — an)d(Z, 2n) + 20, (tn, — Z, Ju — JZ)
which by (3.8) implies
(3.24) O(Z, xn11) < (1 — an)d(Z, xn) + 20, (tn, — 2, Ju — JZ) .

Applying Lemma 2.7 we see that lim,_, - ¢(Z,x,) = 0. Thus, z, — Z as n — 4o0.
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Case 2: Suppose {¢(Z,x,)} is not a decreasing sequence and set A, = ¢(Z,x,) for
all n > 1. Now using lemma 2.9, we define an integer sequence {7(n)} for all n > ng
(for some ng large enough) by

7(n) := max{k < n: Ay < Ag+1}. Clearly 7(n) is non-decreasing sequence such
that 7(n) — 400 as n — +oo and

(3.25) Arny < Arnyg1, for all n = no.
From (3.25), we have 0 < A, ()11 — Az for all n > ny.
Also, from (3.24), we deduce that
(3.26) 0 < Ariny+1 — Arn) < ) (Crn) — Ar(n))s
where C7(,) = <t (n) — 2, Ju — Jz> < 0, for all 7(n). Since Cr(,) and A, are
bounded for all 7(n) and a,(,) — 0 as 7(n) — +o0, then

(327) T(nl)lgl+oo AT(n)+l — AT(n) = 0.

Using similar arguments as in case 1, we see from (3.11) with L = max;<;<n{||T3||*}
that
N

(3'28> Yr(n) [2 - C2N7‘r(n)L] Z H(I - jt)Qi)TixT(n)H2 < ¢(27 m7'(71)) - ¢(2a ZT(n))7

i=1

using (3.9), we have
Yrn)[2 — C2NvVr(n) Z (I = Po)Tiwrm)|1* < 6(Z, 2o (m) — D(Z, Tr(n11))

+ Qr(n) [gb(Z’ u) - ¢(2, zT(n))] .
Applying condition (iii), we have

N
0< 'YZH(I_ PQi)ﬂxT(n)Hz

i=1
(329) < ¢(27 xT(n)) - qb(zv xﬂ-(n—l-l)) + Ar(n) [¢(27 u) - ¢(27 ZT(TL))] .
Using condition () and (3.27) in (3.29), we have for each i =1,2,3,..., N that
(3.30) im (T~ Po)Tesgll = 0.
Since z;(p) = J 7 (JZr(n) — ZZ VI Ji(I = Pg,)Tizr(n)). Then, we have
0< HJZT(n) - JxT(n)H2
N
< HJ(‘]_le(n) — Yr(n) ZT;,*JZ(I - PQ@)szT(n) - Jw’r(n)”2
i=1

N
< N22y 2T I = Po)Tier|
=1

N
(3.31) < N2y DU TIPIE = Po,) Tiwoyl .
1=1
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Now, applying (3.30) and condition (7i) in (3.31), we get
0< H‘]Z’r(n) - J‘,BT(’I’L)H2

1 2 N , 2
< - ' B T ‘
_N<02NL> ;HTJI (I = Po,)Tir o

Hence,

(3'32) ngrfoo ||JZ’7'(TL) - JxT(n)H =0.

Since, J is norm-to-norm uniformly continuous on bounded subsets of E, we have
(3.33) nllg—loo HZT(TL) - m‘r(n)H =0.

Now, by (3.16) we see that
(3.34)

(Zr(n)> Tr(n)+1) < Ar(n)@(Zr(mys 1) + (1 — ()b (2r(n)> 2r(n)) — 0 a5 0 — +00.
By Lemma(2.8), we have

(335) ngl:il—loo ||ZT(n) - ‘/'UT(TL)"rl” =0,
by (3.33) and (3.35), we get
(336) nEI—II—loo ||x7'(n)+1 - ng(n)H = 0.

Since {,(,)} is bounded, there exists a subsequence {z,(,,)} of {Z;()} such that
Tr(n,) — b. Following the same method as in case 1, we get ¢(b,[Icb) = 0, so that
b=1Icb. Hence b € C.

By (3.30) for each i =1,2,3,..., N, we have

(3.37) (I = Po,)Tixr(n,ll — 0 as k — 4o0.
Also,
(I = Po,)Tib||* = (T;b — P, Tib, Ji(Tib — Po,Ty))
= (Tib — Tizr (), Ji(Ti — Po,Tib))
+ {Titr(ny) = P Titr (), Ji(Tib = Fo,Tib))
(3.38) + (P, Tyt r(ny) — Po,Tib, Ji(Tib — P, Tib)) ,

for each ¢ = 1,2,3,..., N. Since T; is linear and bounded and z,(,,) — b, so by
the continuity of T, for each i = 1,2,3,..., N, we have Tjz,(,,) — T;b as k — +o0.
Now, by letting n — +oo in (3.38) and using (3.30) and (2.7), we have

||T;b — P, Tib|| =0, for eachi=1,2,3,...,N.
Therefore, T;b = Py, T;b and so T;b € Q; for each i = 1,2,3,..., N. Hence we have
beS.
Let lrn) = J_l(OzT(n)Ju +(1- OéT(n))JZT(n)),n > ng. Then,
¢(ZT(TZ)7tT(TZ)) = ¢(ZT(TL)7 J_l(aﬂ'(n) Ju + (1 - aT(n))JZT(n)))
again by (2.5), we have

(Z)(Z.,.(n),t.,.(n)) = ar(n)¢(27(n)7u) —0asn — +o0.



386 U. BELLO, J. YAHAYA, AND M. ISYAKU

Hence by Lemma(2.8), we have
(3.39) 12r(n) = tr(m)|| = 0 as n — +oo.
Hence (3.33) implies that [|z,,) — tr(n)|| = 0 as n — +oo.

Following the same argument as in case 1, we get

limsup () = 2, Ju— J2) = T (brn, =2, Ju—J2) = (b= 2 Ju~ Jz) <0,

n—+o00 J—+oo
Also, using (3.1), we have
(2, xT(n)+1) = ¢(Z, chil(aT(n) Ju+(1— aT(n))JZT(n)))
< ¢(27 Jﬁl(aT(n)Ju + (1 - aT(n))JZT(n)))
= V(Z, ozT(n)Ju + (1 - aT(TL))‘]ZT(n))7
so by (2.11), we have
V(Z, ormyJu+ (1 = arm)) 27 (n))
< V(E, aT(n)Ju + (1 - aT(n))JZT(n) - aT(n)(Ju - JZ))
-2 <J_1(Oé7.(n)JU +(1- OzT(n))JZT(n)) —Z, —OzT(n)(Ju — J2)>
< (b(za ‘]_1(047'(71)‘]u + (1 - aT(n))JZT(n) - aT(n)(‘]u - JZ)))
+ Ar(n) <J_1(047'(n)‘]u + (1 - aT(n))JZT(n)) -z, (JU - JZ)>
by (2.5) and (3.1), we have
(340) ¢(27 xT(n)+1) < (1 - aT(n))Qs(g? Z‘r(n)) + 2a7‘(n) <t7(n) -z, Ju— ']2> ’
which by (3.8) implies that

(341) ¢(27 xT(n)-l—l) < (1 - aT(n))gb(Z’ :BT(TL)) + 20 <tT(n) -z, Ju— J5> :
Now, (3.41) is equivalent to
(3.42) Army1 < (1= azm)) Ar(n) + Qr(n)Criny,

with AT(n)—H = qb('g?xr(n)—&—l): AT(n) = ¢(z, xT(n)) and Cr(n) = <t7'(n) -z, Ju— J§> .
Now, applying Lemma 2.7 in (3.42), then lim,, 1o A;(,) = 0. Thus, the sequence
{zy} converges strongly to z as n — +oo, where z = IIgu. Hence the proof is
completed. O

We now obtain the following Corollaries in Hilbert space and for a single operator,
respectively.

Corollary 3.2. Let H and H;, for each i=1,2,3,..., N, be two Hilbert spaces. Let C
and Q;, for each i=1,2,53,..., N, be nonempty, closed and conver subsets of H and
H;, i=1, 2, 3,..., N, respectively. Let T; : H — H; be bounded linear operators and
T : Hy — H be the adjoint operators of T;, for each i=1,2,3, ..., N. Suppose that
problem (1.2) has a nonempty solution set S. Let the sequences {z,} and {z,} be
generated by 1, u € C' and

(3.43) 20 = 0 — Yo Liey Tf (I = Po,) T,
. Tp+1 = Po(anu+ (1 —ap)zn), n>landi=1,2,...,N,

where {on} C (0,1) and {v,} C (0,400) satisfy the following conditions:
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(ii) 329 ap = +o0,
(i) 0<y<m<a<

i=1,2,3,...N.

1
Nmaz1<i<n{IT3[?}’

Then the sequence {x,} converges strongly to an element z=IIgu.

Corollary 3.3. Let E1 and Eo, be 2-uniformly convex spaces. Let C' and Q, be
nonempty, closed and convexr subsets of 1 and Es, respectively. Let T : By — Eo
be bounded linear operators and T™ : E5 — Ei be the adjoint operators of T, for
each. Suppose that problem (1.2) has a nonempty solution set S. Let the sequences
{zn} and {z,} be generated by x1, u € C and

(3.44) 2 = J YW Jxy — R T*J(I — Po)T'xy,),
’ Ty = Hed HapJu+ (1 —ap)Jz,), n>1landi=1,2,..,N,

where {an} C (0,1) and {y,} C (0,400) satisfy the following conditions:
(11) zi'i oy, = +00,

(1)) 0 <y <y <a< CQNmaxlg];gN{llTi||2}7 i=1,2,3,..., N. Then the sequence {x,}
converges strongly to an element zZ=Ilgu.

4. NUMERICAL EXPERIMENT

In this section we give some examples in infinite dimensional spaces to illustrate
how our algorithm works. Numerical experiments were carried out on MATLAB
R2015a version. All programs were run on a 64-bit OS PC with Intel(R) Core(TM)
i7-3540M CPU @ 1.00GHz 1.19 GHz and 3GB RAM. All figures were plotted using
the log log plot command.

Example 4.1. Let H = L([0,1]), with norm and inner product defined as
1

1 1
”xuzz( /0 (1|2 dt>2 and  (z,y) = /0 2(t)y(t) dt, respectively.

Consider the following Fredholm integral equation of the first kind,

1
(4.1) /0 k(s,t)x(t)dt = f(s), 0 <s <1,

where £ : [0, 1] x [0, 1] — R is the kernel and f is a continuous function. Approximat-
ing solution of (4.1) is equivalent to approximating solution of the split feasibility
problem with multiple output with C = H, T; = I and

Qi ={x € H : (a;,x) =b;},
where a;(t) = k(si,t), bi = f(s;) and 0 = 51 < s9 < 83 < --- < sy = 1 (see,
e.g., [19]). Now consider the following equation:

1
(4.2) / e My (t)dt = (e —1)e**, 0 < s < 1,
0

which, under some appropiate conditions, has a solution, see, e.g., [2,31]. To ap-
proximate solution of (4.2), we set C' = H, T; = I and

QZ' = {l‘ € H : <CLZ',.Z'> = bi},
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with a;(t) = €34 and b; = (e — 1)e3%i, where s; = =1, i=1,2,3,...,M. The

results of the experiment are displayed in Table 1 and Figures 1,2 and 3.

Example 4.2. In this example, just as in example (4.1) above, we solve the follow-
ing Fredholm integral equation

1
(4.3) / stx(t)dt =2s, 0 < s <1.
0

Thus, C = H,T; =1 and
Qi ={x € H : (a;,z) = b;},

with a;(t) = s;t and b; = 2s;, where s; = ﬁ, 1=1,2,3,..., M. The results of

the experiment are displayed in Table 2 and Figures 4,5 and 6.

Example 4.3. Let H = Ly([0, 1]), with norm and inner product defined as

1 1 1
|z]|2 = ( / (1|2 dt) > and  (z,y) = / 2(t)y(t) dt, respectively.
0 0
Let
4
Cz{xéH:(a,x)§3} and Q;={z e H:(b,z)=c},
and where

3(i—1) 3(i—1)
bi(t) = e -1 —at c¢i=(e—1)e™-1 foralltel01],

and
x(t) .
El’(t):?,lzl,Q,g,...,M.

Clearly the solution set of (1.2) is not empty as it contains 0.

TABLE 1. Computational Results for Example (4.1).

Tolerance (TOL) M 0 No. of Iter.  Time(secs)
TOL =10~* 1000 (n+ 10)~* 231 4.9658
(n+10)~* 1051 21.8111
TOL = 107* 2500 (n+ 10)~* 355 18.6151
(n+10)~* 1407 73.4965
TOL = 10"%* 5000 (n+10)~4 478 49.4227
(n+10)~* 1718 180.4342

Remark 4.4. From the values displayed in Tables 1,2 and 3, it is clear that the
convergence of Algorithm (3.1) depends on the choice of 7,,. The smaller the value
of ,, the faster the algorithm converges.
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TABLE 2. Computational Results for Example (4.2).

Tolerance (TOL) M v No. of Iter. ~ Time(secs)
TOL =10"* 1000 (n+10)~* 193 4.0778
(n+10)~4 874 20.1912
TOL =10"* 2500 (n+10)~* 297 15.6564
(n+10)~4 1171 61.9406
TOL = 10~* 5000 (n+ 10)~* 400 42.4260
(n+10)~* 1428 148.3921

TABLE 3. Computational Results for Example (4.3).

Tolerance (TOL) M ~y No. of Iter. ~ Time(secs)
TOL =10"* 500 (n+10)~* 10 0.0.1711
(n+10)~* 617 7.1226
TOL = 107* 1000 (n+ 10)~* 10 0.1964
(n+10)~4 833 31.6163
- N‘orm convergence in Ly([0, 1‘]) . ]\‘:m‘m convergence in Ly([0, 1‘])
—% -7, = (n+10)~" —% -7, = (n+10)~"
—+ =9 = (n+10)7? ) —+ =9 = (n+10)7?

R
"

5

<

|01 = 2nll

N
S)
[

=
S
3

"
10t 102 10° 10%

=
S
IS

.
5}
w
N
1SY
(S
=
Sy
°©

Number of iterations (n) Number of iterations (n)
FiGure 1. Example (4.1) FIGURE 2. Example (4.1)
with M = 1000. with M = 2500.

5. CONCLUSION AND FURTHER RESEARCH

In this work, we have proved the strong convergence of Halpern-type iterative
algorithm to a solution of split feasibility problem with multiple outputs in 2-
uniformly convex and uniformly smooth Banach spaces. It is well known that these
spaces do not cover L, for p > 2. Thus, it would be desirable to obtain the results
of this paper in p-uniformly convex Banach spaces for p > 2. We also gave an appli-
cation of our main result to approximating solutions of Fredholm integral equations
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of first kind in L2([0, 1]) space. Finally, our results generalize and complement some
existing results in the literature.
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