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The GSFP has practical applications in line balancing problem, where the quantity
of semi-finished products from the previous process has to be equal to that intended
for the next process, (see e.g [25]).
Recently, Reich et al. [24] considered a more general problem which they call split
feasibility problem with multiple output. The problem is formulated as follows: Let
H, Hi, i = 1, 2, 3, ..., N be a real Hilbert spaces and let Ti : H → Hi, i = 1, 2, 3, ..., N
be bounded linear operators. Let C and Qi be nonempty closed and convex subsets
of H and Hi, i = 1, 2, 3, ..., N . The split feasibility problem with multiple output is
to find

x∗ such that x∗ ∈ S = C ∩ (∩N
i=1T

−1
i Qi) ̸= ∅, for each i = 1, 2, 3, ..., N,(1.2)

i.e.,

x∗ ∈ C and Tix
∗ ∈ Qi, for each i = 1, 2, 3, ..., N.

If we let H = Hi, C = Ci, and Qi = Ci+1, i = 1, 2, 3, ..., N with T1 = A1,
T2 = A2A1... and TN−1 = AN−1AN−2...A1 we see that GSFP is a special case of
the split feasibility problem with multiple output.

It is easy to see that x∗ solve (1.2) if and only if

0 ∈ ∇g(x∗) +NC(x
∗)(1.3)

where ∇ is the gradient of the function g : H → R defined by g(x) = 1
2

∑n
i=1 ||(I −

PQi)Tix||2 and NC(x) is the normal cone of the set C at x.
Further, we see that equation (1.3) holds if and only if

x∗ = PC

[
x∗ − γ

N∑
i=1

T ∗
i (I − PQi)Tix

∗

]
(1.4)

where γ > 0. This characterization of solution of the generalized split feasibility
problem with multiple outputs led to the following iterative algorithms considered
in Reich et al [24]; given x0, y0 ∈ C, let {xn} and {yn} be two sequences generated
by the methods

(1.5) xn+1 = PC

[
xn − γn

N∑
i=1

T ∗
i (I − PQi)Tixn

]

(1.6) yn+1 = αnf(yn) + (1− αn)PC

[
yn − γn

N∑
i=1

T ∗
i (I − PQi)Tiyn

]
.

where f : C → C is a strict contraction of H1 into itself, {γn} ⊂ (0,+∞) and
{αn} ⊂ (0, 1).Weak and strong convergence of (1.5) and (1.6) were both established.
Our Contribution: In this work, we consider the general split feasibility prob-
lem with multiple outputs in 2-uniformly convex and uniformly smooth Banach
spaces. We apply our main result to approximate solution of some Fredholm inte-
gral equations of the first kind. We also give numerical examples to illustrate how
our algorithms works in Banach spaces. Furthermore, our result, extends, unifies
and compliments some existing results in the literature.
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2. Preliminaries

In this section, we present some definitions and lemmas which we shall use in the
proof of our main theorem. Throughout this paper, E is real normed space with
its topological dual E∗. Let SE and BE denote the unit sphere and the closed unit
ball of E, respectively. The modulus of smoothness of E, ρE : [0,+∞) → [0,+∞)
is defined by

ρE(t) := sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : x ∈ SE , ∥y∥ = t

}
.

The space E is said to be smooth if

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)

exists for all x, y ∈ SE . The space E is also said to be uniformly smooth if the
limit in (2.1) converges uniformly for all x, y ∈ SE ; and E is said to be 2-uniformly
smooth, if there exists a fixed constant c > 0 such that ρE(t) ≤ ct2. It is well known
that every 2-uniformly smooth space is uniformly smooth. A real normed space E
is said to be strictly convex if∥∥∥∥(x+ y)

2

∥∥∥∥ < 1 for all x, y ∈ SE and x ̸= y.

E is said to be uniformly convex if δE(ϵ) > 0 for all ϵ ∈ (0, 2], where δE is the
modulus of convexity of E defined by

δE(ϵ) := inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BE , ∥x− y∥ ≥ ϵ

}
,(2.2)

for all ϵ ∈ (0, 2]. The space E is said to be 2-uniformly convex if there exists c > 0
such that δE(ϵ) ≥ cϵ2 for all ϵ ∈ (0, 2]. It is obvious that every 2-uniformly convex
Banach space is uniformly convex. It is known that all Hilbert spaces are uniformly
smooth and 2-uniformly convex. It is also known that all the Lebesgue spaces Lp

are uniformly smooth for 1 < p ≤ +∞, and 2-uniformly convex whenever 1 < p ≤ 2
(see [10]).

Let E be a real normed space. The normalized duality mapping of E into E∗ is
defined by

Jx := {x∗ ∈ E∗ : ⟨x∗, x⟩ = ∥x∗∥2 = ∥x∥2},
for all x ∈ E. The normalized duality mapping J has the following properties (see,
e.g., [10]):

• if E is reflexive and strictly convex with the strictly convex dual space E∗,
then J is single valued, one-to-one and onto mapping. In this case, we can
define the single-valued mapping J−1 : E∗ → E and we have J−1 = J∗,
where J∗ is the normalized duality mapping on E∗;

• if E is uniformly smooth, then J is norm-to-norm uniformly continuous on
each bounded subset of E.

Definition 2.1. Let E be a smooth real Banach space with its dual E∗. The
functional ϕ : E × E → R defined by

(2.3) ϕ(x, y) = ||x||2 − 2 ⟨x, Jy⟩+ ||y||2,
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for all x, y ∈ E, where J is the normalized duality map from E to E∗, was introduced
by (Alber, [1]). It is easy to see that in a real Hilbert space ,H, the function ϕ(x, y)
reduces to ||x− y||2 for all x, y ∈ H.

Lemma 2.2. (Min et al. [23]) The following inequalities hold:

(2.4) (||x|| − ||y||)2 ≤ ϕ(x, y) ≤ (||x||+ ||y||)2 for all x, y ∈ E

and

(2.5) ϕ(x, J−1(αnJy+(1−αn)Jz) ≤ αnϕ(x, y)+(1−αn)ϕ(x, z) for all x, y, z ∈ E.

Lemma 2.3. (Schöpter et al. [26]) For a p-uniformly convex space, the metric and
the Bregman distance has the following relations for any x, yinE:

(2.6) τ ||x− y||p ≤ ϕ(x, y) ≤ ⟨x− y, Jp(x)− Jp(y)⟩
where τ > 0 is a fixed number. In particular, for p = 2, we have in 2-uniformly
convex spaces that

τ ||x− y||2 ≤ ϕ(x, y) ≤ ⟨x− y, J(x)− J(y)⟩ .

Definition 2.4. (Schöpter, [27]): The Bregman projection defined by

ΠCx = argminy∈C ϕ(x, y), x ∈ E

is the unique minimizer of the problem

min
y∈C

ϕ(x, y).

The Bregman projection can also be characterized by the variational inequality:

(2.7) ⟨z −ΠCx, J(x−ΠCx)⟩ ≤ 0, for all z ∈ C,

and

(2.8) ⟨z −ΠCx, Jx− J(ΠCx)⟩ ≤ 0, for all z ∈ C.

Definition 2.5. (Alber, [1]): Let V : E × E∗ → R defined by

(2.9) V (x, y) = ||x||2 − 2 ⟨x, y⟩+ ||y||2 for all x ∈ E and y ∈ E∗.

Then,

(2.10) V (x, y) = ϕ(x, J−1y) for all x ∈ E and y ∈ E∗.

Moreover, for all x ∈ E and x̄, ȳ ∈ E∗, we have

(2.11) V (x, x̄) + 2
〈
J−1x̄− x, ȳ

〉
≤ V (x, x̄+ ȳ).

Lemma 2.6 (Xu, [32]). Let x, y ∈ E. If E is a 2-uniformly smooth space, then
there is a C2 > 0 such that

(2.12) ||x− y||2 ≤ ||x||2 − 2 ⟨y, Jx⟩+ C2||y||2.

Lemma 2.7 (Xu, [33]). Let {sn} be a sequence of nonnegative numbers, {αn} be
a sequence in (0, 1) and {cn} be a sequence of real numbers satisfying the following
conditions:

(i) sn+1 ≤ (1− αn)sn + αncn;
(ii)

∑+∞
n=0 αn = +∞, limsupn→+∞cn ≤ 0;endenumerateThen limn→+∞sn = 0.
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Lemma 2.8 (Kamimura and Takahashi, [18]). Let E be a uniformly convex and
smooth Banach space and let {xn} and {yn} be two sequences of E. If ϕ(xn, yn) → 0
and either {xn} or {yn} is bounded, then ||xn − yn|| → 0 as n → +∞.

Lemma 2.9 (Maingé, [20]). Let {sn} be a real sequence which does not decrease at
infinity in the sense that there exists a subsequence {snk

} such that snk
≤ snk+1

for
all k ≥ 0. Define an integer sequence {τ(n)}, by τ(n) := max{n0 ≤ k ≤ n : snk

≤
snk+1

}, where n > n0. Then, τ(n) → +∞ as n → +∞ and for all n > n0 and n0

large enough, we have max{sτ(n), sn} ≤ sτ(n)+1.

3. Main result

In this section, we state and prove the main result of this paper.

Theorem 3.1. Let E and Ei, for each i=1,2,3,..., N, be 2-uniformly convex and
uniformly smooth spaces. Let C and Qi be nonempty closed and convex subsets
of E and Ei, i = 1, 2, 3, ..., N. Let Ti : E → Ei be bounded linear operators and
T ∗
i : E∗

i → E∗ be the adjoint operators of Ti, for each i=1,2,3, ..., N, where E and
E∗ are also uniformly smooth spaces. Suppose that problem (1.2) has a nonempty
solution set say, S. Let the sequences {zn} and {xn} be generated by x1, u ∈ C and

(3.1)

{
zn = J−1(Jxn − γn

∑N
i=1 T

∗
i Ji(I − PQi)Tixn),

xn+1 = ΠCJ
−1(αnJu+ (1− αn)Jzn), n ≥ 1 and i = 1, 2, 3, ..., N,

where {αn} ⊂ (0, 1) and {γn} ⊂ (0,+∞) satisfy the following conditions

(i) limn→+∞ αn = 0,
(ii)

∑+∞
n=1 αn = +∞,

(iii) 0 < γ ≤ γn ≤ a < 2
C2Nmax1≤i≤N{∥Ti∥2} , i=1,2,3,..., N.

Then the sequence {xn} converges strongly to an element z̄=ΠSu.

Proof. Let x∗ ∈ S and wn,i = (I − PQi)Tixn, then using (3.1) we have

ϕ(x∗, zn) = ϕ(x∗, J−1(Jxn − γn

N∑
i=1

T ∗
i Jiwn,i))(3.2)

= V (x∗, Jxn − γn

N∑
i=1

T ∗
i Jiwn,i)

= ||x∗||2 − 2⟨x∗, Jxn − γn

N∑
i=1

T ∗
i Jiwn,i⟩

+ ||Jxn − γn

N∑
i=1

T ∗
i Jiwn,i||2(3.3)

= ||x∗||2 − 2 ⟨x∗, Jxn⟩+ 2γn

N∑
i=1

⟨Tix
∗, Jiwn,i⟩

+ ||Jxn − γn

N∑
i=1

T ∗
i Jiwn,i||2.
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Using Lemma 2.6, we get

||Jxn − γn

N∑
i=1

T ∗
i Jiwn,i||2 ≤ ||xn||2 − 2γn

N∑
i=1

⟨Tixn, Jiwn,i⟩+ C2Nγ2n

N∑
i=1

||T ∗
i Jiwn,i||2.

(3.4)

Substituting (3.4) in (3.3), we have

ϕ(x∗, zn) ≤ ||x∗||2 − 2 ⟨x∗, Jxn⟩+ 2γn

N∑
i=1

⟨Tix
∗, Jiwn,i⟩

+ ||xn||2 − 2γn

N∑
i=1

⟨Tixn, Jiwn,i⟩+ C2Nγ2n

N∑
i=1

||T ∗
i Jiwn,i||2

= ϕ(x∗, xn) + 2γn

N∑
i=1

⟨Tix
∗ − Tixn, Jiwn,i⟩+ C2Nγ2n

N∑
i=1

||T ∗
i Jiwn,i||2.(3.5)

Now, we have for each i = 1, 2, 3, ..., N, that

⟨Tix
∗ − Tixn, Jiwn,i⟩ = ⟨Tix

∗ − Tixn, Ji(I − PQi)Tixn⟩ ,
= ⟨Tix

∗ − PQiTixn, Ji(I − PQi)Tixn⟩ − ||(I − PQi)Tixn||2.
Applying (2.7), for each i = 1, 2, 3..., N, we have

⟨Tix
∗ − Tixn, Ji(I − PQi)Tixn⟩ ≤ −||(I − PQi)Tixn||2.(3.6)

Using (3.6) in (3.5), we get

ϕ(x∗, zn) ≤ ϕ(x∗, xn)− 2γn

N∑
i=1

||(I − PQi)Tixn||2 + C2Nγ2n

N∑
i=1

||T ∗
i Jiwn,i||2

= ϕ(x∗, xn)− 2γn

N∑
i=1

||wn,i||2 + C2Nγ2n max
1≤i≤N

{||Ti||2}
N∑
i=1

||wn,i||2

= ϕ(x∗, xn)− γn

(
2− C2Nγn max

1≤i≤N
{||Ti||2}

) N∑
i=1

||wn,i||2.(3.7)

From condition (iii) we have(
2− C2Nγn max

1≤i≤N
{||Ti||2}

) N∑
i=1

||wn,i||2 ≥ 0, for all n ≥ 1,

so that

ϕ(x∗, zn) ≤ ϕ(x∗, xn), for all n ≥ 1.(3.8)

Also, using (3.1), we have

ϕ(x∗, xn+1) = ϕ(x∗,ΠCJ
−1(αnJu+ (1− αn)Jzn))

≤ ϕ(x∗, J−1(αnJu+ (1− αn)Jzn))

≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, zn).(3.9)
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Using (3.8) in (3.9), we get

ϕ(x∗, xn+1) ≤ αnϕ(x
∗, u) + (1− αn)ϕ(x

∗, xn)

≤ max{ϕ(x∗, u), ϕ(x∗, xn)}
...

≤ max{ϕ(x∗, u), ϕ(x∗, x1)}.

This implies, {ϕ(x∗, xn)} is bounded. Hence, {xn} and {zn} are bounded.
Let z̄ = ΠSu. Now, we divide the proof into two cases:

Case 1: Suppose that there exists n0 ∈ N such that {ϕ(z̄, xn)} is non-increasing.
Then {ϕ(z̄, xn)} converges and ϕ(z̄, xn) − ϕ(z̄, xn+1) → 0 as n → +∞. Then from
(3.7), we obtain that

γn[2− C2Nγn max
1≤i≤N

{||Ti||2}]
N∑
i=1

||(I − PQi)Tixn||2 ≤ ϕ(z̄, xn)− ϕ(z̄, zn),(3.10)

from (3.9), we have

(3.11) γn[2− C2Nγn max
1≤i≤N

{||Ti||2}]
N∑
i=1

||(I − PQi)Tixn||2

≤ ϕ(z̄, xn)− ϕ(z̄, xn+1) + αn[ϕ(z̄, u)− ϕ(z̄, zn)].

By condition (iii) we have

0 < γ
N∑
i=1

||(I − PQi)Tixn||2 ≤ ϕ(z̄, xn)− ϕ(z̄, xn+1) + αn[ϕ(z̄, u)− ϕ(z̄, zn)].

Using condition (i), we see that

lim
n→+∞

||(I − PQi)Tixn|| = 0, for each i = 1, 2, 3, ..., N.(3.12)

Also, from (3.1), we have

0 ≤ ||Jzn − Jxn||2 = ||J(J−1(Jxn − γn

N∑
i=1

T ∗
i Ji(I − PQi)Tixn))− Jxn||2

= γ2n||
N∑
i=1

T ∗
i Ji(I − PQi)Tixn)||2

≤ Nγ2n

N∑
i=1

||T ∗
i ||2||(I − PQi)Tixn)||2,

so that

0 ≤ ||Jzn − Jxn||2 ≤ Nγ2n

N∑
i=1

||Ti||2||(I − PQi)Tixn)||2.(3.13)
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Again, using condition (iii) in (3.13), we have

0 ≤ ||Jzn − Jxn||2 ≤
2

C2
2N(max1≤i≤N{||Ti||2})2

N∑
i=1

||Ti||2||(I − PQi)Tixn)||2,

by (3.12), we see that

0 ≤ ||Jzn − Jxn||2 ≤
2

C2
2N(max1≤i≤N{||Ti||2})2

N∑
i=1

||Ti||2||(I − PQi)Tixn)||2 → 0

as n → +∞.

Hence,

lim
n→+∞

||Jzn − Jxn|| = 0.(3.14)

Since J−1 is norm-to-norm uniformly continuous on bounded subsets of E∗, we
obtain

lim
n→+∞

||zn − xn|| = 0.(3.15)

Moreover, from (3.1) we also have

ϕ(zn, xn+1) ≤ αnϕ(zn, u) + (1− αn)ϕ(zn, zn),(3.16)

which shows that

lim
n→+∞

ϕ(zn, xn+1) = 0,

by lemma 2.8, we have

lim
n→+∞

||xn+1 − zn|| = 0.

Hence,

||xn+1 − xn|| → 0 as n → +∞.(3.17)

Now, since {xn} is bounded, let {xnk
} be a subsequence of {xn} such that xnk

⇀ b.
Applying Lemma 2.3, we have

ϕ(b,ΠCb) ≤ ⟨b−ΠCb, Jb− JΠCb⟩
≤ ⟨b− xnk

, Jb− JΠCb⟩
+ ⟨xnk

−ΠCb, Jb− JΠCb⟩ .(3.18)

Now, we see from (3.1) that {xn} ⊂ C so is {xnk
}, therefore applying (2.8) in (3.18),

we get

ϕ(b,ΠCb) ≤ ⟨b− xnk
, Jb− JΠCb⟩ .

So that we get ϕ(b,ΠCb) = 0 as k → +∞. Consequently, b = ΠCb and so b ∈ C.
By (3.12) we have

||(I − PQi)Tixnk
|| → 0 as k → +∞.(3.19)

Now for each i = 1, 2, 3, . . . , N, we have

||(I − PQi)Tib||2 = ⟨Tib− Tixnk
, Ji(Tib− PQiTib)⟩(3.20)
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+ ⟨Tixnk
− PQiTixnk

, Ji(Tib− PQiTib)⟩
+ ⟨PQiTixnk

− PQiTib, Ji(Tib− PQiTib)⟩
Since Ti is linear and bounded and xnk

⇀ b, so by the continuity of Ti, for each
i = 1, 2, 3, ..., N , we have Tixnk

⇀ Tib as k → +∞. Also, by using (3.19), (2.7) and
letting k → +∞ in (3.20), we have

||Tib− PQiTib|| = 0 for each i = 1, 2, 3, ..., N.

Therefore, Tib = PQiTib, that is Tib ∈ Qi for each i = 1, 2, 3, ..., N . Hence we have
b ∈ S.
Let tn = J−1(αnJu+ (1− αn)Jzn), n ≥ 1. Then,

ϕ(zn, tn) = ϕ(zn, J
−1(αnJu+ (1− αn)Jzn))

again by (2.5), we have

ϕ(zn, tn) = αnϕ(zn, u) → 0 as n → +∞.

Hence by Lemma 2.8, we have

||zn − tn|| → 0 as n → +∞.(3.21)

Consequently, ||xn − tn|| → 0 as n → +∞.
Without lost of generality, we suppose that tnk

⇀ b as k → +∞(otherwise we go
down to another subsequence). Now by (2.8) and the fact that z̄ = ΠSu, we have

lim sup
n→+∞

⟨tn − z̄, Ju− Jz̄⟩ = lim
j→+∞

⟨tnk
− z̄, Ju− Jz̄⟩ = ⟨b− z̄, Ju− Jz̄⟩ ≤ 0.

(3.22)

Now, from (3.1), we have

ϕ(z̄, xn+1) = ϕ(z̄,ΠCJ
−1(αnJu+ (1− αn)Jzn))

≤ ϕ(z̄, J−1(αnJu+ (1− αn)Jzn))

= V (z̄, αnJu+ (1− αn)Jzn).

So, from (2.11), we have

V (z̄, αnJu+ (1− αn)Jzn) ≤ V (z̄, αnJu+ (1− αn)Jzn − αn(Ju− Jz̄))

− 2
〈
J−1(αnJu+ (1− αn)Jzn)− z̄,−αn(Ju− Jz̄)

〉
≤ ϕ(z̄, J−1(αnJu+ (1− αn)Jzn)− αn(Ju− Jz̄))

+ αn

〈
J−1(αnJu+ (1− αn)Jzn)− z̄, (Ju− Jz̄)

〉
(2.5) and (3.1) imply

ϕ(z̄, xn+1) ≤ (1− αn)ϕ(z̄, zn) + 2αn ⟨tn − z̄, Ju− Jz̄⟩(3.23)

which by (3.8) implies

ϕ(z̄, xn+1) ≤ (1− αn)ϕ(z̄, xn) + 2αn ⟨tn − z̄, Ju− Jz̄⟩ .(3.24)

Applying Lemma 2.7 we see that limn→+∞ ϕ(z̄, xn) = 0. Thus, xn → z̄ as n → +∞.



384 U. BELLO, J. YAHAYA, AND M. ISYAKU

Case 2: Suppose {ϕ(z̄, xn)} is not a decreasing sequence and set An = ϕ(z̄, xn) for
all n ≥ 1. Now using lemma 2.9, we define an integer sequence {τ(n)} for all n ≥ n0

(for some n0 large enough) by
τ(n) := max{k ≤ n : Ak ≤ Ak+1}. Clearly τ(n) is non-decreasing sequence such
that τ(n) → +∞ as n → +∞ and

Aτ(n) ≤ Aτ(n)+1, for all n ≥ n0.(3.25)

From (3.25), we have 0 ≤ Aτ(n)+1 −Aτ(n) for all n ≥ n0.
Also, from (3.24), we deduce that

0 ≤ Aτ(n)+1 −Aτ(n) ≤ ατ(n)(Cτ(n) −Aτ(n)),(3.26)

where Cτ(n) =
〈
tτ(n) − z̄, Ju− Jz̄

〉
≤ 0, for all τ(n). Since Cτ(n) and Aτ(n) are

bounded for all τ(n) and ατ(n) → 0 as τ(n) → +∞, then

lim
τ(n)→+∞

Aτ(n)+1 −Aτ(n) = 0.(3.27)

Using similar arguments as in case 1, we see from (3.11) with L = max1≤i≤N{||Ti||2}
that

γτ(n)[2− C2Nγτ(n)L]

N∑
i=1

||(I − PQi)Tixτ(n)||2 ≤ ϕ(z̄, xτ(n))− ϕ(z̄, zτ(n)),(3.28)

using (3.9), we have

γτ(n)[2− C2Nγτ(n)L]
N∑
i=1

||(I − PQi)Tixτ(n)||2 ≤ ϕ(z̄, xτ(n))− ϕ(z̄, xτ(n+1))

+ ατ(n)

[
ϕ(z̄, u)− ϕ(z̄, zτ(n))

]
.

Applying condition (iii), we have

0 < γ

N∑
i=1

||(I − PQi)Tixτ(n)||2

≤ ϕ(z̄, xτ(n))− ϕ(z̄, xτ(n+1)) + ατ(n)

[
ϕ(z̄, u)− ϕ(z̄, zτ(n))

]
.(3.29)

Using condition (i) and (3.27) in (3.29), we have for each i = 1, 2, 3, . . . , N that

lim
n→+∞

||(I − PQi)Tixτ(n)|| = 0.(3.30)

Since zτ(n) = J−1(Jxτ(n) − γτ(n)
∑N

i=1 T
∗
i Ji(I − PQi)Tixτ(n)). Then, we have

0 ≤ ||Jzτ(n) − Jxτ(n)||2

≤ ||J(J−1xτ(n) − γτ(n)

N∑
i=1

T ∗
i Ji(I − PQi)Tixτ(n) − Jxτ(n)||2

≤ Nγ2τ(n)

N∑
i=1

||T ∗
i Ji(I − PQi)Tixτ(n)||2

≤ Nγ2τ(n)

N∑
i=1

||Ti||2||(I − PQi)Tixτ(n)||2.(3.31)
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Now, applying (3.30) and condition (iii) in (3.31), we get

0 ≤ ||Jzτ(n) − Jxτ(n)||2

≤ N

(
1

C2NL

)2 N∑
i=1

||Ti||2||(I − PQi)Tixτ(n)||2.

Hence,

lim
n→+∞

||Jzτ(n) − Jxτ(n)|| = 0.(3.32)

Since, J is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→+∞

||zτ(n) − xτ(n)|| = 0.(3.33)

Now, by (3.16) we see that

ϕ(zτ(n), xτ(n)+1) ≤ ατ(n)ϕ(zτ(n), u) + (1− ατ(n))ϕ
(
zτ(n), zτ(n)

)
→ 0 as n → +∞.

(3.34)

By Lemma(2.8), we have

lim
n→+∞

||zτ(n) − xτ(n)+1|| = 0,(3.35)

by (3.33) and (3.35), we get

lim
n→+∞

||xτ(n)+1 − xτ(n)|| = 0.(3.36)

Since {xτ(n)} is bounded, there exists a subsequence {xτ(nk)} of {xτ(n)} such that
xτ(nk) ⇀ b. Following the same method as in case 1, we get ϕ(b,ΠCb) = 0, so that
b = ΠCb. Hence b ∈ C.

By (3.30) for each i = 1, 2, 3, ..., N, we have

||(I − PQi)Tixτ(nk)|| → 0 as k → +∞.(3.37)

Also,

||(I − PQi)Tib||2 = ⟨Tib− PQiTib, Ji(Tib− PQiTi)⟩
=

〈
Tib− Tixτ(nk), Ji(Ti − PQiTib)

〉
+
〈
Tixτ(nk) − PQiTixτ(nk), Ji(Tib− PQiTib)

〉
+

〈
PQiTixτ(nk) − PQiTib, Ji(Tib− PQiTib)

〉
,(3.38)

for each i = 1, 2, 3, ..., N . Since Ti is linear and bounded and xτ(nk) ⇀ b, so by
the continuity of Ti, for each i = 1, 2, 3, ..., N , we have Tixτ(nk) ⇀ Tib as k → +∞.
Now, by letting n → +∞ in (3.38) and using (3.30) and (2.7), we have

||Tib− PQiTib|| = 0, for each i = 1, 2, 3, ..., N.

Therefore, Tib = PQiTib and so Tib ∈ Qi for each i = 1, 2, 3, ..., N . Hence we have
b ∈ S.

Let tτ(n) = J−1(ατ(n)Ju+ (1− ατ(n))Jzτ(n)), n ≥ n0. Then,

ϕ(zτ(n), tτ(n)) = ϕ(zτ(n), J
−1(ατ(n)Ju+ (1− ατ(n))Jzτ(n)))

again by (2.5), we have

ϕ(zτ(n), tτ(n)) = ατ(n)ϕ(zτ(n), u) → 0 as n → +∞.
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Hence by Lemma(2.8), we have

||zτ(n) − tτ(n)|| → 0 as n → +∞.(3.39)

Hence (3.33) implies that ||xτ(n) − tτ(n)|| → 0 as n → +∞.
Following the same argument as in case 1, we get

lim sup
n→+∞

〈
tτ(n) − z̄, Ju− Jz̄

〉
= lim

j→+∞

〈
tτnkj

− z̄, Ju− Jz̄
〉
= ⟨b− z̄, Ju− Jz̄⟩ ≤ 0.

Also, using (3.1), we have

ϕ(z̄, xτ(n)+1) = ϕ(z̄,ΠCJ
−1(ατ(n)Ju+ (1− ατ(n))Jzτ(n)))

≤ ϕ(z̄, J−1(ατ(n)Ju+ (1− ατ(n))Jzτ(n)))

= V (z̄, ατ(n)Ju+ (1− ατ(n))Jzτ(n)),

so by (2.11), we have

V (z̄, ατ(n)Ju+ (1− ατ(n))Jzτ(n))

≤ V (z̄, ατ(n)Ju+ (1− ατ(n))Jzτ(n) − ατ(n)(Ju− Jz̄))

− 2
〈
J−1(ατ(n)Ju+ (1− ατ(n))Jzτ(n))− z̄,−ατ(n)(Ju− Jz̄)

〉
≤ ϕ(z̄, J−1(ατ(n)Ju+ (1− ατ(n))Jzτ(n) − ατ(n)(Ju− Jz̄)))

+ ατ(n)

〈
J−1(ατ(n)Ju+ (1− ατ(n))Jzτ(n))− z̄, (Ju− Jz̄)

〉
by (2.5) and (3.1), we have

ϕ(z̄, xτ(n)+1) ≤ (1− ατ(n))ϕ(z̄, zτ(n)) + 2ατ(n)

〈
tτ(n) − z̄, Ju− Jz̄

〉
,(3.40)

which by (3.8) implies that

ϕ(z̄, xτ(n)+1) ≤ (1− ατ(n))ϕ(z̄, xτ(n)) + 2αn

〈
tτ(n) − z̄, Ju− Jz̄

〉
.(3.41)

Now, (3.41) is equivalent to

Aτ(n)+1 ≤ (1− ατ(n))Aτ(n) + ατ(n)Cτ(n),(3.42)

with Aτ(n)+1 = ϕ(z̄, xτ(n)+1), Aτ(n) = ϕ(z̄, xτ(n)) and Cτ(n) =
〈
tτ(n) − z̄, Ju− Jz̄

〉
.

Now, applying Lemma 2.7 in (3.42), then limn→+∞Aτ(n) = 0. Thus, the sequence
{xn} converges strongly to z̄ as n → +∞, where z̄ = ΠSu. Hence the proof is
completed. □

We now obtain the following Corollaries in Hilbert space and for a single operator,
respectively.

Corollary 3.2. Let H and Hi, for each i=1,2,3,..., N, be two Hilbert spaces. Let C
and Qi, for each i=1,2,3,..., N, be nonempty, closed and convex subsets of H and
Hi, i=1, 2, 3,..., N, respectively. Let Ti : H → Hi be bounded linear operators and
T ∗
i : Hi → H be the adjoint operators of Ti, for each i=1,2,3, ..., N. Suppose that

problem (1.2) has a nonempty solution set S. Let the sequences {zn} and {xn} be
generated by x1, u ∈ C and

(3.43)

{
zn = xn − γn

∑N
i=1 T

∗
i (I − PQi)Tixn,

xn+1 = PC(αnu+ (1− αn)zn), n ≥ 1 and i = 1, 2, ..., N,

where {αn} ⊂ (0, 1) and {γn} ⊂ (0,+∞) satisfy the following conditions:
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(i) limn→+∞ αn = 0,
(ii)

∑+∞
n=1 αn = +∞,

(iii) 0 < γ ≤ γn ≤ a < 1
Nmax1≤i≤N{∥Ti∥2} , i = 1, 2, 3, ..., N .

Then the sequence {xn} converges strongly to an element z̄=ΠSu.

Corollary 3.3. Let E1 and E2, be 2-uniformly convex spaces. Let C and Q, be
nonempty, closed and convex subsets of E1 and E2, respectively. Let T : E1 → E2

be bounded linear operators and T ∗ : E∗
2 → E∗

1 be the adjoint operators of T , for
each. Suppose that problem (1.2) has a nonempty solution set S. Let the sequences
{zn} and {xn} be generated by x1, u ∈ C and

(3.44)

{
zn = J−1(Jxn − γnT

∗J(I − PQ)Txn),

xn+1 = ΠCJ
−1(αnJu+ (1− αn)Jzn), n ≥ 1 and i = 1, 2, ..., N,

where {αn} ⊂ (0, 1) and {γn} ⊂ (0,+∞) satisfy the following conditions:
(i) limn→+∞ αn = 0,
(ii)

∑+∞
n=1 αn = +∞,

(iii) 0 < γ ≤ γn ≤ a < 1
C2Nmax1≤i≤N{∥Ti∥2} , i=1,2,3,..., N. Then the sequence {xn}

converges strongly to an element z̄=ΠSu.

4. Numerical experiment

In this section we give some examples in infinite dimensional spaces to illustrate
how our algorithm works. Numerical experiments were carried out on MATLAB
R2015a version. All programs were run on a 64-bit OS PC with Intel(R) Core(TM)
i7-3540M CPU @ 1.00GHz 1.19 GHz and 3GB RAM. All figures were plotted using
the log log plot command.

Example 4.1. Let H = L2([0, 1]), with norm and inner product defined as

∥x∥2 =
(∫ 1

0
|x(t)|2 dt

) 1
2

and ⟨x, y⟩ =
∫ 1

0
x(t)y(t) dt, respectively.

Consider the following Fredholm integral equation of the first kind,

(4.1)

∫ 1

0
k(s, t)x(t)dt = f(s), 0 ≤ s ≤ 1,

where k : [0, 1]×[0, 1] → R is the kernel and f is a continuous function. Approximat-
ing solution of (4.1) is equivalent to approximating solution of the split feasibility
problem with multiple output with C = H, Ti = I and

Qi = {x ∈ H : ⟨ai, x⟩ = bi},
where ai(t) = k(si, t), bi = f(si) and 0 = s1 < s2 < s3 < · · · < sM = 1 (see,
e.g., [19]). Now consider the following equation:

(4.2)

∫ 1

0
e3s−4tx(t)dt = (e− 1)e3s, 0 ≤ s ≤ 1,

which, under some appropiate conditions, has a solution, see, e.g., [2, 31]. To ap-
proximate solution of (4.2), we set C = H, Ti = I and

Qi = {x ∈ H : ⟨ai, x⟩ = bi},
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with ai(t) = e3si−4t and bi = (e− 1)e3si , where si =
i−1
M−1 , i = 1, 2, 3, . . . ,M . The

results of the experiment are displayed in Table 1 and Figures 1, 2 and 3.

Example 4.2. In this example, just as in example (4.1) above, we solve the follow-
ing Fredholm integral equation

(4.3)

∫ 1

0
stx(t)dt = 2s, 0 ≤ s ≤ 1.

Thus, C = H, Ti = I and

Qi = {x ∈ H : ⟨ai, x⟩ = bi},

with ai(t) = sit and bi = 2si, where si =
i−1
M−1 , i = 1, 2, 3, . . . ,M . The results of

the experiment are displayed in Table 2 and Figures 4, 5 and 6.

Example 4.3. Let H = L2([0, 1]), with norm and inner product defined as

∥x∥2 =
(∫ 1

0
|x(t)|2 dt

) 1
2

and ⟨x, y⟩ =
∫ 1

0
x(t)y(t) dt, respectively.

Let

C =

{
x ∈ H : ⟨a, x⟩ ≤ 4

3

}
and Qi = {x ∈ H : ⟨bi, x⟩ = ci} ,

and where

bi(t) = e
3(i−1)
M−1

−4t, ci = (e− 1)e
3(i−1)
M−1 , for all t ∈ [0, 1],

and

Tix(t) =
x(t)

eit
, i = 1, 2, 3, . . . ,M.

Clearly the solution set of (1.2) is not empty as it contains 0.

Table 1. Computational Results for Example (4.1).

Tolerance (TOL) M γ No. of Iter. Time(secs)

TOL = 10−4 1000 (n+ 10)−4 231 4.9658
(n+ 10)−4 1051 21.8111

TOL = 10−4 2500 (n+ 10)−4 355 18.6151
(n+ 10)−4 1407 73.4965

TOL = 10−4 5000 (n+ 10)−4 478 49.4227
(n+ 10)−4 1718 180.4342

Remark 4.4. From the values displayed in Tables 1, 2 and 3, it is clear that the
convergence of Algorithm (3.1) depends on the choice of γn. The smaller the value
of γn, the faster the algorithm converges.
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Table 2. Computational Results for Example (4.2).

Tolerance (TOL) M γ No. of Iter. Time(secs)

TOL = 10−4 1000 (n+ 10)−4 193 4.0778
(n+ 10)−4 874 20.1912

TOL = 10−4 2500 (n+ 10)−4 297 15.6564
(n+ 10)−4 1171 61.9406

TOL = 10−4 5000 (n+ 10)−4 400 42.4260
(n+ 10)−4 1428 148.3921

Table 3. Computational Results for Example (4.3).

Tolerance (TOL) M γ No. of Iter. Time(secs)

TOL = 10−4 500 (n+ 10)−4 10 0.0.1711
(n+ 10)−4 617 7.1226

TOL = 10−4 1000 (n+ 10)−4 10 0.1964
(n+ 10)−4 833 31.6163
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Figure 1. Example (4.1)
with M = 1000.
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Figure 2. Example (4.1)
with M = 2500.

5. Conclusion and further research

In this work, we have proved the strong convergence of Halpern-type iterative
algorithm to a solution of split feasibility problem with multiple outputs in 2-
uniformly convex and uniformly smooth Banach spaces. It is well known that these
spaces do not cover Lp for p > 2. Thus, it would be desirable to obtain the results
of this paper in p-uniformly convex Banach spaces for p > 2. We also gave an appli-
cation of our main result to approximating solutions of Fredholm integral equations
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Figure 5. Example (4.2)
with M = 2500.
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Figure 6. Example (4.2)
with M = 5000.
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Figure 7. Example (4.3)
with M = 500.
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Figure 8. Example (4.3)
with M = 1000.
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of first kind in L2([0, 1]) space. Finally, our results generalize and complement some
existing results in the literature.

Acknowledgments

The authors appreciate the support of their institution and AfDB.

References

[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and
applications, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone
Type, A. G. Kartsatos (Ed.), Marcel Dekker, New York, 1996, pp. 15–50.

[2] A. U. Bello, M. T. Omojola and J. Yahaya, An inertial-type algorithm for approximation of
solutions of Hammerstein integral inclusions in Hilbert spaces, Fixed Point Theory Algorithms
for Sci Eng 2021, 8(2021). https://doi.org/10.1186/s13663-021-00691-7.

[3] A. U. Bello and M. O. Nnakwe, An algorithm for approximating a common solution of some
nonlinear problems in Banach spaces with an application, Advances in Difference Equations
2021 (2021): Article number 109.

[4] C. Byrne, Iterative oblique projection onto convex sets and split feasibility problem, Inverse
Problem 18 (2002), 441–453.

[5] C. Byrne, Y. Censor, A. Gibali and S. Reich, The split common null point problem, J. Nonlinear
Convex Anal. 13 (2012), 759–775.

[6] H. H. Bauschke and V. Koch, Projection methods: Swiss army knives for solving feasibility
and best approximation problems with halfspaces, Contemp. Math. 636 (2015), 1–40.

[7] Y. Censor and T. Elfving, A multi projection algorithm using Bregman projection in a product
space, Numer. Algorithms 8 (1994), 222–239.

[8] Y. Censor, T. Elfving, N. Kopf and T. Borfeld, The multiple-sets split feasibility problem and
its application. Inverse Problem 21 (2005), 2071–2084.

[9] Y. Censor and A. Segal, The split common fixed point problem for directed operators, J. Convex
Anal. 16 (2009), 587–600.

[10] C. E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Lectures
Notes in Mathematics, vol. 1965, Springer, London, UK, 2009.

[11] C. E. Chidume, A. U. Bello, M. E. Okpala and P. Ndambomve, Strong convergence theorem for
fixed points of nearly nniformly L-Lipschitzian Asymptotically Generalized ϕ-hemicontractive
mappings Int. J. Math. Anal. 9 (2015), 2555–2569.

[12] C. E. Chidume, A. U. Bello and M. A. Onyido, Convergence theorem for a countable family
of multi-valued strictly pseudo-contractive mappings in Hilbert spaces Int. J. Math. Anal. 9
(2015), 1331–1340.

[13] C. E. Chidume, M. E. Okpala, A. U. Bello and P. Ndambomve, Convergence theorems for
finite family of a general class of multi-valued strictly pseudo-contractive mappings, Fixed
Point Theory and Applications 2015 (2015): Article number 119.
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