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• δ-inverse strongly monotone if⟨
x− y, Tx− Ty

⟩
≥ δ∥Tx− Ty∥2, ∀x, y ∈ C for some δ > 0.

• Monotone if ⟨
x− y, Tx− Ty

⟩
≥ 0, ∀x, y ∈ C.(1.2)

Definition 1.1. A mapping T : C → C is said to be Demiclosed at zero if whenever
a sequence {xn} in C converges weakly to p and ∥xn − Txn∥ converges strongly to
0, then p ∈ F (T ).

Korpelevich [24] (and also independently Antipin [1]) proposed a double projec-
tion method in Euclidean space, known as the extragradient method for solving VIs
when A is monotone and l− Lipschitz continuous as

(1.3)

{
yn = PC(xn − λAxn)

xn+1 = PC(xn − λA(yn)).

The weak convergence of this method in infinite dimensional Hilbert spaces was
studied in [7] under an additional assumption that a map A is a weakly convergent
sequence to a strongly convergent sequence. This assumption is rather strong and
is not satisfied even for a simple example when A is the identity operator. In [36],
the author has weakened this assumption to sequentially weak - weak continuity
of A. The extragradient method and its variants require (at least) two projections
per iteration. Censor et al [12] proposed the following scheme, called subgradient
extragradient method

(1.4)


yn = PC(xn − λA(xn)),

xn+1 = PTn(xn − λA(yn)) ∀n ≥ 0,

where Tn = {w ∈ H : ⟨xn − λA(xn)− yn, w − yn⟩ ≤ 0}.

Since the projection onto the half-space Tn can be explicitly calculated [2], the
subgradient extragradient requires only one projection per iteration. This method
converges for monotone VIs in infinite dimensional Hilbert spaces [11,13].

An alternative method of the extragradient method is the following remarkable
scheme studied by Tseng’s [35], which also requires only one projection per iteration

(1.5)

{
yn = PC(xn − λA(xn)),

xn+1 = yn + λ(A(xn)−A(yn)) ∀n ≥ 0.

The weak convergence of Tseng’s extragradient method (also known as the Forward-
Backward-Forward method) for solving monotone Lipschitz continuous VIs was es-
tablished in [35].

The split feasibility problem (SFP ) in a finite dimensional Hilbert space was
introduced by Censor and Elfving [9] for modelling inverse problems which arise
from phase retrivals and medical image reconstruction as, Let H1 and H2 be two
Hilbert space, let C and Q be two nonempty closed and convex subset of H1 and
H2 respectively. The split feasibility problem is to find

(1.6) u ∈ C s.t Au ∈ Q
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Assuming that the SFP is consistent (i.e., (1.6) has a solution) it is easy to see that
x ∈ C solve 1.6 iff it solve the fixed point equation

(1.7) x = PC(I + γA∗(PQ − I)A)x.

where PC and PQ are the orthogonal projections onto C and Q, respectively, γn > 0,
and A∗ is the adjoint of A. To solve (1.7), Byrne [4] proposed the CQ algorithm
which generates a sequence {xn} by

xn+1 = PC(I + γnA
∗(PQ − I)Axn),

for each n ∈ N, where γn ∈ (0, (2/λn)), λn being the spectral radius of the operator
A∗A.

In 2010, Censor et al. [10] considered a new variational problem called split vari-
ational inequality problem (SV IP ). It entails finding a solution of one variational
inequality problem whose image under a bounded linear transformation is a solution
of another variational inequality problem. The SVIP is formulated as find

u ∈ V I(C, f) such that Au ∈ V I(Q, g),

where C and Q are nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively, and A : H1 → H2 is a bounded linear operator. One can easily
observe that split variational inequality has the split feasibility problem as a special
case.

Recently, Tian and Jiang [34], based on the work of Censor et al. [10], considered
a class of SV IP which is to find

x ∈ V I(C, f) such that Ax ∈ F (T )

where C is a nonempty closed convex subset of a real Hilbert space H1, f : C → H1

is a monotone and l−Lipschitz continuous map, A : H1 → H2 is a bounded linear
map, and T : H2 → H2 is a nonexpansive map. they proposed the following
algorithm by combining the Korpelevich extragradient method [24] and Byrne CQ
algorithm as

(1.8)


x1 = x ∈ C;

yn = PC(xn − γnA
∗(I − T )Axn);

tn = PC(yn − λnfyn);

xn+1 = PC(yn − λnftn)

they obtained the following result.

Theorem 1.2 (see [34]). Let H1 and H2 be real Hilbert spaces. Let C be a nonempty,
closed and convex subset of H1, A : H1 → H2 be a bounded linear operator such
that A ̸= 0, f : C → H1 be a monotone and l-Lipschitz continuous map, and
T : H2 → H2 be a nonexpansive map. Setting Γ = {z ∈ V I(C, f) : Az ∈ F (T )},
assume that Γ ̸= 0. Let the sequence {xn} be generated by (1.8), where γn ⊂ [a, b],
a, b ∈ (0, (1/∥A∥2) , and λn ∈ (0, 1/k). Then, the sequence {xn} converges weakly
to a point z ∈ Γ.

To the best of our knowledge, we are not aware of using Tseng’s method (also
known as the Forward-Backward-Forward method) for solving a class of split vari-
ational inequality problem SV IP. One of the advantage of this Tseng’s method is
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the implementation of Algorithm (1.5), the computation of the projection onto the
feasible set C is done only once per iteration. This makes the Algorithm (1.5) more
efficient and implementable than the extragradient algorithm (1.3), where the com-
putation of the projection onto the feasible set is done twice per iteration and also
outperforms the subgradient extragradient algorithm (1.4), which involve two com-
putations of projections per iteration one onto the feasible set and the other onto
the half-space. Therefore, algorithm (1.5) is much more desirable when computing
the projection is a hard task during implementation. However, in implementing an
Algorithm (1.5), one has to obtain the Lipschitz constant, l, of the cost function f
(or an estimate of it). Inspired by the results of Tian and Jiang [34], the authors
raised the following motivational questions:

• Can the result of Tian and Jiang hold in a more general setting of Banach
space than Hilbert?

• Can the extragradient method be replaced by Tseng’s method for solving a
class of split variational inequality problem?

• Can strong convergence theorem be proved in this setting?

In this paper, the above questions are answered in affirmative. We study a modified
Tseng’s extragradient method in the setting of uniformly smooth which is also 2-
uniformly convex real Banach space and 2-uniformly smooth real Banach space
and prove its strong convergence to a solution of a variational inequality problem
for a monotone l−Lipschitz continuous map whose image under a bounded linear
operator is a fixed point of nonexpansive maps. Our theorems improve and extend
the results of Tian and Jiang [34] and other recently announced results.

2. Preliminaries

The following results will play vital roles in establishing our main result.
Let E be a smooth real Banach space and ϕ : E × E → R be define by

(2.1) ϕ(x, y) = ∥x∥2 − ⟨x, Jy⟩+ ∥y∥2 ∀x, y ∈ E.

For all x, y, z ∈ E and α ∈ (0, 1), then the following are satisfied

(2.2) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2,

(2.3) ϕ(x, y) + ϕ(y, x) = 2⟨y − x, Jy − Jx⟩;

(2.4) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨z − x, Jy − Jz⟩;

(2.5) ϕ(z, αx+ (1− α)y) ≤ αϕ(z, x) + (1− α)ϕ(z, y).

Also, we define the function V : E × E∗ → R by

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩+ ∥x∗∥2.

That is, V (x, x∗) = ϕ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. It is well known that, if
E is a reflexive, strictly convex and smooth Banach space with E∗ as its dual, then

V (x, x∗) + 2⟨J−1x∗ − x, y∗⟩ ≤ V (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗, see [33].
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Lemma 2.1. Let E be 2−uniformly convex and smooth real Banach space and C
be nonempty closed convex subset of E. Let x, y ∈ E be arbitrary. ΠC : E → C be
a generalised projection then the following hold

(2.6) there exists a constant c > 0 such that, ⟨x− y, Jx− Jy⟩ ≥ c∥x− y∥2;

(2.7)
there exists a positive constant γ such that, γ∥x− y∥2 ≤ ϕ(x, y) ∀ x, y ∈ E;

(2.8) z = ΠCx if and only if ⟨z − w, Jx− Jz⟩ ≥ 0 ∀w ∈ C;

(2.9) ϕ(w, z) + ϕ(z, x) ≤ ϕ(w, x) ∀w ∈ C.

Remark 2.2. The following clearly hold;

yn = ΠC(J
−1(Jwn − λnfwn))

⇐⇒ ⟨Jwn − λnfwn − Jyn, p− yn⟩ ≤ 0, ∀p ∈ Ω

⇐⇒ ⟨Jyn − Jwn + λnfwn, yn − p⟩ ≤ 0, ∀p ∈ Ω

⇐⇒ ⟨Jyn − Jwn, yn − p⟩ ≤ −λn⟨fwn, yn − p⟩, ∀p ∈ Ω.(2.10)

Lemma 2.3 ([38]). Let E be q−uniformly smooth Banach space, then there exisxs
a constant dq > 0 such that

(2.11) ∥x+ y∥q ≤ ∥x∥q + q⟨y, jx⟩+ dq∥y∥q.

Lemma 2.4 ([18]). Let E be a uniformly convex and smooth real Banach space,
and let {xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded and
limn→∞ ϕ(yn, xn) = 0, then limn→∞ ∥yn − xn∥ = 0.

Lemma 2.5 ([38]). Let C be a nonempty closed and convex subset of a reflexive
Banach space E and B : C → E∗ be a monotone, hemicontinuous map. Let T :
E → 2E

∗
be an operator defined by:

(2.12) Tu =

{
Bu+NC(u), u ∈ C,

∅, u /∈ C,

where NC(u) is defined as follows:

NC(u) = {w∗ ∈ E∗ : ⟨u− z, w∗⟩ ≥ 0, ∀z ∈ C}.
Then, T is maximal monotone and T−10 = V I(C,B).

Lemma 2.6 ([39]). Let {sn} be a sequence of nonnegative real number satisfying

sn+1 = (1− αn)sn + αnβn, ∀n ≥ 0,

where {αn}, {βn} satisfy the conditions

(1) αn ⊂ [0, 1],
∑

αn = ∞
(2) limn→∞ supβn ≤ 0 or

∑
|αnβn| < ∞

Then limn→∞ sn = 0.
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3. Main Results

Theorem 3.1. Let E1 be a uniformly smooth and 2− uniformly convex real Banach
space and E2 a 2− uniformly smooth real Banach space with smoothness constant
d2 ∈ (0, 1). Let C be a nonempty, closed, and convex subset of E1. Let f : C → E∗

1 be
a monotone and l− Lipschitz continuous map and A : E1 → E∗

2 be a bounded linear
operator with its adjoint A∗ such that A ̸= 0. Let T : E2 → E2 be nonexpansive
mapping. Set Ω = {p ∈ V I(C, f) : Ap ∈ F (T ) } and assume Ω ̸= ∅. Let a sequence
{xn} be generated by

(3.1)



x0, x1 ∈ E1;

wn = ΠC((J
−1
1 (J1xn + τnA

∗J2(I − T )Axn));

yn = ΠC(J
−1
1 (J1xn − λfwn));

zn = (J−1
1 (J1yn − λ(fyn − fxn));

xn+1 = (J−1
1 (αnJ1x0 + (1− αn)J1zn)

where τ ∈ [a, b], a, b ∈ (0, 1
d∗2∥A∥2)∥), d

∗
2 being the smoothness constant of E∗ as in

Lemma 2.3, with d2 < 1 and λn ⊂ (0,
√

γ
d∗2l

), γ being a positive constant as in

(2.7). Then the sequences {xn}, {vn}, {yn} and {wn} are well defined and converge
strongly to a point p ∈ Ω.

Proof. Step 1. We show that {xn} is bounded.
Let p ∈ Ω, then we have

ϕ(p, zn) = ϕ(p, J−1(Jyn − λ(fyn − fxn))

= ∥p∥2 − 2⟨p, JJ−1(Jyn − λ(fyn − fxn)⟩+ ∥J−1(Jyn − λ(fyn − fxn)∥2

= ∥p∥2 − 2⟨p, Jyn⟩+ 2λ⟨p, fyn − fxn⟩+ ∥Jyn − λ(fyn − fxn)∥2

≤ ∥p∥2 − 2⟨p, Jyn⟩+ 2λ⟨p, fyn − fxn⟩
+ ∥yn∥2 − 2λ⟨yn, fyn − fxn⟩+ d∗2λ

2∥fyn − fxn∥2

= ϕ(p, yn)− 2λ⟨yn − p, fyn − fxn⟩+ d∗2λ
2∥fyn − fxn∥2.(3.2)

From (2.3), (2.4) and (2.10) we have

ϕ(p, zn) ≤ ϕ(p, xn) + ϕ(xn, yn) + 2⟨xn − p, Jyn − Jxn⟩ − 2λ⟨yn − p, fyn − fxn⟩
+ d∗2λ

2∥fyn − fxn∥2

= ϕ(p, xn) + ϕ(xn, yn)− 2⟨yn − xn, Jyn − Jxn⟩+ 2⟨yn − p, Jyn − Jxn⟩
− 2λ⟨yn − p, fyn − fxn⟩+ d∗2λ

2∥fyn − fxn∥2

= ϕ(p, xn)− ϕ(yn, xn) + 2⟨yn − p, Jyn − Jxn⟩ − 2λ⟨yn − p, fyn − fxn⟩
+ d∗2λ

2∥fyn − fxn∥2

≤ ϕ(p, xn)− ϕ(yn, xn)− 2λ⟨yn − p, fxn⟩ − 2λ⟨yn − p, fyn − fxn⟩
+ d∗2λ

2∥fyn − fxn∥2

= ϕ(p, xn)− ϕ(yn, xn)− 2λ⟨yn − p, fyn⟩+ d∗2λ
2∥fyn − fxn∥2

≤ ϕ(p, xn)− ϕ(yn, xn) + d∗2λ
2∥fyn − fxn∥2.(3.3)
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Since f is monotone l− Lipschitz, from (3.3) and (2.7) we have

ϕ(p, zn) ≤ ϕ(p, xn)− ϕ(yn, xn) + d∗2λ
2∥fyn − fxn∥2

≤ ϕ(p, xn)− ϕ(yn, xn) + d∗2λ
2l∥yn − xn∥2

≤ ϕ(p, xn)− ϕ(yn, xn) +
d∗2λ

2l

γ
ϕ(yn, xn)

= ϕ(p, xn)− (1− d∗2λ
2l

γ
)ϕ(yn, xn).(3.4)

Therefore from the hypothesis in the theorem we have

ϕ(p, zn) ≤ ϕ(p, xn).(3.5)

Now since E∗
1 is 2-uniformly smooth we have

ϕ(p, wn) = ϕ(p,ΠC(J
−1(Jxn + τnA

∗J2(I − T )Awn))

= ∥p∥2 − 2⟨p, JJ−1(Jxn + τnA
∗J2(T − I)Axn)⟩

+ ∥J−1(Jxn + τnA
∗J2(T − I)Axn∥2

= ∥p∥2 − 2⟨p, Jxn⟩ − 2τn⟨p,A∗J2(T − I)Axn⟩
+ ∥Jxn + τnA

∗J2(T − I)Axn∥2

= ∥p∥2 − 2⟨p, Jxn⟩ − 2τn⟨Ap, J2(T − I)Axn⟩
+ ∥Jxn + τnA

∗J2(T − I)Axn∥2

≤ ∥p∥2 − 2⟨p, Jxn⟩ − 2τn⟨Ap, J2(T − I)Axn⟩
+ ∥Jxn∥2 + 2τn⟨xn, A∗J2(T − I)Axn⟩
+ d∗2τ

2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn)− 2τn⟨Ap, J2(T − I)Axn⟩+ 2τn⟨Axn, J2(T − I)Axn⟩
+ d∗2τ

2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn) + 2τn⟨Axn −Ap, J2(T − I)Axn⟩
+ d∗2τ

2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn) + 2τn⟨Axn − TAxn + TAxn −Ap, J2(T − I)Axn⟩
+ d∗2τ

2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn) + 2τn⟨(I − T )Axn, J2(T − I)Axn⟩
+ 2τn⟨TAxn −Ap, J2(T − I)Axn⟩
+ d∗2τ

2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn)− 2τn⟨(T − I)Axn, J2(T − I)Axn⟩
+ 2τn⟨TAxn −Ap, J2(T − I)Axn⟩
+ d∗2τ

2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn)− 2τn∥(T − I)Axn∥2

+ 2τn⟨TAxn −Ap, J2(T − I)Axn⟩
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+ d∗2τ
2
n∥A∗∥2∥(T − I)Axn∥2(3.6)

So since E2 is 2-uniformly smooth we have

∥Axn −Ap∥2 = ∥Axn − TAxn + TAxn −Ap∥2

= ∥(TAxn −Ap)− (TAxn −Axn)∥2

≤ ∥(TAxn −Axn)∥2 − 2⟨TAxn −Ap, J2(T − I)Axn⟩+ d2∥(TAxn −Ap)∥2

Therefore

2⟨TAxn −Ap, J2(T − I)Axn⟩ ≤ ∥(TAxn −Axn)∥2 − ∥Axn −Ap∥2

+d2∥(TAxn −Ap)∥2(3.7)

Now from (3.6) and (3.7) we have

ϕ(p, wn) ≤ ϕ(p, xn)− 2τn∥(T − I)Axn∥2 + τn∥(T − I)Axn)∥2 − τn∥Axn −Ap∥2

+ d2τn∥(TAxn −Ap)∥2 + d∗2τ
2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn)− τn∥(T − I)Axn∥2 − τn∥Axn −Ap∥2 + d2τn∥(TAxn −Ap)∥2

+ d∗2τ
2
n∥A∗∥2∥(T − I)Axn∥2

= ϕ(p, xn)− τn(1− d∗2τn∥A∗∥2)∥(T − I)Axn∥2

− τn(1− d2)∥Axn −Ap∥2(3.8)

Hence

ϕ(p, wn) ≤ ϕ(p, xn)(3.9)

From the projection property we have

ϕ(p, yn) ≤ ϕ(p, (J−1(Jxn − λfwn))− ϕ(yn, (J
−1(Jxn − λfwn))

= ∥p∥2 − 2⟨p, Jxn − λfwn⟩+ ∥Jxn − λfwn∥2

− ∥yn∥2 + 2⟨yn, Jxn − λfwn⟩ − ∥Jxn − λfwn∥2

= ∥p∥2 − 2⟨p, Jxn⟩+ 2λ⟨p, fwn⟩ − ∥Jyn∥2 + 2⟨yn, Jxn⟩ − 2λ⟨yn, fwn⟩
= ϕ(p, xn)− ϕ(yn, xn) + 2λ⟨p− yn, fwn⟩

By Monotonicity property of f and the fact that p ∈ Ω we have

ϕ(p, yn) ≤ ϕ(p, xn)− ϕ(yn, xn) + 2λ⟨wn − yn, fwn⟩.(3.10)

Since from the property of ϕ we have

ϕ(yn, xn) = ϕ(yn, wn) + ϕ(wn, xn) + 2⟨wn − yn, Jwn − Jxn⟩,

so,

ϕ(p, yn) ≤ ϕ(p, xn)− ϕ(yn, wn)− ϕ(wn, xn)

− 2⟨wn − yn, Jwn − Jxn⟩+ 2λ⟨wn − yn, fwn⟩
= ϕ(p, xn)− ϕ(yn, wn)− ϕ(wn, xn)

+ 2⟨wn − yn, Jxn − λfwn − Jwn⟩(3.11)
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Also from the fact that yn = ΠC(J
−1
1 (J1xn − λfwn)) and wn ∈ C. using Projection

property we have

2⟨wn − yn, Jxn − λfwn − Jwn⟩ = 2⟨wn − yn, Jxn − λfwn − Jyn + Jyn − Jwn⟩
= 2⟨wn − yn, Jxn − λfwn − Jyn⟩
+ 2⟨wn − yn, Jyn − Jwn⟩

= 2⟨wn − yn, Jyn − Jwn⟩
= −2⟨yn − wn, Jyn − Jwn⟩
≤ 2| − ⟨yn − wn, Jyn − Jwn⟩|
= 2∥yn − wn∥2

≤ 2ϕ(yn, wn)

γ
.(3.12)

From (3.11) and (3.12) we have

ϕ(p, yn) ≤ ϕ(p, xn)− ϕ(yn, wn)− ϕ(wn, xn) +
2ϕ(yn, wn)

γ

= ϕ(p, xn)− ϕ(wn, xn)− (1− 2

γ
)ϕ(yn, wn).(3.13)

Hence

ϕ(p, yn) ≤ ϕ(p, xn).(3.14)

Also from (2.5) and (3.5)

ϕ(p, xn+1) = ϕ(p, J−1(αnJx0 + (1− αn)Jzn))

≤ αnϕ(p, x0) + (1− αn)ϕ(p, zn)(3.15)

≤ αnϕ(p, x0) + (1− αn)ϕ(p, xn)

≤ Max{ϕ(p, x0), ϕ(p, x1)}

Hence the sequence {ϕ(p, xn)}∞n=1 is bounded, and from (2.2) {xn} is bounded. So
also {yn} {wn} and {zn}.

Step 2. We show that

lim
n→∞

∥xn − wn∥ = lim
n→∞

∥(T − I)Axn∥ = lim
n→∞

∥zn − yn∥ = lim
n→∞

∥zn − wn∥ = 0.

Consider the following two cases

Case 1. Suppose that {ϕ(p, xn)}∞n=1 is nonincreasing sequence, then limn→∞ ϕ(p, xn)
exists. From (3.4), (3.9) and (3.15) we have

ϕ(p, xn+1) ≤ αn[ϕ(p, x0)− ϕ(p, xn)] + ϕ(p, xn)− (1− αn)(1−
d∗2λ

2l

γ
)ϕ(yn, xn)].

This implies that

(1− d∗2λ
2l

γ
)ϕ(yn, xn) ≤ αn[ϕ(p, x0)− ϕ(p, xn)] + [ϕ(p, xn)− ϕ(p, xn+1)]
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+αn(1−
d∗2λ

2l

γ
)ϕ(yn, xn)

From the fact that limn→∞ αn = 0, we have

lim
n→∞

ϕ(yn, xn) = 0(3.16)

From Lemma (2.4) we have

lim
n→∞

∥yn − xn∥ = 0.(3.17)

From the definition of xn+1 we have

∥Jxn+1 − Jzn∥ = αn∥Jx0 − Jzn∥ → 0 as n → ∞.

So

lim
n→∞

∥Jxn+1 − Jzn∥ = 0,

and therefore since J−1 is uniformly norm to norm continuous on bounded sets, we
obtained

lim
n→∞

∥xn+1 − zn∥ = 0.(3.18)

Also from the definition of zn and (3.17) we have

∥Jzn − Jyn∥ = λ∥fyn − fxn∥
≤ l∥yn − xn∥.

So

lim
n→∞

∥Jzn − Jyn∥ = 0.

Since J−1 is uniformly norm to norm continuous on bounded sets, we obtained

lim
n→∞

∥zn − yn∥ = 0.(3.19)

So from (3.13) , (3.17) and uniform continuity of J on bounded subset we have

ϕ(wn, xn) ≤ ϕ(p, xn)− ϕ(p, yn)

= ∥xn∥2 − ∥yn∥2 + ⟨p, Jyn − Jxn⟩
= (∥xn + ∥yn∥)(∥xn∥ − ∥yn∥) + ⟨p, Jyn − Jxn⟩
≤ (∥xn + ∥yn∥)(∥xn − yn∥) + ⟨p, Jyn − Jxn⟩.(3.20)

Therefore

lim
n→∞

ϕ(wn, xn) = 0.(3.21)

From Lemma (2.4) we have

lim
n→∞

∥wn − xn∥ = 0.(3.22)

and

∥zn − xn∥ = ∥zn − yn + yn − xn∥
≤ ∥zn − yn∥+ ∥yn − xn∥.
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So

lim
n→∞

∥zn − xn∥ = 0.(3.23)

From (3.19) and (3.23) we have

∥xn+1 − xn∥ = ∥xn+1 − zn + zn − xn∥
≤ ∥xn+1 − zn∥+ ∥zn − xn∥,

Hence

lim
n→∞

∥xn+1 − xn∥ = 0.(3.24)

So from (3.8), (3.22) and and uniform continuity of J on bounded subset we have

τn(1− d∗2τn∥A∗∥2)∥(T − I)Axn∥2 ≤ ϕ(p, xn)− ϕ(p, wn)

= ∥xn∥2 − ∥wn∥2 + ⟨p, Jwn − Jxn⟩
= (∥xn + ∥wn∥)(∥xn∥ − ∥wn∥) + ⟨p, Jwn − Jxn⟩
≤ (∥xn + ∥wn∥)(∥xn − wn∥)

+⟨p, Jwn − Jxn⟩ → 0.(3.25)

Thus

lim
n→∞

∥(T − I)Axn∥2 = 0.(3.26)

Case 2. Suppose that the sequence {ϕ(p, xn)}∞n=1 is not nonincreasing. Let η :
N → N be a mapping for all n ≥ N values (where N is large enough). Now defined
by ηn := max{k ∈ N : ϕ(p, xk) ≤ ϕ(p, xk+1)}. Then, ηn → ∞ as n → ∞ and
ϕ(p, xηn) ≤ ϕ(p, xηn+1) and ϕ(p, xn) ≤ ϕ(p, xηn+1) for all n ≥ N. By using (3.4),
(3.9) and (3.15) and the conditions of the sequence parameters for each n ≥ N, the
fact that limn→∞ αηn = 0 we have

(1− d∗2λ
2l

γ
)ϕ(yηn , xηn) ≤ αηn [ϕ(p, x0)− ϕ(p, xηn)] + [ϕ(p, xηn)− ϕ(p, xηn+1)]

+αηn(1−
d∗2λ

2l

γ
)ϕ(yηn , xηn)

This implies that

lim
n→∞

ϕ(yηn , xηn) = 0.

From Lemma (2.4) we have

lim
n→∞

∥yηn − xηn∥ = 0.

Following the proof lines in Case 1, we can show that:

lim
n→∞

∥(T − I)Axηn∥2 = 0.(3.27)

Step 3. Next. We show that {xn} converges weakly to an element of Ω. Since
{xn} is bounded then there exists a subsequence {xnk

} of {xn} and p ∈ Ω such that
xnk

⇀ p. From (3.17), (3.19) and (3.22) we have wnk
⇀ p, ynk

⇀ p and znk
⇀ p.
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As A is a bounded Linear operator we have Axnk
⇀ Ap. Also from (3.27) and the

fact that T is nonexpansive, we have (I − T ) is demiclosed at 0. Therefore

Ap ∈ F (T ).

Next We show that p ∈ V I(C, f).
Define

Hv =

{
fv +NC(v), v ∈ C,

∅, v /∈ C.

Then by Lemma 2.5, H is maximal monotone and H−1(0) = V I(C, f) i.e., v ∈
H−1(0) if and only if v ∈ V I(C, f).
Claim: (p, 0) ∈ G(H).

Let (v, x∗) ∈ G(H) then it is enough to show that ⟨v − p, x∗⟩ ≥ 0.
Now

(v, x∗) ∈ G(H) ⇒ x∗ ∈ Hv = fv +NC(v)

⇒ x∗ − fv ∈ NC(v)

Therefore ⟨v − y, x∗ − fv⟩ ≥ 0 ∀y ∈ C. Since ynk
= ΠC(J

−1(Jxnk
− λfwnk

)) and
v ∈ C we have by generalise projection properties ⟨ynk

−v, Jxnk
−λfwnk

−Jynk
⟩ ≥ 0.

Thus,

⟨v − ynk
,
Jynk

− Jfxnk

λ
+ fwnk

⟩ ≥ 0, n ≥ 0.

Using the fact that ynk
∈ C and x∗ − fv ∈ NC(v), we have

⟨v − ynk
, x∗⟩ ≥ ⟨v − ynk

, fv⟩

≥ ⟨v − ynk
, fv⟩ − ⟨v − ynk

,
Jynk

− Jxnk

λ
+ fwnk

⟩

= ⟨v − ynk
, fv − fynk

⟩+ ⟨v − ynk
, fynk

− fwnk
⟩

− ⟨v − ynk
,
Jynk

− Jxnk

λ
⟩

≥ ⟨v − ynk
, fynk

− fwnk
⟩ − ⟨v − ynk

,
Jynk

− Jxnk

λ
⟩.

Using the fact that J is uniformly continuous on bounded set and f is Lipschitz
continuous, hence, as k → ∞, we have

⟨v − p, x∗⟩ ≥ 0.

Since H is a maximal monotone 0 ∈ Hp and hence p ∈ V I(C, f).
Therefore, we have p ∈ Ω.

Step 4. We show that limn→∞ sup⟨Jx0 − Jw, xn −w⟩ ≤ 0, where w = ΠΩ(x0). Let
{xnk

} be a subsequence of {xn} such that

lim
n→∞

sup⟨Jx0 − Jw, xn − w⟩ = lim
k→∞

⟨Jx0 − Jw, xnk
− w⟩.

Since we have p ∈ Ω,

lim
n→∞

sup⟨Jx0 − Jw, xn − w⟩ = lim
k→∞

⟨Jx0 − Jw, xnk
− w⟩ = ⟨Jx0 − Jw, p− w⟩ ≤ 0.
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Step 5. Finally, we show that w = limn→∞ xn, where w = ΠΩ(x0). Now

ϕ(w, xn+1) = ϕ(w, J−1(αnJx0 + (1− αn)Jzn))

= V (w,αnJx0 + (1− αn)Jzn)

≤ V (w,αnJx0 + (1− αn)Jzn − αn(Jx0 − Jw))

+ 2αn⟨Jx0 − Jw, xn+1 − w⟩
≤ αnV (w, Jw) + (1− αn)V (w, Jzn) + 2αn⟨Jx0 − Jw, xn+1 − w⟩
≤ (1− αn)V (w, Jzn) + 2αn⟨Jx0 − Jw, xn+1 − w⟩
= (1− αn)ϕ(w, zn) + 2αn⟨Jx0 − Jw, xn+1 − w⟩
≤ (1− αn)ϕ(w, xn) + 2αn⟨Jx0 − Jw, xn+1 − w⟩.(3.28)

From Step 4, (3.28), and Lemma 2.6, we have w = limn→∞ xn. □
Corollary 3.2. Let H1 and H2 be Hilbert space and let C be a nonempty, closed,
and convex subset of H1. Let f : C → H∗

1 be a monotone and l− Lipschitz continuous
map and A : H1 → H∗

2 be a bounded linear operator with its adjoint A∗ such that
A ̸= 0. Let T : H2 → H2 be nonexpansive mapping. Set Ω = {p ∈ V I(C, f) : Ap ∈
F (T ) } and assume Ω ̸= ∅. Let a sequence {xn} be generated by

(3.29)



x0, x1 ∈ E1;

wn = PC(xn + τnA
∗(I − T )Axn));

yn = PC(xn − λfwn));

zn = yn − λ(fyn − fxn);

xn+1 = αnx0 + (1− αn)zn

where τ ∈ [a, b], a, b ∈ (0, 1
∥A∥2∥), and λn ⊂ (0,

√
γ
l ), γ being a positive constant

as in (2.7). Then the sequences {xn}, {vn}, {yn} and {wn} are well defined and
converge strongly to a point p ∈ Ω.

4. Numerical example

In this section, we present a numerical example to show the convergence of a
sequence generated by our algorithm in Theorem 3.1

Example 4.1. Let E1 = E2 = R, C = [0,∞). and Let T : C → C be defined by
Tx = 2

3x, ∀x ∈ C. Let f : C → C be defined by fx = 1
3x, ∀x ∈ C. and V I(C, f) = 0.

Let A : C → C be defined by Ax = 1
2x, ∀x ∈ C. and ∥A∥2 = 1

4 , A
∗y = 1

2y. When
z ∈ V I(C, f), Az = 0 ∈ F (T ). So, Γ = {z ∈ V I(C, f) : Az ∈ F (T )} ̸= ∅. Clearly, it
satisfy the condition of theorem 3.1. So from the scheme we obtain the following

(4.1)


wn = ProjC(xn + τnA

∗(I − T )Axn));

yn = ProjC(xn − λfwn);

zn = (yn − λ(fyn − fxn))

xn+1 = αnx0 + (1− αn)zn

where λ = 3
n2 , τ = 4

n2 and α = 5
n2 . Then {xn} converges to 0 ∈ Ω = {0}.
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Next, using Matlab software we have the following figures which shows that the
sequence {xn} converges to 0.

Figure 1. The diagram above is illustrating the convergence rate
of the iterative algorithm.
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