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and studied the following extragradient-type algorithm for approximating solutions
of (1.2):

(1.3)

{
xn+1 = PC

(
xn − γnA

∗(Axn −Byn)
)
,

yn+1 = PD

(
yn + γnB

∗(Axn+1 −Byn)
)
,

where A∗ and B∗ denote the adjoint operators A and B, respectively and {γn} is
a sequence of real numbers that satisfies some appropriate conditions. Later, in
the same paper [19], the author replaced the arbitrary subsets C and D with the
fixed point set of some nonlinear operators T and S in order to dispense with the
projections required to implement algorithm (1.3). By making this replacements,
problem (1.2) becomes:

(1.4) find x ∈ F (T ), y ∈ F (S) such that Ax = By,

where F (T ) = {x ∈ H1 : Tx = x} and F (S) = {x ∈ H2 : Sx = x}. Problem (1.4) is
the so-called split equality fixed point problem. Moudafi [19] introduced and studied
the following algorithm for solving problem (1.4):

(1.5)

{
xn+1 = T

(
xn − γnA

∗(Axn −Byn)
)
,

yn+1 = S
(
yn + γnB

∗(Axn+1 −Byn)
)
,

where T and S are firmly quasi-nonexpansive, and {γn} is a positive nondecreasing
sequence such that γn ∈

(
ϵ,min{ 1

λA
, 1
λB

} − ϵ), for a small enough ϵ > 0, λA and λB

are the spectral radius of A∗A and B∗B, respectively. Moudafi [19] proved that the
sequence generated by (1.5) converges weakly to a solution of problem (1.4).

Remark 1.1. Since the appearance of problem (1.4) in the literature, several au-
thors have proposed C-Q versions of algorithm (1.5) to obtain strong convergence.
Some authors have added some compactness-type conditions on the operators T
and S to obtain strong convergence. Others have extended the class of operators
to involve demicontractive, quasinonexpansive, quasi-pseudocontractive, quasi-phi-
nonexpansive and so on, in the setting of Hilbert spaces and Banach spaces (see,
e.g., [1, 5, 11, 13,18,30], for what has been done regarding problem (1.4)).

Our interest is on the recent generalization of problem (1.4) introduced and stud-
ied by Nnakwe et al. [21]. The setting is as follows:

Let X, Y and Z be real Banach spaces with dual spaces, X∗, Y ∗ and Z∗,
respectively. Let C and D be nonempty closed and convex subsets of X and
Y , respectively. Let A : X → Z, B : Y → Z be bounded linear mappings
and let Fi : C → X∗, i = 1, 2 and Ki : D → Y ∗, i = 1, 2 be continuous J-
pseudocontractive maps. The split equality common fixed point problem (SECFPP)
is finding (x, y) ∈ C ×D such that

(1.6) x ∈ FJX (Fi), i = 1, 2 and y ∈ FJY (Ki), i = 1, 2 with Ax = By,

where FJX (Fi) = {x ∈ X : Fix ∈ JXx} and FJY (Ki) = {x ∈ X : Kix ∈ JY x}, JX
and JY are the normalized duality maps on X and Y , respectively. The solution
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set of the SECFPP will be denoted by

(1.7) ∆ :=
{
(x, y) ∈ C ×D : (x, y) ∈

2∩
i=1

(
FJ(Fi)× FJ(Ki)

)
and Ax = By

}
.

Nnakwe et al. [21] introduced and studied the following algorithm for approxi-
mating solutions of the SECFPP (1.6):

(1.8)



(x0, y0) ∈ X × Y,

an ∈ JZ(Axn −Byn),

θn = J−1
X (JXxn − µA∗an)

δn = J−1
Y (JY yn + µB∗an)

xn+1 = J−1
X

(
αnJXx0 + (1− αn)JXT T1

rn ◦ T T2
rn θn

)
,

yn+1 = J−1
Y

(
αnJY y0 + (1− αn)JY FS1

rn ◦ ST2
rn δn

)
, n ≥ 1,

where X and Y are 2-uniformly convex and uniformly smooth real Banach spaces,
Z is a real Banach space, T Ti

rn and FSi
rn are resolvent maps of Ti and Si, i = 1, 2,

respectively, A and B bounded linear maps with adjoints A∗ and B∗, respectively,
{αn} ⊂ (0, 1) and µ is a positive constant satisfying some appropriate conditions.

Remark 1.2. It is worthy of mentioning that the class of J-pseudocontractive
mappings were first introduced by Chidume and Idu [14]. They also gave some
interesting motivations about J-pseudocontractive mappings and the notion of J-
fixed point (see, e.g., [14]).

To honor the memory of the late Professor Charles Ejike Chidume, it is our
purpose in this paper is to contribute our quota to the study of J-pseudocontraction
mappings which he introduced. We incorporate the inertial acceleration strategy
in algorithm (1.8) of Nnakwe et al. [21] and proved that the sequence generated by
our our proposed inertial algorithm converges strongly to a solution of the SECFPP
(1.6) in the setting of real Banach spaces that are 2-uniformly convex and uniformly
smooth. Furthermore, we give a numerical example on the classical Banach space
L 3

2
([−2, 2]) to show that the proposed inertial algorithm is implementable in the

setting of real Banach spaces.

2. Preliminaries

The following definitions and lemmas will be needed in the proof of main theorem.

Definition 2.1. Let E be a strictly convex and smooth real Banach space. For
p > 1, define Jp : E → 2E

∗
by

Jp(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥∥x∗∥, ∥x∗∥ = ∥x∥p−1}.
Jp is called the generalized duality map on E. If p = 2, J2 is called the normalized
duality map and is denoted by J . In a real Hilbert space H, J is the identity map
on H. It is easy to see from the definition that

Jp(x) = ∥x∥p−2Jx, and ⟨x, Jpx⟩ = ∥x∥p, ∀x ∈ E.

It is well-known that if E is smooth, then J is single-valued and if E is strictly
convex, J is one-to-one, and J is surjective if E is reflexive.
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The next definition is for the lyapunov functional ϕ introduced by Alber [3]. It
is useful for estimations involving J and its inverse J−1 on smooth Banach space.

Definition 2.2. Let X be a real Banach space that is smooth and ϕ : X ×X → R
be a map. The lyapunov functional ϕ is defined by

ϕ(x, y) := ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ X.(2.1)

Observe that if X is a real Hilbert space, (2.1) reduces to ϕ(x, y) = ∥x−y∥2, ∀x, y ∈
X.

Furthermore, given x, y, z, u ∈ X, ϕ has the following properties:

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2,

(2.2) ϕ(x, J−1(τJy + (1− τ)Jz) ≤ τϕ(x, y) + (1− τ)ϕ(x, z).

Also we shall use interchangeably the mapping V : X ×X∗ → R by

V (x, y) = ∥x∥2 − 2⟨x, y⟩+ ∥y∥2

with ϕ since
V (x, y) = ϕ(x, J−1y), ∀x ∈ X, y ∈ X∗.

Next, we give the definition of the generalized projection operator which is defined
in terms of ϕ.

Definition 2.3. LetX be a reflexive, strictly convex and smooth real Banach space.
Let D be a nonempty convex and closed subset of X. The generalized projection
ΠD : X → D is defined by ũ = ΠD(u) ∈ D such that ϕ(ũ, u) = infv∈D ϕ(v, u).

Remark 2.4. On a real Hilbert space, the metric projection PD coincides with the
generalized projection ΠD.

The subsequent definitions are for the notions and operators which will be used
in our main theorem. Except where we stated explicitly, the space X is assumed to
be a reflexive, strictly convex and smooth real Banach space.

Definition 2.5. Let T : X → X∗ be a map. A point x ∈ X is called a J-fixed
point of T if Tx = Jx, where J is the duality mapping on the real Banach space X.

Definition 2.6. A map T : X → X is called pseudocontractive if for all x, y ∈ X,
we have

⟨Tx− Ty, J(x− y)⟩ ≤ ∥x− y∥2,
where J is the normalized duality mapping on X.

Definition 2.7. A mapping T : X → X∗ is called J-pseudocontractive if for all
x, y ∈ X, we have

⟨x− y, Tx− Ty⟩ ≤ ⟨x− y, Jx− Jy⟩.
Definition 2.8. The collection of linear and continuous maps B : X1 → X2 is a
normed linear space. The adjoint operator B∗ : X∗

2 −→ X∗
1 is defined by ⟨B∗x∗, v⟩ =

⟨x∗, Bv⟩, ∀ v ∈ X1, x
∗ ∈ X∗

2 , and ∥B∗∥ = ∥B∥.
Now we state without proof the following lemmas which are central in establishing

our main result.
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Lemma 2.9 ([4]). Let X be a smooth, strictly convex and reflexive real Banach
space and X∗ be its dual space . Then

V (u, x∗) + 2⟨J−1x∗ − u, y∗⟩ ≤ V (u, x∗ + y∗), ∀ u ∈ X, x∗, y∗ ∈ X∗.

Lemma 2.10 ([26]). If X is a smooth and 2-uniformly convex real Banach space,
then for all u, v ∈ X∗,

∥J−1u− J−1v∥ ≤ 1

κ
∥u− v∥, for some κ > 0.

Lemma 2.11 ([3]). Let C be a nonempty closed and convex subset of a smooth,
strictly convex and reflexive real Banach space X. For any x ∈ X and y ∈ C,
x̃ = ΠCx if and only if ⟨x̃− y, Jx− Jx̃⟩ ≥ 0, for all y ∈ C.

Lemma 2.12 ([17]). Let X be a uniformly convex and smooth real Banach space,
and let {un} and {vn} be two sequences of X. If either {un} or {vn} is bounded
and limn→∞ ϕ(un, vn) = 0 then limn→∞ ∥un − vn∥ = 0.

Lemma 2.13 ([20]). Let X be a uniformly smooth and strictly convex real Banach
space with dual space X∗. Let C be a nonempty closed and convex subset of X and
T : C → X∗ be a continuous J-pseudocontractive map. Let r > 0 and x ∈ X. Then
the following conditions hold:

(1) There exists z ∈ C such that, ⟨w − z, Tz⟩ − 1
r ⟨w − z, (1 + r)Jz − Jx⟩ ≤

0, ∀w ∈ C.
(2) Define a map Tr : X → C by

T T (x) := {z ∈ C : ⟨w − z, Tz⟩ − 1

r
⟨w − z, (1 + r)Jz − Jx⟩ ≤ 0, ∀w ∈ C}, x ∈ X.

Then the following conditions hold:
(a) T T

r is single valued;
(b) T T

r is firmly nonexpansive-type map, i.e.,

∀ x, y ∈ X, ⟨T T
r x− T T

r y, JT T
r x− JT T

r y⟩ ≤ ⟨T T
r x− T T

r y, Jx− Jy⟩,

(c) F (T T
r ) = FJ(T ), where F (T T

r ) and FJ(T ) denote the fixed point set of
T T
r and J-fixed points of T , respectively.

(d) FJ(T ) is closed and convex,
(e) ϕ(u, T T

r x) + ϕ(T T
r x, x) ≤ ϕ(u, x), ∀ u ∈ F (T T

r ), x ∈ X.

Lemma 2.14 ( [2]). Let E be a 2-uniformly convex and uniformly smooth real
Banach space and let x0, x1, x ∈ E. Let {wn} ⊂ E be a sequence defined by wn :=
J−1

(
Jxn + µn(Jxn − Jxn−1)

)
. Then,

ϕ(x,wn) ≤ ϕ(x, xn) + κµ2
n∥Jxn − Jxn−1∥2 + µnϕ(xn, xn−1)

+ µn

(
ϕ(x, xn)− ϕ(x, xn−1)

)
,

where {µn} ⊂ (0, 1) and κ is the constant appearing in Lemma 2.10.

Finally, the last two lemmas will play a vital role in concluding that the sequence
generated by our proposed algorithm converges strongly.
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Lemma 2.15 ([27]). Let {an} be a sequence of nonnegative numbers satisfying the
condition

an+1 ≤ (1− αn)an + αnβn + cn, n ≥ 0,

where {αn}, {βn} and {cn} are sequences of real numbers such that

(i) {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞;
(ii) lim supn→∞ βn ≤ 0;
(iii) cn ≥ 0,

∑∞
n=0 cn < ∞.

Then,

lim
n→∞

an = 0.

Lemma 2.16 ([6]). Let the sequences {Θn},{γn} and {βn} be in [0,∞) with

Θn+1 ≤ Θn + βn(Θn −Θn−1) + γn,

for all n ≥ 1,
∑∞

n=1 γn < +∞ and there exists β ∈ R with 0 ≤ βn ≤ β < 1, for all
n ∈ N. Then the following hold:

(i)
∑

n≥1[Θn −Θn−1]+ < +∞, where [r]+ = max{r, 0};
(ii) there exists Θ∗ ∈ [0,∞) such that limn→∞Θn = Θ∗.

3. Main results

In this section, we will present the main result of this paper. First, we give the
setting of our main algorithm 3.1.

The Setting of Algorithm 3.1.

(1) The spaces X and Y are 2-uniformly convex and uniformly smooth real
Banach spaces, C and D are nonempty closed and convex subsets of X and
Y , respectively and Z is a smooth real Banach space.

(2) The mappings A : X → Z and B : Y → Z (with A,B ≡ 0) are bounded
linear maps with adjoints A∗ and B∗, respectively. The mappings Fi : C →
X∗, i = 1, 2 and Ki : D → Y ∗, i = 1, 2 are continuous pseudo-contractive
maps, with resolvents T Fi

µn
and SKi

µn
, i = 1, 2, as defined in Lemma 2.13,

respectively.
(3) The solution set ∆ as defined in (1.7) is nonempty.

Algorithm 3.1. Step 1: Choose the sequences {ϵn} and {αn} satisfying
∑∞

n=1 ϵn <
∞,

∑∞
n=1 αn = ∞, and limn→∞ αn = 0. Furthermore, choose a positive constant

γ such that 0 < γ < ρ
∥A∥2+∥B∥2 , ρ = min{ρ1, ρ2}, where ρ1, ρ2 are constants as in

Lemma 2.10 and choose {µn} ⊂ (0,∞).

Step 2: Select arbitrarily the following initial points x, x0, x1 ∈ X, y, y0, y1 ∈ Y ,
β ∈ (0, 1) and choose βn such that 0 ≤ βn ≤ β̄n, where

β̄n =


min

{
β, ϵn∥JXxn − JXxn−1∥−2, ϵnϕ(xn, xn−1)

−1,

ϵn∥JY yn − JY yn−1∥−2, ϵnϕ(yn, yn−1)
−1

}
, xn ̸= xn−1, yn ̸= yn−1;

β, otherwise.
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Step 3: Compute 

zn = J−1
X (JXxn + βn(JXxn − JXxn−1)),

wn = J−1
Y (JY yn + βn(JY yn − JY yn−1)),

an = JZ(Azn −Bwn),

un = J−1
X (JXzn − γA∗an),

vn = J−1
Y (JY wn + γB∗an).

Step 4: Compute

xn+1 = J−1
X

(
αnJXx+ (1− αn)JXT F1

µn
◦ T F2

µn
un

)
,

yn+1 = J−1
Y

(
αnJY y + (1− αn)JY SK1

µn
◦ SK2

µn
vn

)
.

Step 5: Set n = n+ 1 and go to Step 2.

Theorem 3.2. Let {(xn, yn)} be a sequence be generated by Algorithm 3.1, then
{(xn, yn)} converges strongly to a point in ∆.

Proof. We first establish boundedness of the sequence {(xn, yn)} generated by
Algorithm 3.1 before we proceed to show its convergence. Let (x∗, y∗) ∈ ∆ and
set pn = T F2

µn
un and qn = T F1

µn
pn. Using inequality (2.2) and property (e) in Lemma

2.13, we have

ϕ(x∗, xn+1) = ϕ
(
x∗, J−1

X (αnJXx+ (1− αn)JXqn)
)

≤ αnϕ(x
∗, x) + (1− αn)ϕ(x

∗, qn)

≤ αnϕ(x
∗, x) + (1− αn)ϕ(x

∗, un).(3.1)

Next, we estimate the last term in inequality (3.1) using Lemmas 2.9 and 2.14.
Hence, we have

ϕ(x∗, un) = V (x∗, JXzn − γA∗an)

≤ V (x∗, JXzn)− 2γ⟨J−1
X (JXzn − γA∗an)− x∗, A∗an⟩

= ϕ(x∗, zn)− 2γ⟨A(un − x∗), an⟩
≤ ϕ(x∗, xn) + ρ3β

2
n∥JXxn − JXxn−1∥2 + βn(xn, xn−1)

+ βn(ϕ(x
∗, xn)− ϕ(x∗, xn−1))− 2γ⟨A(un − x∗), an⟩.(3.2)

Substituting this in inequality (3.1), we have

ϕ(x∗, xn+1) ≤ αnϕ(x
∗, x)

+ (1− αn)
(
ϕ(x∗, xn)

+ ρ3β
2
n∥JXxn − JXxn−1∥2

+ βn(xn, xn−1)

+ βn(ϕ(x
∗, xn)− ϕ(x∗, xn−1))− 2γ⟨A(un − x∗), an⟩

)
.(3.3)

Following a similarly line of proof, we get

ϕ(y∗, yn+1) ≤ αnϕ(y
∗, y) + (1− αn)

(
ϕ(y∗, yn)

+ ρ4β
2
n∥JY yn − JY yn−1∥2 + βn(yn, yn−1)
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+ βn(ϕ(y
∗, yn)− ϕ(y∗, yn−1))− 2γ⟨B(vn + y∗), an⟩

)
.(3.4)

Let Θn(x, y) = ϕ(x, xn)+ϕ(y, yn) and ϱ = max{ρ3, ρ4}. Adding inequalities (3.3)
and (3.4) and using the fact that Ax∗ = Bx∗, we get

Θn+1(x
∗, y∗) ≤ αn

(
ϕ(x∗, x) + ϕ(y∗, y)

)
+ (1− αn)

(
Θn(x

∗, y∗) + ϱβ2
n

(
∥JXxn − JXxn−1∥2

+ ∥JY yn − JY yn−1∥2
)
+ βnΘn−1(xn, yn) + βn

(
Θn(x

∗, y∗)

−Θn−1(x
∗, y∗)

)
− 2γ⟨Aun −Bvn, an⟩

)
.(3.5)

Next we estimate the underlined term in inequality (3.5). Using the definition of
an in Algorithm 3.1 and Lemma 2.10, we get

−⟨Aun −Bvn, an⟩ = −∥Azn −Bwn∥2 + ⟨Azn −Bwn − (Aun −Bvn), an⟩
= −∥Azn −Bwn∥2 + ⟨A(zn − un), an⟩+ ⟨B(vn − wn), an⟩
≤ −∥Azn −Bwn∥2 + ∥J−1

X (JXzn)− J−1
X (JXzn − γA∗an)∥∥A∗an∥

+ ∥J−1
Y (JY wn + γB∗an)− J−1

Y (JY wn)∥∥B∗an∥

≤ −∥Azn −Bwn∥2 +
γ

ρ1
∥A∗an∥2 +

γ

ρ2
∥B∗an∥2

≤ −
(
1− γ(∥A∥2 + ∥B∥2)

ρ

)
∥Azn −Bwn∥2.(3.6)

Substituting this inequality in (3.5), we get

Θn+1(x
∗, y∗) ≤ αn

(
ϕ(x∗, x) + ϕ(y∗, y)

)
+ (1− αn)

(
Θn(x

∗, y∗) + ϱβ2
n

(
∥JXxn − JXxn−1∥2

+ ∥JY yn − JY yn−1∥2
)
+ βnΘn−1(xn, yn)

+ βn
(
Θn(x

∗, y∗)−Θn−1(x
∗, y∗)

)
−
(
1− γ(∥A∥2 + ∥B∥2)

ρ

)
∥Azn −Bwn∥2

)
≤ max

{
ϕ(x∗, x) + ϕ(y∗, y),Θn(x

∗, y∗)

+ ϱβ2
n

(
∥JXxn − JXxn−1∥2 + ∥JY yn − JY yn−1∥2

)
+ βnΘn−1(xn, yn) + βn

(
Θn(x

∗, y∗)−Θn−1(x
∗, y∗)

)}
.

If Θn+1(x
∗, y∗) ≤ ϕ(x∗, x)+ϕ(y∗, y), ∀n ≥ 1, then

ϕ(x∗, xn+1) ≤ ϕ(x∗, x) + ϕ(y∗, y) and ϕ(y∗, yn+1) ≤ ϕ(x∗, x) + ϕ(y∗, y).

Thus, {xn} and {yn} are bounded. Else, there exists n0 ≥ 1 such that for all n ≥ n0,

Θn+1(x
∗, y∗) ≤ Θn(x

∗, y∗) + ϱβ2
n

(
∥JXxn − JXxn−1∥2

+ ∥JY yn − JY yn−1∥2
)
+ βnΘn−1(xn, yn)

+ βn
(
Θn(x

∗, y∗)−Θn−1(x
∗, y∗)

)
.
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By Step 2 of Algorithm 3.1 and Lemma 2.16 we have that {Θn(x, y)} is convergent.
Consequently, {xn} and {yn} are bounded.

Next, we show {(xn, yn)} converges strongly to a point in ∆. Let (x∗, y∗) ∈ ∆.
Using Lemma 2.9, inequality (2.2), Lemma 2.13(e), inequality (3.2)

ϕ(x∗, xn+1) = V (x∗, αnJXx+ (1− αn)Jqn)

≤ V (x∗, αnJXx∗ + (1− αn)Jqn) + 2αn⟨xn+1 − x∗, Jx− Jx∗⟩
≤ (1− αn)ϕ(x

∗, T F1
µn

pn)

+ 2αn⟨xn+1 − x∗, Jx− Jx∗⟩
≤ (1− αn)

(
ϕ(x∗, un)− ϕ(pn, un)

− ϕ(qn, pn)
)
+ 2αn⟨xn+1 − x∗, Jx− Jx∗⟩

≤ (1− αn)
(
ϕ(x∗, xn) + ρ3β

2
n∥JXxn − JXxn−1∥2 + βnϕ(xn, xn−1)

+ βn(ϕ(x
∗, xn)− ϕ(x∗, xn−1))

− 2γ⟨A(un − x∗), an⟩ − ϕ(pn, un)− ϕ(qn, pn)
)

+ 2αn⟨xn+1 − x∗, Jx− Jx∗⟩
≤ (1− αn)

(
ϕ(x∗, xn) + ρ3β

2
n∥JXxn − JXxn−1∥2 + βnϕ(xn, xn−1)

+ βn(ϕ(x
∗, xn)− ϕ(x∗, xn−1))− 2γ⟨A(un − x∗), an⟩

− ϕ(pn, un)− ϕ(qn, pn)
)

+ 2αn⟨xn − x∗, Jx− Jx∗⟩+ 2αn∥xn+1 − xn∥c0, for some c0 > 0.(3.7)

Similarly,

ϕ(y∗, yn+1) ≤ (1− αn)
(
ϕ(y∗, yn) + ρ4β

2
n∥JY yn − JY yn−1∥2 + βnϕ(yn, yn−1)

+ βn(ϕ(y
∗, yn)− ϕ(y∗, yn−1))− 2γ⟨B(vn + y∗), an⟩

− ϕ(rn, vn)− ϕ(sn, rn)
)
+ 2αn⟨yn − y∗, Jy − Jy∗⟩

+ 2αn∥yn+1 − yn∥c1, for some c1 > 0,(3.8)

where rn = SK2
µn

vn and sn = SK1
µn

rn. Adding inequalities (3.7) and (3.8) and using
inequality (3.6), we get

Θn+1(x
∗, y∗) ≤ (1− αn)Θn(x

∗, y∗)

+ ϱβ2
n(1− αn)(∥JXxn − JXxn−1∥2 + ∥JY yn − JY yn−1∥2)

+ βn(1− αn)Θn−1(xn, yn) + βn(1− αn)
(
Θn(x

∗, y∗)−Θn−1(x
∗, y∗)

)
− (1− αn)

(
1− γ(∥A∥2 + ∥B∥2)

ρ

)
∥Azn −Bwn∥2

− (1− αn)
(
ϕ(pn, un)

+ ϕ(qn, pn) + ϕ(rn, vn) + ϕ(sn, rn)
)
+ 2αn

(
⟨xn − x∗, Jx− Jx∗⟩

+ ⟨yn − y∗, Jy − Jy∗⟩
)
+ 2αn(∥xn+1 − xn∥c0 + ∥yn+1 − yn∥c1)(3.9)

≤ (1− αn)Θn(x
∗, y∗) + ϱβ2

n(1− αn)(∥JXxn − JXxn−1∥2



352 A. ADAMU AND P. KUMAM

+ ∥JY yn − JY yn−1∥2)
+ βn(1− αn)Θn−1(xn, yn) + βn(1− αn)

(
Θn(x

∗, y∗)−Θn−1(x
∗, y∗)

)
+ 2αn

(
⟨xn − x∗, Jx− Jx∗⟩+ ⟨yn − y∗, Jy − Jy∗⟩

)
+ 2αn(∥xn+1 − xn∥c0 + ∥yn+1 − yn∥c1).(3.10)

To complete the proof, we will consider the following two cases:

Case 1. Suppose there exists n1 ≥ 1 such that Θn+1(x
∗, y∗) ≤ Θn(x

∗, y∗), ∀ n ≥ n1.
Then, {Θn(x

∗, y∗)} is convergent. Thus, from inequality (3.9), by rearranging the
terms and using the convergence of {Θn(x

∗, y∗)}, boundedness of {xn}, {yn}, Steps
1 and 2 of Algorithm 3.1, we get that

lim
n→∞

∥Azn −Bwn∥ = lim
n→∞

ϕ(pn, un) = lim
n→∞

ϕ(qn, pn) = lim
n→∞

ϕ(rn, vn)

= lim
n→∞

ϕ(sn, rn) = 0.(3.11)

By Lemma 2.12, it follows that

lim
n→∞

∥pn − un∥ = lim
n→∞

∥qn − pn∥ = lim
n→∞

∥rn − vn∥ = lim
n→∞

∥sn − rn∥ = 0.

Furthermore, by the uniform continuity J on bounded sets, we have

lim
n→∞

∥JXpn − JXun∥ = lim
n→∞

∥JXqn − JXpn∥ = lim
n→∞

∥JY rn − JY vn∥

= lim
n→∞

∥JY sn − JY rn∥ = 0.(3.12)

Observe that by using equation (3.11), we deduce that

(3.13) lim
n→∞

∥JXzn − JXun∥ = ∥JY wn − JY vn∥ = 0.

Also, since limn→∞ αn = 0,

(3.14) lim
n→∞

∥JXpn − JXxn+1∥ = lim
n→∞

∥JY sn − JY yn+1∥ = 0.

By equation (3.12), (3.13) and (3.14), we get

lim
n→∞

∥JXzn − JXxn+1∥ = lim
n→∞

∥JY wn − JY yn+1∥ = 0.

Hence,

lim
n→∞

∥JXxn − JXxn+1∥ = lim
n→∞

∥JY yn − JY yn+1∥ = 0.

Thus,

(3.15) lim
n→∞

∥xn − xn+1∥ = lim
n→∞

∥yn − yn+1∥ = 0.

The next step is to show that the solution set ∆ is contained in the set of weak
subsequential limit Ωω(xn, yn). However, the proof is standard we will not include
the proof here to avoid unnecessary repetitions (see, e.g. [20,21] for a proof of this).

Now, we show that {(xn, yn)} converges strongly to the point (x∗, y∗) = P∆(x, y),
where

P∆(x, y) =
(
Π∆X

x,Π∆Y
y
)
, ∆X =

2∩
i=1

FJX (Fi) and ∆Y =
2∩

i=1

KJY (Fi).
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Let (u, v) be a weak limit of {(xn, yn)}. Then, there exists {(xnj , ynj )} ⊂ {(xn, yn)}
such that

(3.16)
lim sup
n→∞

⟨xn − x∗, JXx− JXx∗⟩ = lim
j→∞

⟨xnj − x∗, JXx− JXx∗⟩

= ⟨u− x∗, JXx− JXx∗⟩
and

(3.17)
lim sup
n→∞

⟨yn − y∗, JY y − JY y
∗⟩ = lim

j→∞
⟨ynj − y∗, JY y − JY y

∗⟩

= ⟨v − y∗, JY y − JY y
∗⟩.

Since (x∗, y∗) =
(
Π∆X

x,Π∆Y
y
)
and (u, v) ∈ ∆, by Lemma 2.11, we have that

⟨u− x∗, JXx− JXx∗⟩ ≤ 0 and ⟨v − y∗, JY y − JY y
∗⟩ ≤ 0.

From inequality (3.10), using the condition of Case 1, we have

Θn+1(x
∗, y∗) ≤ (1− αn)Θn(x

∗, y∗)

+ ϱβ2
n(1− αn)(∥JXxn − JXxn−1∥2 + ∥JY yn − JY yn−1∥2)

+ βn(1− αn)Θn−1(xn, yn) + βn(1− αn)
(
Θn(x

∗, y∗)−Θn−1(x
∗, y∗)

)
+ 2αn

(
⟨xn − x∗, Jx− Jx∗⟩+ ⟨yn − y∗, Jy − Jy∗⟩

)
+ 2αn(∥xn+1 − xn∥c0 + ∥yn+1 − yn∥c1)

≤ (1− αn)Θn(x
∗, y∗)

+ ϱβ2
n(1− αn)(∥JXxn − JXxn−1∥2 + ∥JY yn − JY yn−1∥2)

+ βn(1− αn)Θn−1(xn, yn)

+ 2αn

(
⟨xn − x∗, Jx− Jx∗⟩+ ⟨yn − y∗, Jy − Jy∗⟩

)
+ 2αn(∥xn+1 − xn∥c0 + ∥yn+1 − yn∥c1).

Using Steps 1 and 2 of Algorithm 3.1, equation (3.15), inequalities (3.16) and (3.17)
it follows by Lemma 2.15 that

lim
n→∞

Θn(x
∗, y∗) = 0. Thus, lim

n→∞
ϕ(x∗, xn) = lim

n→∞
ϕ(y∗, yn) = 0.

Therefore, by Lemma 2.12, limn→∞ xn = x∗ and limn→∞ yn = y∗.

Case 2. If Case 1 does not hold, since {Θn(x
∗, y∗)} ⊂ R and every sequence

in R has a monotone subsequence, there exists {Θnj (x
∗, y∗)} ⊂ {Θn(x

∗, y∗)} with
Θnj+1(x

∗, y∗) > Θnj (x
∗, y∗), for all j ∈ N. By Lemma 2.14, there exists a nonde-

creasing sequence {mj} ⊂ N such that limj→∞mj = ∞ and the following inequali-
ties hold:

Θmj (x
∗, y∗) ≤ Θmj+1(x

∗, y∗) and Θj(x
∗, y∗) ≤ Θmj+1(x

∗, y∗), ∀j ∈ N.

By replacing n by mj and rearranging the terms in inequality (3.7), following a
similar argument as in Case 1 above, we obtain that

lim
j→∞

∥Azmj −Bwmj∥ = lim
j→∞

∥JXpmj − JXumj∥ = lim
j→∞

∥JXqmj − JXpmj∥

= lim
j→∞

∥JY rmj − JY vmj∥ = lim
j→∞

∥JY smj − JY rmj∥
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= lim
j→∞

∥xmj − xmj+1∥ = lim
j→∞

∥ymj − ymj+1∥ = 0.(3.18)

Furthermore, using similar arguments as in Case 1, we get

(3.19) lim sup
n→∞

⟨xmj − x∗, JXx− JXx∗⟩ ≤ 0, lim sup
n→∞

⟨ymj − y∗, JY y − JY y
∗⟩ ≤ 0

Moreover, from inequality (3.10),

Θmj+1(x
∗, y∗) ≤ (1− αmj )Θmj (x

∗, y∗)

+ ϱβ2
mj

(1− αmj )(∥JXxmj − JXxn−1∥2 + ∥JY ymj − JY ymj−1∥2)
+ βmj (1− αmj )Θn−1(xmj , ymj )

+ βmj (1− αmj )
(
Θmj (x

∗, y∗)−Θmj−1(x
∗, y∗)

)
+ 2αmj

(
⟨xmj − x∗, Jx− Jx∗⟩+ ⟨ymj − y∗, Jy − Jy∗⟩

)
+ 2αmj (∥xmj+1 − xn∥c0 + ∥ymj+1 − yn∥c1).(3.20)

Using Steps 1 and 2 of Algorithm 3.1, equation (3.18), inequalities (3.19) and (3.17)
it follows by Lemma 2.15 that

lim
j→∞

Θmj+1(x
∗, y∗) = 0.

Since
Θj(x

∗, y∗) ≤ Θmj+1(x
∗, y∗), lim sup

j→∞
Θj(x

∗, y∗) = 0.

Thus,
lim
j→∞

ϕ(x∗, xj) = ϕ(y∗, yj) = 0.

Therefore, by Lemma 2.12 limj→∞ xj = x∗ and limj→∞ yj = y∗. This and the
conlusion obtained in Case 1 completes the proof.

□
Corollary 3.3. Algorithm 3.1 can be extended to a finite family of mappings by
letting i used in the setting of the algorithm to be i = 1, 2, . . . ,m, for some m ≥ 3.

4. Numerical description

In this section, we give a numerical description on how to implement our pro-
posed inertial algorithm using MATLAB, on the classical 2-uniformly convex and
uniformly smooth real Banach space L 3

2
([−2, 2]) with dual space L3([−2, 2]). By

Alber and Ryazantseva [4] p. 36, the normalized duality map J 3
2
and its inverse J3

are computed as follows:

J 3
2
z(t) = ∥z∥0.5L 3

2

|z(t)|−0.5z(t), and J3z(t) = ∥z∥−1
L3

|z(t)|z(t), t ∈ [−2, 2],

where ∥z∥Lp =
(∫ 1

−1
|z(t)|p

) 1
p
, Lp := Lp([−2, 2]), p > 1.

Furthermore, we shall describe how to compute the resolvent operator which we use
in Step 4 of our Algorithm 3.1 before we choose the control parameters. By a result
of Chidume and Idu [14], we deduce that a mapping A : L 3

2
([−2, 2]) → L3([−2, 2])
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is monotone if and only if J − A is pseudocontractive. Let A,B : L 3
2
([−2, 2]) →

L3([−2, 2]) be defined by

Az(t) = Jz(t) and Bz(t) = (1 + t)Jz(t), respectively.

It is not difficult to show that A and B are monotone continuous. Define

F1 = J −A, F2 = J − B, K1 = J − B and K2 = J −A.

Therefore, F1, F2,K1 and K2 are continuous J-pseudocontractions with the solution
set ∆ = {(0, 0)}. Furthermore, from Lemma 2.13,

T T
r (x) := {z ∈ C : ⟨w − z, Tz⟩ − 1

r
⟨w − z, (1 + r)Jz − Jx⟩ ≤ 0, ∀w ∈ C}, x ∈ X.

Thus,

T F1
µ x(t) =

x(t)

1 + µ
, T F2

µ x(t) =
x(t)

1 + tµ
and T F1

µ ◦ T F2
µ x(t) =

x(t)

(1 + µ)(1 + tµ)
.

Also,

SK1
µ x(t) =

x(t)

1 + tµ
, SK2

µ x(t) =
x(t)

1 + µ
and SK1

µ ◦ SK2
µ x(t) =

x(t)

(1 + µ)(1 + tµ)
.

Having established the computational values of these functions, we are ready to
implement our proposed algorithm.

In Algorithm 3.1, set X = Y = Z = L 3
2
([−2, 2]). Let A : X → Z and B : Y → Z

be define by

Ax(t) = 2x(t) and Bx(t) = x(t). Then A∗ = A and B∗ = B.

For the control parameters, we choose αn = 1
100n , γn = µn = 0.1, x = sin t and

y = cos t. From Step 2 of Algorithm 3.1, since βn ≤ β̄n ≤ β, we choose β = 0.5
and set βn = 0.00001. For the integration in MATLAB, we use the trapezoidal
rule with domain of integration ’-2:0.1:2’. We terminate the iteration process when
∥xn+1 − 0∥ + ∥yn+1 − 0∥ < 10−7 or n > 10. Below is table of the numerical
performance of our proposed algorithm with different initial points.
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5. Conclusion

This paper presents an inertial Halpern-type algorithm for approximating so-
lutions of the split common equality fixed point problem involving continuous J-
pseudocontractions. Without any compactness-type requirements on the operators
as it was the case in [15, 16, 24, 29]. The sequence generated by the algorithm is
proved to converge strongly to a solution of the SECFPP (1.6). Numerical im-
plementation of the proposed algorithm is presented in the setting of the classical
Banach space L 3

2
([−2, 2]). The proposed algorithm appears to be robust because

it converges in few iterations even as we vary the initial points. Finally, the nu-
merical implementation of the proposed algorithm in L 3

2
([−2, 2]) shows that the

problem studied by Nnakwe et al. [21] is interesting and their proposed algorithm
is implementable.
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