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if there exists a Schwarz function ω, analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U),
such that

f(z) = g
(
ω(z)

)
(z ∈ U).

In particular, if g is univalent in U, then we have the following equivalence (see, for
example, [16]; see also [17]):

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).
For a function f ∈ Mp,k, given by (1.1), and g ∈ Mp,k defined by

g(z) = z−p +
∞∑

m=k

bmz
m (p ∈ N; 1− p ≦ k ∈ Z),

we define the Hadamard product (or convolution) of f and g by

f(z) ∗ g(z) = (f ∗ g)(z) = z−p +

∞∑
m=k

ambmz
m (p ∈ N; 1− p ≦ k ∈ Z).

For real or complex numbers

e1, e2, · · · , eq and

d1, d2, · · · , ds
(
dj /∈ Z−

0 = {0,−1,−2, · · · } := Z \ N; j = 1, 2, · · · , s
)
,

we consider the generalized hypergeometric function qFs defined as follows (see,
for example, [25, p. 19]) :

qFs(e1, · · · , eq; d1, · · · , ds; z) =
∞∑
k=0

(e1)m · · · (eq)m
(d1)m · · · (ds)m

zk

k!
(1.2)

(q ≦ s+ 1; q, s ∈ N0 := N ∪ {0}; z ∈ U) ,
where (λ)ν (λ, ν ∈ C) denotes the general Pochhammer symbol or the shifted
factorial, since

(1)n = n! (n ∈ N0),

which is defined, in terms of the familiar (Euler’s) Gamma function Γ, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

 1 (ν = 0; λ ∈ C \ {0})

λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),
(1.3)

it being understood conventionally that (0)0 := 1 and assumed tacitly that the
Γ-quotient exists.

Corresponding to the function Fp(e1, · · · , eq; d1. · · · , ds; z) given by

Fp(e1, · · · , eq; d1, · · · , ds; z) := z−p
qFs(e1, · · · , eq; d1, · · · , ds; z),(1.4)

here we first introduce a function Fp,α(e1, · · · , eq; d1, · · · , ds; z) defined by the fol-
lowing convolution:

Fp(e1, · · · , eq; d1, · · · , ds; z) ∗ Fp,α(e1, · · · , eq; d1, · · · , ds; z)

=
1

zp(1− z)α+p
(α > −p; z ∈ U∗).(1.5)
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We then define a linear operator:

Qk,α
p,q,s(e1, · · · , eq; d1, · · · , ds) : Mp,k −→ Mp,k

by

Qk,α
p,q,s(e1, · · · , eq; d1, · · · , ds)f(z)

= Fp,α(e1, · · · , eq; d1, · · · , ds; z) ∗ f(z)(1.6) (
ei, dj ∈ C \ Z−

0 ; i = 1, 2 · · · , q; j = 1, 2, · · · , s;
α > −p; f ∈ Mp,k; z ∈ U∗).

We also make use of the following notational abbreviations and conventions:

Qk,α
p,q,s(e1, · · · , eq; d1, · · · , ds) =: Qk,α

p,q,s(e1)

and

Q1−p,α
p,q,s (e1) =: Qα

p,q,s(e1).

Remark 1.1. The usage of the generalized hypergeometric function qFs, defined
by (1.2), in Geometric Function Theory of Complex Analysis was initiated by Owa
and Srivastava [19] in their systematic study of univalent and starlike generalized
hypergeometric functions. Subsequently, the widely-investigated Dziok-Srivastava
convolution operator, which is based upon the generalized hypergeometric function

qFs, defined by (1.2), was used by Dziok and Srivastava (see, for example, [5]
and [6]; see also [30]). More recently, a much more general Fox-Wright function
than the generalized hypergeometric function qFs, defined by (1.2), was used in
order to introduce and investigate what is popularly known as the Srivastava-Wright
convolution operator (see, for details, [21]; see also [11], and the recent works [22]
and [23]) for other interesting usages and applications of such general families of
higher transcendental functions.

Now, by using (1.1) and (1.6), we can write

Qk,α
p,q,s(e1)f(z) = z−p +

∞∑
k=m

(α+ p)p+k(d1)p+k · · · (ds)p+k

(e1)p+k · · · (eq)p+k
akz

k(1.7)

(α > −p; z ∈ U∗).

We can also easily verify each of the following two relations on z ∈ U∗ by using
(1.7):

z
(
Qk,α

p,q,s(e1)f
)′

(z) = (α+ p)Qk,α+1
p,q,s (e1)f(z)

− (α+ 2p)Qk,α
p,q,s(e1)f(z)(1.8)

and

z
(
Qk,α

p,q,s(e1 + 1)f
)′

(z) = e1Qk,α
p,q,s(e1)f(z)

− (p+ e1)Qk,α
p,q,s(e1 + 1)f(z).(1.9)

We note that the linear operator Qk,α
p,q,s(e1) is closely related to the Choi-Saigo-

Srivastava operator (see, for details, [4]) for analytic functions and is essentially
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motivated by the operators defined and studied in [3]. The linear operator Q0,µ
1,q,s(α1)

was investigated by Cho and Kim [2], where as

Q1−p
p,2,1(c, 1; a; z) =: Lp(a, c) (c ∈ R; a /∈ Z−

0 )

is the operator which was introduced and studied by Liu and Srivastava [13].

Remark 1.2. The operator Qk,α
p,q,s(e1) is a generalization of several known operators

in earlier works, some of which are being recalled below.

1. Qk,0
p,s+1,s(p+ 1, d1, · · · , ds; d1, d2, · · · , ds)f(z) =

p

z2p

∫ z

0
t2p−1f(t) dt.

2. Qk,0
p,s+1,s(p, d1, · · · , ds; d1, d2, · · · , ds)f(z)

= Qk,1
p,s+1,s(p+ 1, d1, · · · , ds; d1, d2, · · · , ds)f(z)

= f(z).

3. Qk,1
p,s+1,s(p, d1, · · · , ds; d1, d2, · · · , ds)f(z) =

zf ′(z) + 2pf(z)

p
.

4. Qm,2
p,s+1,s(p+ 1, d1, · · · , ds; d1, d2, · · · , ds)f(z) =

zf ′(z) + (2p+ 1)f(z)

p+ 1
.

5. Q1−p,n
p,s+1,s(d1, d2, · · · , ds, 1; d1, d2, · · · , ds)f(z) =

1

zp(1− z)n+p
= Dn+p−1f(z)

(−p < n ∈ N) (see [8]).

6. Qk,1−p
p,s+1,s(δ + 1, d2, · · · , ds, 1; δ, d2, · · · , ds)f(z) =

δ

zδ+p

∫ z

0
tδ+p−1f(t) dt

(δ > 0; z ∈ U∗) (see [3] and [8]).

7. Qk,α
p,2,1(e1)f(z) = z−p +

∞∑
k=m

(α+ p)p+k(d1)p+k

(e1)p+k(e2)p+k
akz

k

(see [18] for e2 = 1, α+ p = µ, d1 = α+ β and e1 = β).

Let P be the class of all functions w which are analytic and univalent in U, and
for which w(U) is convex with

w(0) = 1 and ℜ{w(z)} > 0 (z ∈ U).

Next, by making use of the linear operator Qk,α
p,q,s(e1), we introduce the following

subclasses of the meromorphically multivalent (p-valent) function class Mp,k.

Definition 1.3. A function f ∈ Mp,k is said to be in the meromorphically mul-
tivalent (p-valent) function class MSKα,e1

p,k,ν(q, s, ξ : w) if f satisfies the following

subordination condition:

− 1

p− ξ

 z
(
Qk,α

p,q,s(e1)f
)′

(z) + νz2
(
Qk,α

p,q,s(e1)f
)′′

(z)

(1− ν)Qk,α
p,q,s(e1)f(z) + νz

(
Qk,α

p,q,s(e1)f
)′

(z)
+ ξ

 ≺ w(z)(1.10)
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(w ∈ P ; 0 ≦ ξ < p; 0 ≦ ν ≦ 1; α > −p; z ∈ U).

Definition 1.4. A function f ∈ Mp,k is said to be in the meromorphically multiva-
lent (p-valent) function class MCα,e1

p,k,ν(q, s, η, ξ, w, ϕ) if there exists another function

g ∈ MSKα,e1
p,k,ν(q, s, ξ : w) such that the following subordination condition holds

true:

− 1

p− η

z
(
Qk,α

p,q,s(e1)f
)′

(z) + νz2
(
Qk,α

p,q,s(e1)f
)′′

(z)

(1− ν)Qk,α
p,q,s(e1)g(z) + νz

(
Qk,α

p,q,s(e1)g
)′

(z)
+ η

 ≺ ϕ(z)(1.11)

(ϕ ∈ P ; 0 ≦ η < p; 0 ≦ ν ≦ 1; α > −p; z ∈ U).

Remark 1.5. By choosing several particular values of the parameters involved in
Definition 1.3 and Definition 1.4 above, we get several known function classes which
are recorded below.

1. MSKα,e1
p,k,0(q, s, ξ : w) = MSα.e1

p,k (q, s, ξ : w) (Patel and Palit [20]).

2. MSα,e1
p,k,1(q, s, ξ : w) = MKα.e1

p,k (q, s, ξ : w).

3. MSα,e1
1,0 (q, s, ξ : w) = MSα.e1(q, s, ξ : w) (Cho and Kim [2]).

4. MKα,e1
1,0 (q, s, ξ : w) = MKα.e1(q, s, ξ : w) (Cho and Kim [2]).

5. MSKα,e1
p,k,ν

(
q, s, ξ :

1 +Az

1 +Bz

)
= MSα,e1

p,k (q, s, ξ : A,B)

(−1 < B < A ≦ 1).

6. MCα,e1
p,k,ν

(
q, s, η, ξ;

1 +Az

1 +Bz

)
(q, s, η, ξ : A,B)

(−1 < B < A ≦ 1).

7. MSα,e1
p,k (2, 1, ξ;w) = ΣpS

α
e1,α+p(ξ;w) (Mostafa [18]).

8. MKα,e1
p,k (2, 1, ξ;w) = ΣpK

α
e1,α+p(ξ;w) (Mostafa [18]).

9. MCα,e1
p,k,0(2, 1, ξ, η;w, ϕ) = ΣpC

α
e1,α+p(ξ, η;w, ϕ) (Mostafa [18]).

10. MCα.e1
p,k,1(2, 1, ξ, η;w, ϕ) = ΣpC

α⋆
e1,α+p(ξ, η;w, ϕ) (Mostafa [18]).

We need each of the following lemmas in our present investigation.

Lemma 1.6. (see [7]) Let the function w be convex univalent in U with

w(0) = 1 and ℜ{ζw(z) + η} > 0 (η, ζ ∈ C).
If the function ϕ is analytic in U with ϕ(0) = 1, then the following subordination:

ϕ(z) +
zϕ′(z)

ζϕ(z) + η
≺ w(z) (z ∈ U)
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implies that

ϕ(z) ≺ w(z) (z ∈ U).

Lemma 1.7. (see [16]) Let w be a convex univalent function in U. Also let the
function p be analytic in U with

ℜ{p(z)} > 0 (z ∈ U).

If the function w is analytic in U and p(0) = w(0), then the following subordination:

w(z) + zp(z) w′(z) ≺ w(z) (z ∈ U)

implies that

p(z) ≺ w(z) (z ∈ U).

2. A set of main inclusion relations

Unless otherwise mentioned, we assume throughout this article that

e1 > 0, ei, dj ∈ R \ Z−
0 (i = 2, 3, · · · , q; j = 1, 2, · · · , s), ν > 0,

α > −p and − 1 ≦ B < A ≦ 1.

We now state our first main result as Theorem 2.1 below.

Theorem 2.1. For w ∈ P , if

max
z∈U

ℜ{w(z)} < min
z∈U

{
α+ 2p− ξ

p− ξ
,
e1 + p− ξ

p− ξ

}
(0 ≦ ξ < p),

then each of the following inclusion relations holds true:

MSKα+1,e1
p,k,ν (q, s, ξ;w) ⊂ MSKα,e1

p,k,ν(q, s, ξ;w) ⊂ MSKα,e1+1
p,k,ν (q, s, ξ;w).(2.1)

Proof. We consider a function h(z) given by

(2.2) h(z) = − 1

p− ξ

 z
(
Qk,α

p,q,s(e1)f
)′

(z) + νz2
(
Qk,α

p,q,s(e1)f
)′′

(z)

(1− ν)Qk,α
p,q,s(e1)f(z) + νz

(
Qk,α

p,q,s(e1)f
)′

(z)
+ ξ

 .

The function h(z) is analytic in U and h(0) = 1.

If we now assume that f ∈ MSKα+1,e1
p,k,ν (q, s, ξ;w) and make use of (1.8), we get

−h(z)(p− ξ) + (2p+ α− ξ)

α+ p

=
(1− ν)Qk,α+1

p,q,s (e1)f(z) + νz
(
Qk,α+1

p,q,s (e1)f
)′

(z)

(1− ν)Qk,α
p,q,s(e1)f(z) + νz

(
Qk,α

p,q,s(e1)f
)′

(z)
.

Upon logarithmically differentiating both sides of this last equation, we find that

h(z) +
zh′(z)

−(p− ξ)h(z) + (α+ 2p− ξ)
(2.3)
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= − 1

p− ξ

 z
(
Qk,α+1

p,q,s (e1)f
)′

(z) + νz2
(
Qk,α+1

p,q,s (e1)f
)′′

(z)

(1− ν)
(
Qk,α+1

p,q,s (e1)f
)
+ νz

(
Qk,α+1

p,q,s (e1)f
)′

(z)
+ ξ

 .

Thus, by the above hypothesis, we have

ℜ{−(p− ξ)w(z) + (α+ 2p− ξ)} > 0 (z ∈ U).
Finally, by applying Lemma 1.6 to (2.3), it follows that h(z) ≺ w(z), that is,

that f ∈ MSKα,e1
p,k,ν(q, s, ξ, w). Using the same lines of arguments as above, we can

similarly prove the second inclusion relation asserted by Theorem 2.1. The proof of
Theorem 2.1 is now completed. □
Theorem 2.2. For w, ϕ ∈ P , if

max
z∈U

ℜ{w(z)} < min
z∈U

{
α+ 2p− ξ

p− ξ
,
e1 + p− ξ

p− ξ

}
(0 ≦ ξ < p),

then each of the following inclusion relations holds true:

MCα+1,e1
p,k,ν (q, s, η, ξ, w, ϕ) ⊂ MCα,e1

p,k,ν(q, s, η, ξ, w, ϕ)

⊂ MCα,e1+1
p,k,ν (q, s, η, ξ, w, ϕ).(2.4)

Proof. In order to prove the first part of Theorem 2.2, let

f ∈ MCα+1,e1
p,k,ν (q, s, η, ξ, w, ϕ).

Then, from Definition 1.4 of the meromorphically multivalent (p-valent) function

class MCα+1,e1
p,k,ν (q, s, η, ξ, w, ϕ), there exists a function

g ∈ MSKα+1,e1
p,k,ν (q, s, η;w)

such that

− 1

p− η

 z
(
Qk,α+1

p,q,s (e1)f
)′

(z) + νz2
(
Qk,α+1

p,q,s (e1)f
)′′

(z)

(1− ν)(Qk,α+1
p,q,s (e1)g)(z) + νz

(
Qk,α+1

p,q,s (e1)g
)′

(z)
+ η

 ≺ ϕ(z)

(z ∈ U).

We now introduce a function h(z) given by

h(z) = − 1

p− η

 z
(
Qk,α

p,q,s(e1)f
)′

(z) + νz2
(
Qk,α

p,q,s(e1)f
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1)g)(z) + νz

(
Qk,α

p,q,s(e1)g
)′

(z)
+ η

 .(2.5)

The function h(z) is analytic in U with h(0) = 1. So, upon using the identity (1.7)
in (2.5), we get

[(p− η)h(z) + η] · [(p− ξ)r(z) + ξ] = (α+ 2p)[(p− η)h(z) + η]

+ (α+ p)

z
(
Qk,α+1

p,q,s (e1)f
)′

(z) + νz2
(
Qk,α+1

p,q,s (e1)f
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1)g)(z) + νz

(
Qk,α

p,q,s(e1)g
)′

(z)

 ,(2.6)
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which, on further simplification, yields

−(p− η)zh′(z)

−(p− ξ)r(z) + (α+ 2p− ξ)
+ [−(p− η)h(z)− η] = (α+ p)

·

 z
(
Qk,α+1

p,q,s (e1)f
)′

(z) + νz2
(
Qk,α+1

p,q,s (e1)f
)′′

(z)[
(1− ν)(Qk,α

p,q,s(e1)g)(z)+νz
(
Qk,α

p,q,s(e1)g
)′

(z)

]
· [−(p− ξ)r(z)+(α+ 2p− ξ)]

 ,

(2.7)

where, for convenience,

r(z) = − 1

p− ξ

 z
(
Qk,α

p,q,s(e1)g
)′

(z) + νz2
(
Qk,α

p,q,s(e1)g
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1)g)(z) + νz

(
Qk,α

p,q,s(e1)g
)′

(z)
+ ξ

 .(2.8)

Thus, by using the identity (1.7) in (2.8), we obtain

(α+ p)

(1− ν)(Qk,α+1
p,q,s (e1)g)(z) + νz

(
Qk,α+1

p,q,s (e1)g
)′

(z)

−(p− ξ)r(z) + (α+ 2p− ξ)


= (1− ν)(Qk,α

p,q,s(e1)g)(z) + νz
(
Qk,α

p,q,s(e1)g
)′

(z).(2.9)

Also, if we use (2.9) in (2.7), we get

h(z) +
zh′(z)

−(p− ξ)r(z) + (α+ 2p− ξ)

= − 1

p− η

 z
(
Qk,α+1

p,q,s (e1)f
)′

(z) + νz2
(
Qk,α+1

p,q,s (e1)f
)′′

(z)

(1− ν)
(
Qk,α+1

p,q,s (e1)g
)
(z) + νz

(
Qk,α+1

p,q,s (e1)g
)′

(z)
+ η

(2.10)

(z ∈ U).
Therefore, by the above hypothesis, we have

ℜ{−(p− ξ)w(z) + (α+ 2p− ξ)} > 0 (z ∈ U).

Lastly, by applying Lemma 1.6 to (2.10), it follows that h(z) ≺ w(z), that is,
that f ∈ MCα,e1

p,k,ν(q, s, η, ξ, w, ϕ). The same lines of arguments can be used to prove

the second inclusion relation asserted by Theorem 2.2. This evidently completes
the proof of Theorem 2.2. □

3. Applications of the integral operator Fµ

In this section, we consider the integral operator Fµ defined by (see, for example,
[12])

(3.1) Fµ(f)(z) :=
µ− p+ 1

zµ+1

∫ z

0
tµ f(t) dt (µ > 0),
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which readily yields

z
(
Qk,α

p,q,s(e1) Fµf
)′

(z) = (µ− p+ 1)Qk,α
p,q,s(e1)f(z)

− (µ+ 1)Qk,α
p,q,s(e1)Fµf(z).(3.2)

Theorem 3.1. Let w ∈ P and

max
z∈U

ℜ{w(z)} < µ+ 1− ξ

p− ξ
(0 ≦ ξ < p).

If f ∈ MSKα,e1
p,k,ν(q, s, ξ, w), then Fµ(f) ∈ MSKα,e1

p,k,ν(q, s, ξ, w).

Proof. Let f ∈ MSKα,e1
p,k,ν(q, s, ξ, w) and suppose that

− 1

p− ξ

 z
(
Qk,α

p,q,s(e1)f
)′

(z) + νz2
(
Qk,α

p,q,s(e1)f
)′′

(z)

(1− ν)Qk,α
p,q,s(e1)f(z) + νz

(
Qk,α

p,q,s(e1)f
)′

(z)
+ ξ

 =: ℓ(z) ≺ w(z).(3.3)

Choosing the function q(z) as follows:
(3.4)

q(z) = − 1

p− ξ

 z
(
Qk,α

p,q,s(e1) Fµf
)′

(z) + νz2
(
Qk,α

p,q,s(e1) Fµf
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1) Fµf)(z) + νz

(
Qk,α

p,q,s(e1) Fµf
)′

(z)
+ ξ

 ,

we see that q(z) is analytic in U and q(0) = 1. So, by using the identity (3.2) in
(3.4) and carrying out the same procedure as in our proof of Theorem 2.1, we get

ℓ(z) =
zq′(z)

−(p− ξ)q(z) + µ− ξ + 1
+ q(z).(3.5)

In view the above hypothesis, if we apply Lemma 1.6 to (3.5), it follows that q ≺ w,
that is, that Fµ(f) ∈ MSKα,e1

p,k,ν(q, s, ξ, w). The proof theorem 3.1 is thus completed.
□

Theorem 3.2. Let w, ϕ ∈ P and suppose that

max
z∈U

ℜ{w(z)} < µ+ 1− ξ

p− ξ
(0 ≦ ξ < p).

If f ∈ MCα,e1
p,k,ν(q, s, η, ξ, w, ϕ), then Fµ(f) ∈ MCα,e1

p,k,ν(q, s, η, ξ, w, ϕ).

Proof. To prove Theorem 3.2, we first let f ∈ MCα,e1
p,k,ν(q, s, η, ξ, w, ϕ). Then, from

Definition 1.4 of the meromorphically multivalent (p-valent) function classMCα,e1
p,k,ν(q, s, η, ξ, w, ϕ),

there exists a function g ∈ MSα,e1
p,k,ν(q, s, ξ, w) such that

l(z) :=− 1

p− η

 z
(
Qk,α

p,q,s(e1)f
)′

(z) + νz2
(
Qk,α

p,q,s(e1)f
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1)g)(z) + νz

(
Qk,α

p,q,s(e1)g
)′

(z)
+ η

 ≺ ϕ(z)

(z ∈ U)
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We now set

r(z) = − 1

p− η

 z
(
Qk,α

p,q,s(e1) Fµf
)′

(z) + νz2
(
Qk,α

p,q,s(e1) Fµf
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1) Fµg)(z) + νz

(
Qk,α

p,q,s(e1)Fµg
)′

(z)
+ η

 ,(3.6)

where r(z) is analytic in U with r(0) = 1. Also let the function ψ(z) be given by
(3.7)

ψ(z) = − 1

p− ξ

 z
(
Qk,α

p,q,s(e1) Fµg
)′

(z) + νz2
(
Qk,α

p,q,s(e1) Fµg
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1) Fµg)(z) + νz

(
Qk,α

p,q,s(e1) Fµg
)′

(z)
+ ξ

 .

The function ψ(z) is analytic in U with ψ(0) = 1. So, by using (1.7) in (3.7), we
get

(µ− p+ 1)

 z
(
Qk,α

p,q,s(e1)g
)′

(z) + νz2
(
Qk,α

p,q,s(e1)g
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1) Fµg)(z) + νz

(
Qk,α

p,q,s(e1) Fµg
)′

(z)


= −(p− ξ)ψ(z) + µ+ 1− ξ.(3.8)

By making use of (1.7) in (3.6), we obtain

(p− η)zr′(z)

(p− η)r(z) + η
+ {−(p− ξ)ψ(z) + µ+ 1− ξ}

= (µ− p+ 1)

 z
(
Qk,α

p,q,s(e1)f
)′

(z) + νz2
(
Qk,α

p,q,s(e1)f
)′′

(z)

(1− ν)(Qk,α
p,q,s(e1) Fµg)(z) + νz

(
Qk,α

p,q,s(e1) Fµg
)′

(z)



·
(
− 1

(p− η)r(z) + η

)
,

(3.9)

which, in view of (3.8), yields

(3.10) l(z) = r(z) +
zr′(z)

−(p− ξ)ψ(z) + µ+ 1− ξ
(z ∈ U).

Finally, by the above hypothesis, we can find that

ℜ{−(p− ξ)ϕ(z) + (µ+ 1− ξ)} > 0 (z ∈ U),
so that, by applying Lemma 1.6, it follows that r(z) ≺ ϕ(z), that is, that Fµ(f) ∈
MCα,e1

p,k,ν(q, s, η, g, ϕ). Hence we have completed the proof of Theorem 3.2. □

4. Special cases and consequences

This section is devoted to the presentation of some special cases and consequences
of our main results (Theorem 2.1, Theorem 2.2, Theorem 3.1 and Theorem 3.2).

First of all, if we put

w(z) =
1 +Az

1 +Bz
(−1 ≦ B < A ≦ 1; z ∈ U)

in Theorem 2.1, we are led to the following corollary.
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Corollary 4.1. If

1 +A

1 +B
≦ min

z∈U

{
α+ 2p− ξ

p− ξ
,
e1 + p− ξ

p− ξ

}
,

then each of the following inclusion relations holds true:

MSKα+1,e1
p,k,ν (q, s, ξ;A,B) ⊂ MSKα,e1

p,k,ν(q, s, ξ;A,B)

⊂ MSKα,e1+1
p,k,ν (q, s, ξ;A,B).

Remark 4.2. Theorem-2.1 and Theorem-2.2 generalize and extend several known
results in earlier investigations which are being recalled below.

1. Under the same hypothesis as before, if we set ν = 0 in Theorem-2.1, we get a
result obtained by Patel and Palit [20, Theorem 3.1].

2. Upon taking p = 1, if we further set ν = 0 and ν = 1 in Theorem-2.1, respectively,
we get the known results derived earlier by Cho and Kim [2, Theorem 1 and Theorem
2].

3. Choosing p = 1 and q = s = 1 in Theorem-2.1, we get a result of Aghalary [1,
Theorem 1].

4. In the case when p = 1, if we put ν = 0 and ν = 1 in Corollary-4.1, we get both
results established by Cho and Kim [2, Corollary 1].

5. Upon taking p = 1 and ν = 0 in Theorem 2.2, we get another result of Cho and
Kim [2, Theorem 2].

Remark 4.3. By putting

w(z) =
1 +Az

1 +Bz
(−1 ≦ B < A ≦ 1; z ∈ U)

in Theorem 3.1, we are led to the following corollary.

Corollary 4.4. Let

1 +A

1 +B
<
µ+ 1− ξ

p− ξ
(µ > 0; −1 < B < A ≦ 1; 0 ≦ ξ < 1).

Then f ∈ MSKα,e1
p,k,ν(q, s, η, g, A,B).

Remark 4.5. By assigning suitable particular values to p and ν in Theorem 3.1,
Theorem 3.2 and Corollary 4.4, we can derive a number of known results. Some of
these special cases are recorded below.

1. Upon taking p = 1, if we set ν = 0 and ν = 1 in Theorem 3.1, respectively, we
get the results of Cho and Kim [2, Theorem 4 and Theorem 5].

2. Under the same hypothesis as before, if we set ν = 0 in Theorem-3.1, we get a
result obtained by Patel and Palit [20, Theorem 3.8].
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3. Upon setting p = 1, if we take ν = 0 and ν = 1 in Corollary 4.4, respectively, we
get both results of Cho and Kim [2, Corollary 2].

4. Upon taking p = 1 and ν = 0 in Theorem 3.2, we get a result of Cho and
Kim [2, Theorem 6], which, in turn, generalizes the results obtained earlier by Goel
and Sohi [9].

5. If we take q = 2, s = 1, α + p = µ, e1 = β, e2 = 1 and d1 = α + β in our main
results (Theorem 2.1, Theorem 2.2, Theorem 3.1 and Theorem 3.2), then we get all
of the results obtained by Mostafa [18].

5. Concluding remarks and observations

In recent years, several authors used hypergeometric functions to define and in-
vestigate many different subclasses of meromorphic functions in Geometric Function
Theory of Complex Analysis. Motivated by these earlier works, we have introduced
and studied the following two general subclasses of meromorphic multivalent (p-
valent) functions:

MSKα.e1
p,k,ν(q, s, ξ : w) and MCα,e1

p,k,ν(q, s, η, ξ, w, ϕ)

in the punctured unit disk U∗. Each of these subclasses is defined as an analogue
of the Choi-Saigo-Srivastava operator for meromorphic functions. Here, in this ar-
ticle, we have established inclusion properties and other results for each of these
subclasses, which are associated with an integral operator Fµ. For functions f be-
longing to the aforementioned subclasses, we have derived some sufficient conditions
for Fµf to be member of the subclasses:

MSKα.e1
p,k,ν(q, s, ξ : w) and MCα,e1

p,k,ν(q, s, η, ξ, w, ϕ).

We have also briefly considered relevant connections of the developments reported
here with those in some earlier works on the subject.

We conclude our present investigation by drawing the attention of the interested
readers toward the potential for further researches developing similar or analogous
results based upon such other meromorphic function classes as those that were
studied in (for example) several recent works (see, for details, [10], [14], [15], [24],
[26], [27] and [28]; see also [29]).
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