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where Ai : Hi → 2Hi , i = 1, 2 are maximal monotone operators and T : H1 → H2

is a bounded linear operator. This problem has also been investigated by many
researchers ( See for example, Takahashi et al. [26, 27] and Tuyen [28] and the
references therein). Other related problems to the aforementioned are; the split
common fixed point problem (SCFPP) [9], the split variational inequality problem
(SVIP) [13].

We remark that the SFP, SCFPP, SCNPP and the SVIP as well as several other
related problems can be reformulated as the following generalized split problem. Let
V and W be two Hilbert or Banach spaces and let T : V → W be a mapping from V
to W. Suppose that (P1) and (P2) are two given problems in V and W respectively.
Then the problem is to find an element x∗ in V such that x∗ is a solution to (P1) and
T (x∗) is a solution to (P2). We denote this problem by (P ). A more general form of
problem (P ) is defined as follows: Let V1, V2, . . . , VN be Hilbert or Banach spaces
and let Ti : Vi → Vi+1, i = 1, 2, . . . , N − 1 be mappings from Vi to Vi+1. Suppose
that (Pi), i = 1, 2, . . . , N are N problems on Vi, respectively. Then the more general
form of problem (P ) is to find an element x∗ ∈ V1 such that x∗ is a solution to (P1),
T1(x

∗) is a solution to (P2), . . . , and TN−1(TN−2(. . . T2(T1(x
∗)))) is a solution to

(PN ). We denote this problem by (GP ). There are practical problems which can be
modelled in the form of problem (GP ). For instance, the production line balancing
problem, where the quantity of semi-finished products from the previous process has
to be equal to that intended for the next process [22]. Since the methods for solving
the SCNPP can be applied to related problems such as the SFP, the SCFPP and the
SVIP. In [22], Reich and Tuyen considered the following generalized split common
null point problem (GSCNPP): Let Hi, i = 1, 2, . . . , N be real Hilbert spaces and let
Ai : Hi → 2Hi , i = 1, 2, . . . , N be maximal monotone operators on Hi, respectively.
Let Ti : Hi → Hi+1, i = 1, 2, . . . , N−1 be bounded linear operators such that Ti ̸= 0
and

S := A−1
1 (0) ∩ T−1

1 (A−1
2 (0)) ∩ · · · ∩ T−1

1 (T−1
2 . . . (T−1

N−1(A
−1
N (0)))) ̸= ∅.

Consider the following problem:

(1.4) Find an element x∗ ∈ S,

that is, a point x∗ ∈ H1 such that

0 ∈ A1(x
∗), 0 ∈ A2(T1x

∗), . . . , 0 ∈ AN (TN−1(TN−2, . . . , T1(x
∗))).

Since this new problem is much more general than the split feasibility problem
(SFP), it turns out to have many more applications. In Reich and Tuyen [22],
the authors in order to solve Problem 1.4, proposed and studied different modi-
fications of the CQ method and established several strong convergence theorems
for their algorithms. Furthermore, they presented several applications of their
results and exhibited a numerical example to illustrate the performance of their
algorithms. We remark that the step size γ in the algorithms studied by Reich
and Tuyen [22] depends on the operator norm of the bounded linear operators,
Ti, i = 1, 2, . . . , N − 1. This is restrictive since the norms of the bounded linear
operators, Ti, i = 1, 2, . . . , N − 1 are not known precisely. In fact, it is known that
computation of the norm of bounded linear operators is very difficult in general and
in some cases impossible.
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Although the results obtained in Reich and Tuyen [22] are novel and important in
application, their algorithms have a draw back arising from the restriction on γ. It
is therefore of interest to obtain those results without the restrictive condition on
the step size, γ.

Recently, inertial type algorithms for solving optimization problems have become
of great interest to numerous researchers. Since Polyak [21] studied an inertial
extrapolation process for solving smooth convex minimization problems, there have
been growing interests in the design and study of iterative methods with inertial
term. For example, inertial forward-backward splitting methods, Attouch et al. [1],
Cholamjiak et al. [10], inertial ADMM, Bot and Csetnek [3], and inertial forward
backward- forward method, Lorenz and Pock [14]. The inertial term is based upon
a discrete analogue of a second order dissipative dynamical system, (see Attouch et
al. [1]) and is known for its efficiency in improving the convergence rate of iterative
methods. The inertial type algorithms have been tested in the solution of certian
number of problems (for example, imaging and data analysis problems, motion of
a body in a potential field) and the tests show that they actually give remarkable
speed-up when compared with corresponding algorithms without inertial term (see
for example, Attouch et al. [1], Beck and Teboulle [2], Bot and Csetnek [3], [23], [12],
Shehu et al. [25] and the references therein).

Inspired by the above mentioned results, the goals of this paper are; to construct
inertia based algorithms such that the step size is independent of prior knowledge
of the operator norms of the associated bounded linear operators, to prove strong
convergence of the algorithms to solution of Problem 1.4, to test the performance of
the obtained result using numerical example and finally to campare the performance
of our algorithm with that of Reich and Tuyen [22].

The rest of the paper is organised as follows; Section 2 contains definition of
terms and needed Lemmas, in Section 3, we present the major contributions of the
paper, in Section 4 , we give applications of our results and in Section 5, we give
a numerical example to test the performance of our algorithm and compare it with
the performance of the algorithm studied by Reich and Tuyen [22].

2. Preliminaries

In this section, we present some definitions and known results needed for our
convergence analysis.
Let C be a nonempty, closed and convex subset of H. It is known that for each
x ∈ H, there is a unique point PH

C x ∈ C such that

(2.1) ||x− PH
C x|| = inf

v∈C
||x− v||

The mapping PH
C : H → C defined by (2.1) is called the metric projection from

H onto C. PH
C is known to satisfy the following inequality:

(2.2) ⟨x− PH
C x, y − x⟩ ≤ 0 ∀x ∈ H, ∀ y ∈ C.

A mapping T : C → C is said to be nonexpansive if ||Tx−Ty|| ≤ ||x−y|| ∀ x, y ∈ C.
We denote by F (T ) the set of fixed points of a mapping T, that is, F (T ) = {x ∈
C : Tx = x}.
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Definition 2.1. A set-valued mapping T : H → 2H is said to be monotone if for
any x, y ∈ H,

⟨x− y, f − g⟩ ≥ 0,

where f ∈ Tx and g ∈ Ty. The Graph of T is defined by

Gr(T ) := {(x, f) ∈ H ×H : f ∈ Tx}.

When Gr(T ) is not properly contained in the graph of any other monotone mapping,
we say that T is maximal. If A is monotone, then we can define, for each λ > 0, a
nonexpansive single-valued mapping JA

λ : R(IH + λA) → D(A) by

JA
λ := (IH + λA)−1.

It is known that JA
λ is a single valued nonexpansive mapping.

Lemma 2.2 ([17]). Let {an} and {cn} be sequences of nonnegative real numbers
such that

an+1 ≤ (1− δn)an + bn + cn ∀ n ≥ 1,

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume
∑∞

n=1 cn <
∞. Then the following results hold:

(i) If bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence.

(ii) If
∑∞

n=1 δn = ∞ and lim supn→∞
bn
δn

≤ 0, then limn→∞ an = 0.

Lemma 2.3. ( [16, 22] ) Let A : D(A) ⊂ H → 2H be a monotone operator. Then
the following four statements hold true.

(i) For r ≥ s > 0, we have

||x− JA
s x|| ≤ 2||x− JA

r x|| for all x ∈ R(IH + rA) ∩R(IH + sA).

(ii) For all r > 0 and for all x, y ∈ R(IH + rA), we have

⟨x− y, JA
r x− JA

r y⟩ ≥ ||JA
r x− JA

r y||2.

(iii) For all r > 0 and for all x, y ∈ R(IH + rA), we have

⟨(IA − JA
r )x− (IA − JA

r )y, x− y⟩ ≥ ||(IA − JA
r )x− (IA − JA

r )y||2.

(iv) If S = A−1(0) ̸= ∅ , then for all points ξ∗ ∈ S and x ∈ R(IH + rA), we have

||JA
r x− ξ∗||2 ≤ ||x− ξ∗||2 − ||x− JA

r x||2.

Lemma 2.4 ([11]). Assume that T is a nonexpansive mapping of a closed and convex
subset C of a Hilbert space H into H. Then the mapping IH − T is demiclosed on
C, that is, whenever {xn} is a sequence in C which weakly converges to some point
x ∈ C and the sequence (IH − T )(xn) strongly converges to some point y, it follows
that (IH − T )(x) = y.

Lemma 2.5 ([18]). Let {sn} be a real sequence which does not decrease at infinity in
the sense that there exists a subsequence {snk

} such that snk
≤ snk+1 ∀k ≥ 0. Define

an integer sequence {τ(n)}, where n > n0, by τ(n) := max{n0 ≤ k ≤ n : sk < sk+1}.
Then τ(n) → ∞ as n → ∞ and for all n > n0, we have max{sτ(n), sn} ≤ sτ(n)+1.
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Lemma 2.6 ([31]). Let {sn} be a sequence of nonnegative numbers,{αn} be a se-
quence in (0, 1) and let {cn} be a sequence of real numbers satisfying the following
two conditions: (i) sn+1 ≤ (1−αn)sn+αncn; (ii)

∑∞
n=0 αn = ∞, lim supn→∞ cn ≤ 0.

Then limn→∞sn = 0.

3. Main contributions

In this section, we present our major contributions of the paper.

Lemma 3.1. Let Hi, i = 1, 2, 3, . . . , N be real Hilbert spaces, Ti : Hi →
Hi+1, 1, 2, 3, . . . , N − 1 be bounded linear operators and let A : H1 → 2H1

be a maximal monotone operator on H1. Then, for any r > 0 and

γ ∈
(
ϵ,

2||(I−JA
r )TN−1TN−2...T1x−(I−JA

r )TN−1TN−2...T1y||2
||T ∗

1 T
∗
2 ...T

∗
N−1(I−JA

r )TN−1TN−2...T1x−T ∗
1 T

∗
2 ...T

∗
N−1(I−JA

r )TN−1TN−2...T1y||2 − ϵ
)

if

T ∗
1 T

∗
2 . . . T ∗

N−1(I−JA
r )TN−1TN−2 . . . T1x−T ∗

1 T
∗
2 . . . T ∗

N−1(I−JA
r )TN−1TN−2 . . . T1y ̸=

0, else γ = k where k is a nonnegative constant , then the operator

F(x) := x− γT ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1x

is a nonexpansive self-mapping of H1.

Proof. For any x, y ∈ H1, using Lemma 2.3 (iii) and the condition on γ, we get

||F(x)−F(y)||2 = ||x− γT ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1x

− y − γT ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1y||2

= ||x− y − γ
(
T ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1x

− T ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1y

)
||2

= ||x− y||2 − 2γ
⟨
TN−1TN−2 . . . T1x− TN−1TN−2

. . . T1y, (I − JA
r )TN−1TN−2 . . . T1x

− (I − JA
r )TN−1TN−2 . . . T1y

⟩
+ γ2||T ∗

1 T
∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1x

− T ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1y||2

≤ ||x− y||2 − 2γ||(I − JA
r )TN−2 . . . T1x− (I − JA

r )TN−2 . . . T1y||2

+ γ2||T ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1x

− T ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1y||2

≤ ||x− y||2 − γ
[
2||(I − JA

r )TN−2 . . . T1x− (I − JA
r )TN−2 . . . T1y||2

− γ||T ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1x

− T ∗
1 T

∗
2 . . . T ∗

N−1(I − JA
r )TN−1TN−2 . . . T1y||2

]
≤ ||x− y||2.(3.1)

Hence, F is nonexpansive. □

We consider Problem 1.4 for the case N = 3. The general case will be studied at
the end of this section. For any x0, x−1, u ∈ H1, let {xn} be the sequence generated
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by

wn = xn + θn(xn − xn−1)

y1,n = wn − γ1,nT
∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn

y2,n = y1,n − γ2,nT
∗
1 (I

H2 − JA2
β2,n

)T1y1,n

y3,n = JA1
β1,n

y2,n

xn+1 = αnu+ (1− αn)y3,n, n ≥ 0.(3.2)

where {βi,n}, i = 1, 2, 3, are sequences of positive numbers and{αn} is a sequence in
(0, 1). We shall prove strong convergence of the sequence {xn} under the following
conditions:

(1) γ1,n ∈
(
ϵ,

2||(IH3−J
A3
β3,n

)T2T1wn||2

||T ∗
1 T

∗
2 (I

H3−J
A3
β3,n

)T2T1wn||2
− ϵ

)
if T ∗

1 T
∗
2 (I

H3 − JA3
β3,n

)T2T1wn ̸= 0,

else γ1,n = k1 where k1 is a nonnegative constant .

(2) γ2,n ∈
(
ϵ,

2||(IH2−J
A2
β2,n

)T1y1,n||2

||T ∗
1 (I

H2−J
A2
β2,n

)T1y1,n||2
− ϵ

)
if T ∗

1 (I
H2 − JA2

β2,n
)T1y1,n ̸= 0,

else γ2,n = k2, where k2 is a nonnegative constant .
(3) min{inf{β1,n}, inf{β2,n}, inf{β3,n}} ≥ β > 0. (4) limαn = 0,

∑
αn = ∞,

limn→∞
θn
αn

||xn − xn−1|| = 0.

Theorem 3.2. If conditions (1), (2), (3) and (4) hold, then the sequences {xn} and

{wn} generated by (3.2) converge strongly to PH1
S u as n → ∞.

Proof. The proof is divided into two steps.
Step 1: The sequences {xn} and {yi,n} i = 1, 2, 3 are bounded. Let q ∈ S be fixed,
then

||xn+1 − q|| = ||αnu+ (1− αn)y3,n − q||
≤ αn||u− q||+ (1− αn)||y3,n − q||(3.3)

Using Lemma2.3 (iv) and the fact that q ∈ S , we get

(3.4) ||y3,n − q||2 ≤ ||y2,n − q||2 − ||y2,n − JA1
β1,n

y2,n||2

Now, from (IH2 − JA2
β2,n

)T1q = 0 and Lemma 2.3(iii), we have

||y2,n − q||2 = ||y1,n − γ2,nT
∗
1 (I

H2 − JA2
β2,n

)T1y1,n − q||2

= ||y1,n − q||2 − 2γ2,n⟨y1,n − q, T ∗
1 (I

H2 − JA2
β2,n

)T1y1,n⟩

+ γ22,n||T ∗
1 (I

H2 − JA2
β2,n

)T1y1,n||2

≤ ||y1,n − q||2 − 2γ2,n||(IH2 − JA2
β2,n

)T1y1,n||2

+ γ22,n||T ∗
1 (I

H2 − JA2
β2,n

)T1y1,n||2

≤ ||y1,n − q||2 − γ2,n
(
2||(IH2 − JA2

β2,n
)T1y1,n||2

− γ2,n||T ∗
1 (I

H2 − JA2
β2,n

)T1y1,n||2
)
.(3.5)

From (IH3 − JA3
β2,n

)T2T1q = 0 and Lemma 2.3(iiii), we have
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||y1,n − q||2 = ||wn − γ1,nT
∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn − q||2

= ||wn − q||2 − 2γ1,n⟨wn − q, T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn⟩

+ γ21,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2

≤ ||wn − q||2 − 2γ1,n||(IH3 − JA3
β3,n

)T2T1wn||2

+ γ21,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2

= ||wn − q||2 − γ1,n
(
2||(IH3 − JA3

β3,n
)T2T1wn||2

− γ1,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2
)
.(3.6)

Using (3.3)− (3.6) and condition (1),, we obtain

||xn+1 − q|| ≤ αn||u− q||+ (1− αn)||wn − q||
= (1− αn)||xn − q + θn(xn − xn−1)||+ αn||u− q||
≤ (1− αn)||xn − q||+ (1− αn)θn||xn − xn−1||+ αn||u− q||

≤ (1− αn)||xn − q||+ αn

(
||u− q||+ θn

αn
||xn − xn−1||

)
(3.7)

Applying condition (4) and Lemma 2.2 (i) in (3.7), we have that {||xn − q||} is
bounded and so {xn} is bounded. Consequently, {wn} is bounded . Moreover, it
follows from (3.4)− (3.6) and condition (2) that the sequences {yi,n} i = 1, 2, 3 are
also bounded.

Step 2 : xn → PH1
S u

Let ξ = PH1
S u. By convexity of || · ||2 , we have

||xn+1 − ξ||2 ≤ αn||u− ξ||2 + (1− αn)||y3,n − ξ||2

≤ αn||u− ξ||2 + ||y3,n − ξ||2(3.8)

Using (3.4)− (3.6), we obtain

||xn+1 − ξ||2 ≤ αn||u− ξ||2 + ||y3,n − ξ||2

≤ αn||u− ξ||2 + ||y2,n − ξ||2 − ||y2,n − JA1
β1,n

y2,n||2

≤ αn||u− ξ||2 + ||y1,n − ξ||2 − γ2,n
(
2||(IH2 − JA2

β2,n
)T1y1,n||2

− γ2,n||T ∗
1 (I

H2 − JA2
β2,n

)T1y1,n||2
)
− ||y2,n − JA1

β1,n
y2,n||2

≤ αn||u− ξ||2 + ||wn − ξ||2

− γ1,n
(
2||(IH3 − JA3

β1,n
)T2T1wn||2 − γ1,n||T ∗

1 T
∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2
)

− γ2,n
(
2||(IH2 − JA2

β2,n
)T1y1,n||2 − γ2,n||T ∗

1 (I
H2 − JA2

β2,n
)T1y1,n||2

)
− ||y2,n − JA1

β1,n
y2,n||2(3.9)
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||wn − ξ||2 = ||xn − ξ + θn(xn − xn−1)||2

≤ ||xn − ξ||2 + 2||xn − ξ||θn||xn − xn−1||+ θ2n||xn − xn−1||2

= ||xn − ξ||2 + θn[2||xn − ξ||+ θn||xn − xn−1||]||xn − xn−1||(3.10)

Now using (3.10) in (3.9), we get

||xn+1 − ξ||2 ≤ αn||u− ξ||2 + ||xn − ξ||2

+ θn||xn − xn−1||[2||xn − ξ||+ θn||xn − xn−1||]
− γ1,n

(
2||(IH3 − JA3

β3,n
)T2T1wn||2

− γ1,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2
)

− γ2,n
(
2||(IH2 − JA2

β2,n
)T1y1,n||2

− γ2,n||T ∗
1 (I

H2 − JA2
β2,n

)T1y1,n||2
)

− ||y2,n − JA1
β1,n

y2,n||2(3.11)

So,

||y2,n − JA1
β1,n

y2,n||2 + γ1,n
(
2||(IH3 − JA3

β3,n
)T2T1wn||2

− γ1,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2
)

+ γ2,n
(
2||(IH2 − JA2

β2,n
)T1y1,n||2 − γ2,n||T ∗

1 (I
H2 − JA2

β2,n
)T1y1,n||2

)
≤ αn||u− ξ||2 + ||xn − ξ||2 − ||xn+1 − ξ||2

+ θn||xn − xn−1||[2||xn − ξ||+ θn||xn − xn−1||]
= αn||u− ξ||2 + ||xn − ξ||2 − ||xn+1 − ξ||2

+ αn
θn
αn

||xn − xn−1||[2||xn − ξ||+ θn||xn − xn−1||](3.12)

Furthermore, from (3.4) − (3.6), we obtain

||xn+1 − ξ||2 ≤ (1− αn)||y3,n − ξ||2 + 2αn⟨u− ξ, xn+1 − ξ⟩
≤ (1− αn)||wn − ξ||2 + 2αn⟨u− ξ, xn+1 − ξ⟩
≤ (1− αn)

[
||xn − ξ||2 + θn||xn − xn−1||[2||xn − ξ||+ θn||xn − xn−1||

]
+ 2αn⟨u− ξ, xn+1 − ξ⟩

= (1− αn)||xn − ξ||2 + αn
θn
αn

||xn − xn−1||[2||xn − ξ||

+ θn||xn − xn−1||]
+ 2αn⟨u− ξ, xn+1 − ξ⟩(3.13)

Set σn = ||xn − ξ||2, cn = θn
αn

||xn − xn−1||[2||xn − ξ||+ θn||xn − xn−1||] + 2⟨u−
ξ, xn+1 − ξ⟩, then (3.13) becomes

σn+1 ≤ (1− αn)σn + αncn(3.14)
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We now show that σn → 0 as n → ∞ by considering two possible cases.
Case A: The sequence {σn} eventually decreases, that is, there exists N0 ≥ 0 such
that {σn} decreases for n ≥ N0 and so {σn} converges. From conditions (4) and
(3.12), we have

||y2,n − JA1
β1,n

y2,n|| → 0,(3.15)

That is

||y3,n − y2,n|| → 0,(3.16)

Next, from (3.12), we obtain

γ1,n
(
2||(IH3 − JA3

β3,n
)T2T1wn||2

− γ1,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2
)

≤ αn||u− ξ||2 + ||xn − ξ||2 − ||xn+1 − ξ||2

+ αn
θn
αn

||xn − xn−1||
[
2||xn − ξ||

+ θn||xn − xn−1||
]
→ 0, n → ∞.(3.17)

From condition (1), it follows that

γ1,n <
2||(IH3 − JA3

β3,n
)T2T1wn||2

||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2
− ϵ

So

γ1,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2 < 2||(IH3 − JA3
β3,n

)T2T1wn||2

− ϵ||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2,

which gives

ϵ||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2 < 2||(IH3 − JA3
β3,n

)T2T1wn||2

− γ1,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2 → 0(3.18)

That is

||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn|| → 0

Furthermore, from (3.17), we have

2ϵ||(IH3 − JA3
β3,n

)T2T1wn||2 < γ1,n
(
2||(IH3 − JA3

β3,n
)T2T1wn||2

≤ αn||u− ξ||2 + ||xn − ξ||2

− ||xn+1 − ξ||2 + αn
θn
αn

||xn − xn−1||
[
2||xn − ξ||

+ θn||xn − xn−1||
]

+ γ21,n||T ∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn||2 → 0(3.19)
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Thus,

||(IH3 − JA3
β3,n

)T2T1wn|| → 0, n → ∞.(3.20)

Furthermore, using condition (2) and similar argument, we obtain

||(IH2 − JA2
β2,n

)T1y1,n|| → 0, n → ∞(3.21)

From (3.2), (3.20) and (3.21), we obtain

||y1,n − wn|| → 0, ||y1,n − y2,n|| → 0(3.22)

Utilizing conclusions (3.16) and (3.22), and noticing (3.2) we obtain

||y3,n − wn|| → 0, ||wn − xn|| → 0(3.23)

It also follows from (3.2), condition (4) and boundedness of {y3,n} that

||xn+1 − y3,n|| = αn||u− y3,n|| → 0(3.24)

Having in hand (3.24) and (3.23), we have

(3.25) ||xn+1 − xn|| ≤ ||xn+1 − y3,n||+ ||y3,n − wn||+ ||wn − xn|| → 0 n → ∞.

Next we show that lim supn→∞ cn ≤ 0 . Indeed, suppose that {xnk
} is a subsequence

of {xn} such that

lim sup
n→∞

⟨u− ξ, xn − ξ⟩ = lim
k→∞

⟨u− ξ, xnk
− ξ⟩.

Since the subsequence {xnk
} is bounded, there exists a further subsequence {xnkl

}
of {xnk

} such that xnkl
⇀ ξ∗. We may assume without any loss of generality that

xnk
⇀ ξ∗.

We claim that ξ∗ ∈ S. From (3.23), (3.16) and (3.22) we obtain that yi,nk
→ ξ∗

i = 1, 2, 3. Since T1 and T2 are bounded linear operators,we have T1y1,nk
⇀ T1ξ

∗

and T2T1xnk
⇀ T2T1ξ

∗. It follows from Lemma 2.3(i) , (3.15) , (3.21) and (3.22)
that

||y2,nk
− JA1

β2,n
y2,nk

|| → 0, ||(IH2 − JA2
β2,n

)T1y1,nk
|| → 0,

||(IH3 − JA3
β2,n

)T2T1wnk
||2 → 0.(3.26)

Thus, from y2,nk
⇀ ξ∗ , T1y1,nk

⇀ T1ξ
∗ , T2T1xnk

⇀ T2T1ξ
∗. and Lemma 2.4,

we conclude that ξ∗ ∈ F (JA1
β1,n

) , T1ξ
∗ ∈ F (JA2

β2,n
) and T2T1ξ

∗ ∈ F (JA3
β3,n

), that is,

ξ∗ ∈ S.
From ξ = PH1

S u and (2.1), we deduce that

lim sup
n→∞

⟨u− ξ, xn − ξ⟩ = ⟨u− ξ, ξ∗ − ξ⟩ ≤ 0,

which when combined with (3.25), implies that lim supn→∞ cn ≤ 0, as claimed.
Hence all conditions of Lemma 2.6 are satisfied. Therefore we conclude that σn → 0
that is

xn → PH1
S u.
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Case B. Suppose the sequence {σn} is not a monotone sequence. Then, as in
Lemma 2.5, we can define an integer sequence{τ(n)}, where n ≥ n0 (for some n0

large enough), by

τ(n) := max{k ≤ n : σk < σk+1}.
Moreover, {τ(n)} is an increasing sequence such that τ(n) → ∞ as n → ∞ and

στ(n) < στ(n+1) for all n ≥ n0. From (3.12), we deduce that

0 < στ(n+1) − στ(n) ≤ ατ(n)||u− ξ||2 + θτ(n)||xτ(n) − xτ(n)−1||[2||xτ(n) − ξ||
+ θτ(n)||xτ(n) − xτ(n)−1||]

= ατ(n)||u− ξ||2 + ατ(n)

θτ(n)

ατ(n)
||xτ(n) − xτ(n)−1||[2||xτ(n) − ξ||

+ θτ(n)||xτ(n) − xτ(n)−1||].(3.27)

Since ατ(n) → 0 and noticing condition C4 we have from (3.27) we get

στ(n+1) − στ(n) → 0.(3.28)

Furthermore, we have στ(n+1) ≤ (1− ατ(n))στ(n) + ατ(n)cτ(n), where

lim sup
n→∞

cτ(n) ≤ 0.

Since στ(n+1) > στ(n) and ατ(n) > 0, we have στ(n) ≤ cτ(n). Also since
lim supn→∞ cτ(n) ≤ 0, we have limn→∞ στ(n) = 0. This together with (3.28) im-
plies that limn→∞ στ(n+1) = 0. Thus,

0 < σn ≤ max{στ(n), σn} ≤ στ(n+1) → 0.

Consequently, σn → 0, that is, xn → ξ := PH1
S u. Knowing that ||wn − xn|| → 0, we

also have that wn → ξ := PH1
S u. This completes the proof.

□

Next , we study strong convergence of the sequence {zn} generated by z0, z−1, u ∈
H1,

wn = zn + θn(zn − zn−1)

t1,n = wn − γ1,nT
∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn

t2,n = t1,n − γ2,nT
∗
1 (I

H2 − JA2
β2,n

)T1y1,n

t3,n = JA1
β1,n

t2,n

zn+1 = αnf(zn) + (1− αn)t3,n, n ≥ 0.(3.29)

where f : H1 → H1 is a contraction with coeffiecient δ ∈ [0, 1).

Theorem 3.3. If conditions (1), (2, (3) and (4) hold, then the sequence {zn} gen-
erated by (3.29) converges strongly to a point ξ∗ ∈ S, which is the unique solution
to the variational inequality⟨(

IH1 − f
)
ξ∗, y − ξ∗

⟩
∀ y ∈ S.
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Proof. PH1
S f is a strict contraction, so by Banach’s fixed point theorem, PH1

S f has
a unique fixed point ξ∗ which is the unique solution to the variational inequality⟨(

IH1 − f
)
ξ∗, y − ξ∗

⟩
∀ y ∈ S.

Using Theorem 3.2 , with f(ξ∗) replacing u in (3.2) , we see that the sequence {xn}
converges strongly to PH1

S f(ξ∗) = ξ∗.

Now we assert that ||zn−xn|| → 0 as n → ∞. Using nonexpansiveness of JA
λ , λ >

0 with A maximal monotone and Lemma 3.1, we obtain

||zn+1 − xn+1|| ≤ αn||f(zn)− f(ξ∗)||+ (1− αn)||t3,n − y3,n||
≤ αnδ||zn − ξ∗||+ (1− αn)||t2,n − y2,n||
≤ αnδ||zn − ξ∗||+ (1− αn)||t1,n − y1,n||
≤ αnδ||zn − ξ∗||+ (1− αn)||zn − wn||
≤

(
1− (1− δ)αn

)
||zn − wn||+ αnδ||wn − ξ∗||(3.30)

Notice that

||zn − wn|| ≤ ||zn − xn||+ ||xn − wn||, so

||zn+1 − xn+1|| ≤
(
1− (1− δ)αn

)
||zn − xn||+

(
1− (1− δ)αn

)
||xn − wn||

+ αnδ||wn − ξ∗||
≤

(
1− (1− δ)αn

)
||zn − xn||+ ||xn − wn||+ αnδ||wn − ξ∗||

=
(
1− (1− δ)αn

)
||zn − xn||+ θn||xn − xn−1||+ αnδ||wn − ξ∗||

=
(
1− (1− δ)αn

)
||zn − xn||+ αn

θn
αn

||xn − xn−1||+ αnδ||wn − ξ∗||

=
(
1− (1− δ)αn

)
||zn − xn||+ αn

[ θn
αn

||xn − xn−1||+ δ||wn − ξ∗||
]

(3.31)

Using condition (4) and the fact that wn → ξ∗, we obtain

θn
αn

||xn − xn−1||+ δ||wn − ξ∗|| → 0, n → ∞.

Hence by Lemma 2.6, we conclude that ||zn − xn|| → 0, n → ∞.
Consequently,

||zn − ξ∗|| ≤ ||zn − xn||+ ||xn − ξ∗|| → 0, n → ∞.

This completes the proof.
□

Remark 3.4. In Theorem 3.3, if the sequence {zn} is defined by z0, z−1, u ∈ H1,

wn = zn + θn(zn − zn−1)

t1,n = wn − γ1,nT
∗
1 T

∗
2 (I

H3 − JA3
β3,n

)T2T1wn

t2,n = t1,n − γ2,nT
∗
1 (I

H2 − JA2
β2,n

)T1y1,n

t3,n = JA1
β1,n

t2,n
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zn+1 = αnf(t3,n) + (1− αn)t3,n, n ≥ 0.(3.32)

where f : H1 → H1 is a contraction with coefficient δ ∈ [0, 1). If conditions
(1), (2), (3) and (4) hold, then the sequence {zn} generated by (3.32) converges
strongly to a point ξ∗ ∈ S, which is the unique solution to the variational inequality⟨(

IH1 − f
)
ξ∗, y − ξ∗

⟩
∀ y ∈ S.

Notice that with {xn} defined in (3.2) and u = f(ξ∗), we have

(3.33) ||zn+1 − xn+1|| ≤ αnδ||t3,n − ξ∗||+ (1− αn)||t3,n − y3,n||

Since ξ∗ ∈ S, we have JA1
β1,n

(ξ∗) = ξ∗, JA2
β2,n

(T1ξ
∗) = ξ∗, and JA3

β3,n
(T2T1ξ

∗) = ξ∗.

Thus it follows from Lemma 3.1 that

||t3,n − ξ∗|| ≤ ||t2,n − ξ∗||(3.34)

||t2,n − ξ∗|| ≤ ||t1,n − ξ∗||(3.35)

||t1,n − ξ∗|| ≤ ||wn − ξ∗||.(3.36)

It follows from (3.30) and (3.34) − (3.6) that

||zn+1 − xn+1|| ≤
(
1− (1− δ)αn

)
||zn − xn||+

(
1− (1− δ)αn

)
||xn − wn||

+ αnδ||wn − ξ∗||

≤
(
1− (1− δ)αn

)
||zn − xn||+ αn

[ θn
αn

||xn − xn−1||+ δ||wn − ξ∗||
]
.(3.37)

By similar argument to the proof of Theorem 3.3, we obtain that zn → ξ∗.
Finally, we observe that by applying arguments which are similar to those used

in the proofs of Theorems 3.1 and 3.2, we obtain the following theorem regarding
Problem 1.4.

Theorem 3.5. Assume that the following conditions hold:

(1) γ1,n ∈
(
ϵ,

2||(IH3−J
A3
β3,n

)TN−1Tn−2...T1wn||2

||T ∗
1 T

∗
2 ...TN−1(I

H3−J
A3
β3,n

)TN−1Tn−2...T1wn||2
− ϵ

)
if T ∗

1 T
∗
2 . . . TN−1(I

H3 − JA3
β3,n

)TN−1Tn−2 . . . T1wn ̸= 0,

else γ1,n = k1 where k1 is a nonnegative constant ,

γi,n ∈
(
ϵ,

2||
(
I
HN−(i−1)−J

AN−(i−1)
βN−(i−1),n

)
TN−i...T1y(i−1),n||2

||T ∗
1 ...TN−1

(
I
HN−(i−1)−J

AN−(i−1)
βN−(i−1),n

)
TN−i...T1y(i−1),n||2

− ϵ
)

if T ∗
1 . . . TN−i

(
IHN−(i−1) − J

AN−(i−1)

βN−(i−1),n

)
TN−i . . . T1y(i−1),n ̸= 0,

else γi,n = k2 where k2 is a nonnegative constant , i = 2, 3, . . . , N − 1

(2) min{infn{βi,n}i = 1, 2, . . . , N} ≥ β > 0. (3) limαn = 0,
∑

αn = ∞,

limn→∞
θn
αn

||xn − xn−1|| = 0.

Then the sequence {xn} generated by x0, x−1 ∈ H1, and

wn = xn + θn(xn − xn−1)

y1,n = wn − γ1,nT
∗
1 T

∗
2 . . . T ∗

N−1(I
HN − JAN

βN,n
)TN−1TN−2 . . . T1wn
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y2,n = y1,n − γ2,nT
∗
1 T

∗
2 . . . T ∗

N−2(I
HN−1 − J

AN−1

βN−1,n
)TN−2 . . . T1y1,n

...

yN−1,n = yN−2,n − γN−2,nT
∗
1 (I

H2 − JA2
β2,n

)T1y1,n

yN,n = JA1
β1,n

(
yN−1,n

)
xn+1 = αnf(xn) + (1− αn)yN,n, or

xn+1 = αnf(yN,n)

+ (1− αn)yN,n, n ≥ 0,(3.38)

where {βi,n}, i = 1, 2, . . . , N are sequences of positive numbers and{αn} is
a sequence in (0, 1), converges strongly to an element ξ∗ ∈ S, which is the
unique solution to the variational inequality⟨(

IH1 − f
)
ξ∗, y − ξ∗

⟩
∀ y ∈ S.

4. Applications

4.1. Generalized split feasibility problem. Let C be a nonempty, closed and
convex subset of a real Hilbert space H. Denote by iC the indicator function of C,
that is,

(4.1) iC(x) =

{
0, if x ∈ C

∞ if x /∈ C

Then iC is a proper, lower semicontinuous and convex function. Hence its subd-
ifferential ∂iC is a maximal monotone operator. It is known that

∂iC(x) = N(x,C) = {v ∈ H : ⟨x− y, v⟩ ≥ 0 ∀ y ∈ C},
where N(x,C) is the normal cone of C at x.
We denote the resolvent operator of ∂iC by Jr, where r > 0. Suppose x = Jry for
each y ∈ H, that is,

y − x

r
∈ ∂iC(x) = N(x,C).

Then we have
⟨y − x, x− v⟩ ≥ 0 ∀ v ∈ C.

Since this inequality characterizes the metric projection, it follows that x = PH
C y.

Applying Theorem 3.5 yields the following result regarding an algorithm for solving
the generalized split feasibility problem in Hilbert spaces.

Theorem 4.1. Let Hi, i = 1, 2, . . . , N, be real Hilbert spaces and let Ci, i =
1, 2, . . . , N be closed and convex subsets of Hi, respectively. Let Ti : Hi → Hi+1 i =
1, 2, . . . , N − 1 be bounded linear operators such that

S := C1 ∩ T−1
1 (C2) ∩ · · · ∩ T−1

1 (T−1
2 (. . . (T−1

N−1(CN )))) ̸= ∅.
If conditions (1) and (3) of Theorem 3.5 hold, then the sequence {xn} generated

by x0, x−1 ∈ H1, and

wn = xn + θn(xn − xn−1)
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y1,n = wn − γ1,nT
∗
1 T

∗
2 . . . T ∗

N−1(I
HN − PHN

CN
)TN−1TN−2 . . . T1wn

y2,n = y1,n − γ2,nT
∗
1 T

∗
2 . . . T ∗

N−2(I
HN−1 − P

HN−1

CN−1
)TN−2 . . . T1y1,n

...

yN−1,n = yN−2,n − γN−2,nT
∗
1 (I

H2 − PH2
C2

)T1yN−2,n

yN,n = PH1
C1

(
yN−1,n

)
xn+1 = αnf(xn) + (1− αn)yN,n, or

xn+1 = αnf(yN,n) + (1− αn)yN,n, n ≥ 0(4.2)

converges strongly to an element ξ∗ ∈ S, which is the unique solution to the varia-
tional inequality ⟨(

IH1 − f
)
ξ∗, y − ξ∗

⟩
∀ y ∈ S.

Remark 4.2. Other applications to various problems of contemporary interest such
as : Generalised Split common null point problem, Generalized split equilibrium
problem and Generalized split varational inequality problem studied in Reich and
Tuyen [22] can easiy be obtained when we use the algorithms developed and studied
in this work. We do not consider them as that amounts to mere repetition.

5. Numerical Example

In this section, we adapt the numerical example, Example 5.1 of Reich and Tuyen
[22] to examine the convergence of the sequence {xn} defined in Theorem 4.1 of this
work. Furthermore, we compare the performance of the sequence {xn} of Theorem
4.4 of Reich and Tuyen [22] with the performance of the sequence {xn} of algorithm
4.2 of Theorem 4.1 of our work.

Example 5.1. Consider the following problem: find an element ξ∗ ∈ R4 such that

ξ∗ ∈ S := S1 ∩ T−1
1 (S2) ∩ T−1

1 (T−1
2 (S3) ̸= ∅,

where S1 = {x ∈ R4 : ||x − a1|| ≤ K2
1}, S2 = {x ∈ R6 : ||x − a2|| ≤ K2

2}, S3 =
{x ∈ R8 : ||x − a3|| ≤ K2

3}. and T1 : R4 → R6 and T2 : R6 → R8 are bounded
linear operators, the elements of the representing matrices of which are randomly
generated in [−5, 5]. The coordinates of the centres a1, a2, a3 are randomly generated
in [−1, 1], the radii K1,K2,K3 are randomly generated in the intervals [4, 8], [6, 12]
and [8, 16], respectively, and the coordinates of the initial point x0 are randomly
generated in [−2, 2].
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Table 1. Numerical results comparing our Algorithm (4.2) with
Algorithm of Theorem 4.4 of [22]

Table 1: Numerical results with TOLn < 10−3.

No. of runs Algorithm (4.2 Reich and Tuyen
CPU TOLn Iter CPU TOLn Iter

1 0.0147 9.2895e−04 26 0.0370 9.7693e−04 30
2 0.0249 9.3055e−04 23 0.0605 9.7872e−04 28
3 0.0356 9.5573e−04 22 0.0356 9.7210e−04 29
4 0.0133 9.1936e−04 16 0.0343 9.4517e−04 23

Table 2: Numerical results with TOLn < 10−4.

No. of runs Algorithm (4.2) Reich and Tuyen
CPU TOLn Iter CPU TOLn Iter

1 0.0188 9.8944e−05 68 0.0422 9.9382e−05 78
2 0.0209 9.8308e−05 96 0.0742 9.8560e−05 111
3 0.0545 9.9239e−05 102 0.0810 9.9312e−05 122
4 0.0183 9.8528e−05 69 0.0390 9.8775e−05 91

Remark 5.2. In Example 5.1 above, , the function TOLn is given by

TOLn =
1

3
(||xn − PR4

S1
(xn)||2 + ||T1(xn)− PR6

S2
(T1xn)||2

+ ||T2(T1xn)− PR8

S3
(T2(T1xn))||2) ∀ n ≥ 1.

It is clear that if at any nth step, TOLn = 0, we get that xn is a solution to the
problem.

6. Conclusion

In this paper, we constructed inertia based algorithms such that the step size is
independent of prior knowledge of the operator norms of the associated bounded
linear operators, and proved strong convergence of the algorithms to solution of
Problem 1.4. Adapting the example in [22], we compared the performance of one
of our algorithms , algorithm 4.2 with algorithm of Theorem 4.4 of Reich and
Tuyen [22] . From the table of values and the graphs above, it is seen that our
algorithm out performs that of Reich and Tuyen [22] since our algorithm takes less
CPU time to converge.
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[18] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and non-
strictly convex minimization, Set-Valued Anal. 16 ( 2008), 899–912.

[19] E. Masad and S. Reich, A note on the multiple-set split convex feasibility problem in Hilbert
space, J Nonlinear Convex Anal. 8 (2007), 367–371.

[20] A. Moudafi, The split common fixed point problem for demicontractive mappings, Inverse
Probl. 26 (2010): 055007.

[21] B. T. Polyak, Some methods of speeding up the convergence of iterates method, USSR Comput
Math Phys. 4 (1964), 1–17.

[22] S. Reich and T. M. Tuyen, Iterative methods for solving the generalized split common null
point problem in Hilbert spaces, Optimization. DOI: 10.1080/02331934.2019.1655562

[23] Y. Shehu and J. N. Ezeora, Generalized proximal point algorithm with alternating inertial
steps for monotone inclusion problem, J. Nonlinear Var. Anal. 5 (2021), 281–297.

[24] Y. Shehu, O. S. Iyiola and C. D. Enyi, An iterative algorithm for solving split feasibility
problems and fixed point problems in Banach spaces, Numerical Algor. 72 (2016), 835–864.

[25] Y. Shehu, P. T. Vuong and A. Zemkoho, An inertial extrapolation method for convex simple
bilevel optimization, Optim. Methods Softw. https://doi.org/10.1080/10556788.2019.1619729



ITERATIVE METHODS 287

[26] S. Takahashi and W. Takahashi, The split common null point problem and the shrinking
projection method in Banach space, Optimization 65 (2016), 281–287.

[27] W. Takahashi. The split common null point problem in Banach spaces, Arch Math. 104 (2015),
357–365.

[28] T. M. Tuyen, A strong convergence theorem for the split common null point problem in Banach
spaces, Appl. Math. Optim. (2017), doi:10.1007/s00245-017-9427-z

[29] H.-K. Xu, A variable Krasnosel ’skii-Mann algorithm and the multiple-set split feasibility
problem, Inverse Probl. 22 (2006), 2021–2034.

[30] H.-K. Xu, Iterative methods for the split feasibility problem in infinite dimensionalHilbert
spaces, Inverse Probl. 26 (2010): 105018.

[31] H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators,
J Math Anal Appl. 31 (2006), 631–643.

Manuscript received March 15 2022

revised July 2 2022

J.N.Ezeora
Department of Mathematics and Statistics,University of Port Harcourt, Nigeria

E-mail address : jeremiah.ezeora@uniport.edu.ng

P. C. Jackreece
Department of Mathematics and Statistics,University of Port Harcourt, Nigeria

E-mail address : prebo.jackreece@uniport.edu.ng


