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The 5D real Heisenberg group H R is the space R5 with multiplication given by

(y, s) ◦ (y′, s′) =
(
y + y′, s+ s′ + 2

(
y1y

′
2 − y2y

′
1 − y3y

′
4 + y4y

′
3

))
,(1.4)

where y,y′ ∈ R4 and s, s′ ∈ R. Similarly to (1.1), by the real imbedding R5 −→ C5

given by

(1.5)

[
y00′ y01′
y10′ y11′

]
:=

[
y1 + iy2 −y3 + iy4
y3 + iy4 y1 − iy2

]
, t = −is,

the real Heisenberg group H R can be imbedded into the 5D complex Heisenberg
group H , which is the complex space C5 := {(y, t)|y ∈ C4, t ∈ C} with the multi-
plication given by

(y, t) ◦ (y′, t′) =
(
y + y′, t+ t′ +B(y,y′)

)
,(1.6)

where B(y,y′) = y00′y
′
11′ − y01′y

′
10′ + y10′y

′
01′ − y11′y

′
00′ . There are two reasons to

choose the imbedding. On the one hand, by an isomorphism SO(6,C)/P ∼= H ,
Ren and Wang [12] used the method in [1] and gave the twistor transform over
Heisenberg group. Here P is a parabolic subgroup of SO(6,C). On the other hand,
with the advantage of two-component station, they could use the twistor method
to study the ASD equations over H and H R. Moreover, the anti-self-dual (ASD)
equation over H R is a model of horizontal ASD equation over 5D contact manifold
(cf. [2] [3] [6] [7] [8] [9] [16]). In this paper, we consider the reduction of ASD
equations over 5D Heisenberg group H .

We have left invariant vector fields on H :

V00′ :=
∂

∂y00′
− y11′T, V01′ :=

∂

∂y01′
+ y10′T,

V10′ :=
∂

∂y10′
− y01′T, V11′ :=

∂

∂y11′
+ y00′T, T :=

∂

∂t
.

(1.7)

It is easy to see that

(1.8) [V00′ , V11′ ] = [V10′ , V01′ ] = 2T,

and all other brackets vanish. Consequently, for nonhomogeneous coordinates ζ of
CP 1, if denote

(1.9) VA := ζVA0′ − VA1′ , A = 0, 1,

we have

[V0, V1] = 0.

Namely, span{V0, V1} is an abelian Lie subalgebra and an integrable distribution
for fixed 0 ̸= (π0′ , π1′) ∈ C2. Their integral surfaces are hyperplanes, which we also
call α-planes.

A connection is called anti-self-dual (briefly ASD) if it is flat over any α-plane.

Let Φ = Φ00′θ
00′ + Φ10′θ

10′ + Φ01′θ
01′ + Φ11′θ

11′ + ΦT θ be a g-valued connection
form on H , where {θAA′

, θ} are 1-forms dual to {VAA′ , T}. Φ is ASD if and only if
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it satisfies the ASD Yang-Mills equation
(1.10) V00′(Φ10′)− V10′(Φ00′) + [Φ00′ ,Φ10′ ] = 0,

V01′(Φ10′) + V00′(Φ11′)− V10′(Φ01′)− V11′(Φ00′) + [Φ00′ ,Φ11′ ] + [Φ01′ ,Φ10′ ] = 0,
V01′(Φ11′)− V11′(Φ01′) + [Φ01′ ,Φ11′ ] = 0.

This paper is organized as follows. In Section 2, we investigate the invariance
of connections and Higgs fields on manifold [11]. In Section 3, we recall the ASD
equation over Heisenberg group and give its more concrete form. In Section 4, we
investigate the reduction of ASD equation by Reeb vector. And we also give the the
complex Bogomolny equation over Heisenberg group by the method of reduction.

2. Higgs field

In [11], Mason gave classification of the integrable systems that arise as sym-
metry reductions of the anti-self-dual Yang-Mills (ASDYM) equation. And he also
introduced the associated Higgs field and gave the process of the reduction. In this
section, we supplement some calculation details and proofs of some propositions
about reduction in [11].

Let π : E → U be a vector bundle. Let (e1, e2, . . . , en) be the frame field of E.
Then a section of E can be written as (e1, e2, . . . , en) · s ∈ Γ(U,E), where

s =


s1
s2
...
sn

 ∈ Cn.

Suppose that H is a Lie group acting on the manifold U as m → ρ.m for any ρ ∈ H
and m ∈ U . A lift of action of H on U to E is that, for any ρ ∈ H, the action
m → ρ.m induces a linear map ρ∗ : Em → Eρ.m defined by

(2.1) ρ∗(s,m) = (Ψ(ρ,m)s, ρ·m) ,

where Ψ(ρ,m) is the GL(E)-valued function over H ×M .

Remark 2.1. Here the linear map ρ∗ : E → E must satisfy the compatibility
conditions:
(1) π(ρ∗(s,m)) = ρ(π((s,m))), i.e. the following diagram

(s,m)
ρ·//

π

��

(Ψ(ρ,m)s, ρ·m)

π

��
m

ρ. // ρ·m

is commutative.
(2) ρ → ρ∗ is group homomorphism, i.e., for any ρ1, ρ2 ∈ H, we have (ρ1ρ2)∗ =
ρ1∗ρ2∗.

Note that, (ρ1ρ2)∗ (s,m) = (Ψ(ρ1ρ2,m)s, ρ1ρ2·m) and

ρ1∗ρ2∗(s,m) = ρ1∗ (Ψ(ρ2,m)s, ρ2·m) = (Ψ(ρ1, ρ2·m)Ψ(ρ2,m)s, ρ1·ρ2·m) .
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Then the condition (2) is equivalent to

(2.2) Ψ(ρ1ρ2,m) = Ψ(ρ1, ρ2·m)Ψ(ρ2,m),

which means that Ψ is an automorphic function.

Suppose the lift of action of H on U to E satisfy the above condition. Then we
can define a pull-back action of H on section s ∈ Γ(U,E) by

ρ∗s(m) = ρ−1
∗ (s(ρ·m)) .

Let ∇ be a connection on E. Locally,

∇ ((e1, e2, . . . , en)s) = (e1, e2, . . . , en) (ds+Φs) ,

where Φ is a matrix-valued 1-form, called the gauge potential.

Lemma 2.2. The gauge potential Φ satisfy the gauge transformation.

Proof. Let (e′1, e
′
2, . . . , e

′
n) be another frame field of E. Then there exists A ∈ Gl(n)

such that

(2.3)
(
e′1, e

′
2, . . . , e

′
n

)
= (e1, e2, . . . , en)A.

Denote ∇ (e′1, e
′
2, . . . , e

′
n) = (e′1, e

′
2, . . . , e

′
n)Φ

′. Then we have

∇
(
e′1, e

′
2, . . . , e

′
n

)
= ∇ ((e1, e2, . . . , en)A) = (e1, e2, . . . , en) (dA+ΦA)

= (e′1, e
′
2, . . . , e

′
n)

(
A−1dA+A−1ΦA

)
.

So the connection form of ∇ satisfy the gauge transformation

Φ′ = A−1dA+A−1ΦA.

□

Proposition 2.3. The pull back of Φ by ρ ∈ H defined by

ρ∗Φ = Ψ−1dΨ +Ψ−1ΦΨ

is a connection.

Proof. Since

ρ∗
(
(e′1, e

′
2, . . . , e

′
n)
)
= ρ∗ ((e1, e2, . . . , en)A) = (e1, e2, . . . , en)ΨA

= (e′1, e
′
2, . . . , e

′
n)A

−1ΨA.

Note that

ρ∗Φ′ = (A−1ρA)−1d(A−1ΨA) + (A−1ΨA)−1Φ′(A−1ΨA)

= A−1Ψ−1A
(
−A−1dAA−1ΨA+A−1dΨA+A−1ΨdA

)
+A−1Ψ−1A

(
A−1dA+A−1ΦA

)
(A−1ΨA)

= A−1dA+A−1
(
Ψ−1dΨ +Ψ−1ΦΨ

)
A

= A−1dA+A−1ρ∗ΦA.
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So we have the commutative diagram

Φ //

��

Φ′

��
ρ∗Φ // ρ∗Φ′.

Then ρ∗Φ is a connection.
□

For each vector X ∈ h (the Lie algebra of H), let {ϕt} be the corresponding one
parameter subgroup and L′

X be the Lie-derivative along X. Locally, its lift to the
bundle is defined as

LXs : = lim
t→0

ϕ∗
−ts(ϕt(m))− s(m)

t

= lim
t→0

(
ϕ∗
−ts(ϕt(m))− ϕ∗

−ts(m)

t
+

ϕ∗
−ts(m)− s(m)

t

)
= lim

t→0

(
ϕ∗
−t

s(ϕt(m))− s(m)

t
+

ϕ∗
−t − Id

t
s(m)

)
= X(s) + θXs,

where θX := limt→0
φ∗
−t−Id

t is endomorphism of E, which is a matrix-valued function
on U . Higgs field is defined by

(2.4) φXs := ∇Xs− LXs = (ΦX − θX)s,

which measures the difference between the covariant derivative along X and the
Lie derivative along X. The adjoint bundle of E is adj(Ex) = Ex ⊗ E∗

x. The
connection extends in a natural way to sections of adj(E) by ∇φ = dφ + [Φ, φ] for
φ ∈ adj(E) and to forms with values in adj(E) by ∇Φ = dΦ+Φ∧Ω−(−1)pΩ∧Φ for
Ω ∈ Λp(M) ∧ adj(E). Moreover, the action of the operators Lx extends to sections
of adj(E) by LXφ = X(φ) + [θx, φ].

We say that the connection is invariant if it is preserved by the action of H, that
is, if ρ∗∇ = ∇ for every ρ ∈ H. At the Lie algebra level, for every X ∈ h the
condition is that

(2.5) LX(∇s) = ∇(LXs).

Obviously, if ∇ is invariant under the action of X , we have

(2.6) LXF = L′
XF + [θX , F ],

and hence that the conformal group preserves ASD eauqtion. Then we have

Lemma 2.4. [11] If the connection is invariant with respect to H, for X,Y ∈ h,
we have
(1) L′

XΦ+ [θX ,Φ] = dθX ;
(2) X(φY ) + [θX , φY ] = φ[X,Y ];
(3) X⌟dΦ = −[θX ,Φ]− dφX .
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Proof. (1) Locally,

∇(LXs) = ∇ (X(s) + θXs) = d (Xs+ θXs) + Φ (X(s) + θXs)

= dX(s) + dθX · s+ θXds+ΦX(s) + ΦθXs,

LX(∇s) = LX (ds+Φs) = L′
X(ds+Φs) + θX(ds+Φs)

= dX(s) + L′
XΦ · s+ΦX(s) + θXds+ θXΦs.

By (2.5), we have L′
XΦ+ [θX ,Φ] = dθX .

(2) For X,Y ∈ h, since LX(∇Y s) = ∇[X,Y ]s + ∇Y (LXs), we have ∇[X,Y ]s =
LX(∇Y s) − ∇Y (LXs). Moreover, L[X,Y ]s = [LX , LY ]s = LXLY s − LY LXs. So
we have

φ[X,Y ]s = ∇[X,Y ]s− L[X,Y ]s = (LX(∇Y s)−∇Y (LXs))− (LXLY s− LY LXs)

= LX(∇Y − LY )s− (∇Y − LY )(LXs) = LX(φY s)− φY (LXs)

= (LXφY )s = (X(φY ) + [θX , φY ])s.

(3) Since LX = d ◦X⌟+X⌟ ◦ d, we have

X⌟dΦ = L
′
XΦ− d(X⌟Φ) = dθX − [θX ,Φ]− d(X⌟Φ) = −[θX ,Φ]− dφX ,

by using (1). □

Let U be an elementary open set in H . We can pick out a submanifold S ⊆ U
that intersects each orbit transversely at a single point and we can identify S with
S = U/H = {xH|x ∈ U}. Take Hx = {x · h|h ∈ H} as the orbit for x ∈ S, and its
Lie algebra is

hx := {X ∈ h|X(x) = 0}.
By the transversality condition, we have

TxU = TxS ⊕ hx.

And denote ∇′ = ∇|S , F ′ = F |S .

Theorem 2.5. [11] For x ∈ S, we have that
(1) if X,Y ∈ TxS, we have F (X,Y ) = F ′(X,Y );
(2) if X ∈ TxS, Y ∈ hx, we have F (X,Y ) = ∇′

XφY ;
(3) if X,Y ∈ hx, we have F (X,Y ) = φ[X,Y ] + [φX , φY ].

Proof. (1) It holds obviously by the definition of F ′.
(2) By the third identity in Lemma 2.4, for Y ∈ hx, we have dΦ(Y,X) = −[θY ,ΦX ]−
X(φY ) with X ∈ TxS. Then we have

F (X,Y ) = dΦ(X,Y ) + [ΦX ,ΦY ] = X(φY )− [ΦX , θY ] + [ΦX ,ΦY ]

= X(φY ) + [ΦX , φY ] = ∇′
XφY .

(3) By (2) and the second identity in Lemma 2.4, we have

F (X,Y ) = ∇XφY = X(φY ) + [ΦX , φY ] = φ[X,Y ] − [θX , φY ] + [ΦX , φY ]

= φ[X,Y ] + [φX , φY ].

□
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3. anti-self-dual Yang-Mills equation

Let

(3.1) Φ = Φ00′θ
00′ +Φ10′θ

10′ +Φ01′θ
01′ +Φ11′θ

11′ +ΦT θ

be a matrix-valued connection form on H , where {θAA′
, θ} are 1-forms dual to

{VAA′ , T} and ΦAA′ = Φ(VAA′) and ΦT = Φ(T ). Locally,

θAA′
= dyAA′ , θ = dt+ y11′dy00′ + y01′dy10′ − y10′dy01′ − y00′dy11′ .

Define the connection associated to the connection form Φ

∇A = ∇A1′ − ζ∇A0′ := (VA1′ +ΦA1′)− ζ(VA0′ +ΦA0′),(3.2)

A = 0, 1, for fixed ζ ∈ C. A connection on H called anti-self-dual (briefly ASD) if
it is flat over any α-plane, i.e.

(3.3) F (V0, V1) = 0.

The ASD condition (3.3) is equivalent to

ζ2F (V00′ , V10′)− ζ(F (V00′ , V11′) + F (V01′ , V10′)) + F (V01′ , V11′) = 0.

Comparing the coefficients of ζ2, ζ1 and ζ0, we get

(3.4) F (V00′ , V10′) = 0, F (V00′ , V11′) + F (V01′ , V10′) = 0, F (V01′ , V11′) = 0,

which is equivalent to (1.10).

Remark 3.1. However, if we choose the connection form with respect to 1-forms
dy00′ , dy01′ , dy10′ , dy11′ , dt, the connection form (3.1) can be written as

(3.5) Φ = A00′dy00′ +A10′dy10′ +A01′dy01′ +A11′dy11′ +Atdt

where ABB′ = Φ( ∂
∂yBB′

) and At = Φ( ∂
∂t). Then the ASD equations (1.10) can be

rewritten as

(3.6)



∂A10′
∂y00′

− ∂A00′
∂y10′

+ [A00′ , A10′ ]− y01′
(

∂At

∂y00′
− ∂A00′

∂t + [A00′ , At]
)

+y11′
(

∂At

∂y10′
− ∂A10′

∂t + [A10′ , At]
)
= 0,

∂A11′
∂y00′

− ∂A00′
∂y11′

+ [A00′ , A11′ ] +
∂A10′
∂y01′

− ∂A01′
∂y10′

+ [A01′ , A10′ ]

−y01′
(

∂At

∂y01′
− ∂A01′

∂t + [A01′ , At]
)
− y10′

(
∂At

∂y10′
− ∂A10′

∂t + [A10′ , At]
)

+y00′
(

∂At

∂y00′
− ∂A00′

∂t + [A00′ , At]
)
+ y11′

(
∂At

∂y11′
− ∂A11′

∂t + [A11′ , At]
)
= 0,

∂A11′
∂y01′

− ∂A01′
∂y11′

+ [A01′ , A11′ ] + y00′
(

∂At

∂y01′
− ∂A01′

∂t + [A01′ , At]
)

−y10′
(

∂At

∂y11′
− ∂A11′

∂t + [A11′ , At]
)
= 0.

Moreover, if F (T, ·) = 0, the ASD equation (3.6) could reduce to classical case
(1.10).

4. reduction

In this section, we consider the reduction of ASD equation generated by the right
action of Lie subgroups of Heisenberg group, which preserves α-surface.
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4.1. Reduction by Reeb vector. Γ := {(0, 0, 0, 0, s)|s ∈ R} is an Abelian sub-
group of H . It is generated by T . Consider the transversal hyperplane S = C4 =
{y00′ , y10′ , y01′ , y11′}, whose coordinates are constant along T . Let ∇′ := ∇|S be the
connection restricted to C4.

As ∂
∂yAA′

∈ TS and T ∈ TΓ , by Theorem 2.5, the ASD equations (3.4) reduce to

∂A10′

∂y00′
− ∂A00′

∂y10′
+ [A00′ , A10′ ]− y01′∇′

∂
∂y

00′
φT + y11′∇′

∂
∂y

10′
φT = 0,

∂A11′

∂y00′
− ∂A00′

∂y11′
+ [A00′ , A11′ ] +

∂A10′

∂y01′
− ∂A01′

∂y10′
+ [A01′ , A10′ ]

+ y00′∇′
∂

∂y
00′

φT + y11′∇′
∂

∂y
11′

φT − y01′∇′
∂

∂y
01′

φT − y10′∇′
∂

∂y
10′

φT = 0,

∂A11′

∂y01′
− ∂A01′

∂y11′
+ [A01′ , A11′ ]− y10′∇′

∂
∂y

11′
φT + y00′∇′

∂
∂y

01′
φT = 0,

where ABB′ = Φ( ∂
∂yBB′

) and φT is the Higgs field along T .

4.2. The complex Bogomolny equation. Consider the Lie subgroup Γ = {H(0,−s1,s1,0,s2)|s1,s2∈R}.
Its right action on H(y00′ ,y10′ ,y01′ ,y11′ ,t)

is

H(y00′ ,y10′ ,y01′ ,y11′ ,t)
·H(0,−s1,s1,0,s2) = H(y00′ ,y10′−s1,y01′+s1,y11′ ,t+s2+y10′s1+y01′s1)

.

So the corresponding vector fields X1 and X2 are

X1 =
∂

∂y01′
− ∂

∂y10′
+ (y01′ + y10′)T = V01′ − V10′ ,

X2 = T.
(4.1)

We can choose a transversal S to the orbits by

S = {y00′ , x := y01′ + y10′ , y11′ , t = 0}.
Since [V01′ , V11′ ] = 0, we can choose the invariant gauge such that Φ01′ = Φ11′ = 0.
In this case, the reduced Lax pair is

L =
∂

∂x
− ζ

(
∂

∂y00′
+Φ00′

)
, M =

∂

∂y11′
− ζ

(
∂

∂x
+ φ10′

)
,(4.2)

where φ10′ is the higgs filed with respect to V10′ . So the ASD equations reduce to

(4.3)

{
∂ϕ10′
∂y00′

− ∂Φ00′
∂x + [Φ00′ , φ10′ ] = 0,

∂ϕ10′
∂x − ∂Φ00′

∂y11′
= 0,

which is the generalized complex Bogomolny equation over Heisenberg group.
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