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and sequential circuits, multibit inverter, etc.. For some suitable work related to
variational inclusions involving XOR-operation, we refer to [1, 21–23].

Merging all the concepts discussed above, in this paper, we study a generalized
complementarity problem and a generalized variational inequality problem involving
XOR-operation. An equivalence between them is establish by taking convex set to
be convex cone involved in both the problems. Finally, an iterative algorithm is
defined to obtain the solution of generalized variational inequality problem involving
XOR-operation. Convergence criteria is also discussed. An example is provided.

2. Preliminaries

We assume E to be real ordered positive Hilbert space with its norm ∥.∥ and
inner product ⟨·, ·⟩, d is the metric induced by the norm ∥ · ∥, CB(E) is the family
of nonempty, closed and bounded subsets of E, and D(., .) is Hausdörff metric on
CB(E).

The following notations and definitions are required to prove our result, which
can be traced in [24,25].

Definition 2.1. A nonempty closed convex subset C of E is said to be a cone, if

(i) for any x ∈ C and λ > 0, λx ∈ C,
(ii) for any x ∈ C and −x ∈ C, then x = 0.

Definition 2.2. For arbitrary elements x, y ∈ E, x ≤ y (or y ≤ x) holds, then x
and y are said to be comparable to each other (denoted by x ∝ y).

Definition 2.3. For arbitrary elements x, y ∈ E, lub{x, y} and glb{x, y} means the
least upper bound and the greatest upper bound of the set {x, y}. Suppose lub{x, y}
and glb{x, y} exist, then some binary operations are defined as:

(i) x ∨ y = lub{x, y},
(ii) x ∧ y = glb{x, y},
(iii) x⊕ y = (x− y) ∨ (y − x),
(iv) x⊙ y = (x− y) ∧ (y − x).

The operations ∨,∧, ⊕ and ⊙ are called OR, AND, XOR and XNOR operations,
respectively.

Proposition 2.4. Let ⊕ be an XOR-operation and ⊙ be an XNOR-operation. Then
the following relations hold:

(i) x⊙ x = 0, x⊙ y = y ⊙ x,, x⊙ y = −(x⊕ y),
(ii) if x ∝ 0, then −x⊕ 0 ≤ x ≤ x⊕ 0,
(iii) 0 ≤ x⊕ y, if x ∝ y,
(iv) if x ∝ y, then x⊕ y = 0 if and only if x = y,
(v) x⊕ y = y ⊕ x,
(vi) x⊕ x = 0,
(vii) 0 ≤ x⊕ 0,
(viii) (λx)⊕ (λy) = |λ|(x⊕ y),
(ix) if x ∝ y, then (x⊕0)⊕(y⊕0) ≤ (x⊕y)⊕0 = x⊕y, for all x, y ∈ E and λ ∈ R.



GENERALIZED VARIATIONAL INEQUALITY PROBLEM INVOLVING XOR-OPERATION 221

Proposition 2.5. Let C be a cone in E. Then for each x, y ∈ E, the following
relations hold:

(i) ∥0⊕ 0∥ = ∥0∥ = 0,
(ii) ∥x⊕ y∥ ≤ ∥x− y∥,
(iii) if x ∝ y, then ∥x⊕ y∥ = ∥x− y∥.

Definition 2.6. Let ψ : E → R ∪ {+∞} be a proper convex functional. A vector
ω ∈ E is called subgradient of ψ at x ∈ domψ, if

⟨ω, y − x⟩ ≤ ψ(y)− ψ(x), for all y ∈ E.

The set of all subgradients of ψ at x is denoted by ∂ψ(x) . The mapping ∂ψ : E → 2E

defined by

∂ψ(x) =
{
ω ∈ E : ⟨ω, y − x⟩ ≤ ψ(y)− ψ(x), for all y ∈ E

}
is called subdifferential of ψ.

Definition 2.7. Let ψ : E × E → R ∪ {+∞} be a proper convex functional. The

resolvent operator J ∂ψ
ρ is defined as

J ∂ψ(.,x)
ρ (x) = [I + ρ∂ψ(., x)]−1(x), for all x ∈ E,

where ρ > 0 is a constant and I is the identity operator.

Definition 2.8. A mapping ψ : E ×E → R∪ {+∞} is said to be positive homoge-
neous in the first argument, if for all α > 0 and x ∈ E, ψ(αx, y) = αψ(x, y), for all y ∈
E.

Definition 2.9. A multi-valued mapping T : E → CB(E) is said to be D-Lipschitz
continuous, if there exists a constant λDT

> 0 such that

D(T (x), T (y)) ≤ λDT
∥x− y∥, for all x, y ∈ E.

Definition 2.10. A multi-valued mapping T : E → 2E is said to be relaxed Lipschitz
continuous, if there exists a constant k > 0 such that

⟨w1 − w2, x− y⟩ ≤ −k∥x− y∥2, for all x, y ∈ E and w1 ∈ T (x), w2 ∈ T (y).

3. Formulation of the problem

Let E to be a real ordered positive Hilbert space and C ⊂ E be a closed convex
pointed cone. Let T : C → CB(E) \ {∅} be a multi-valued mapping with nonempty
values, ψ : C × C → R ∪ {+∞} be a proper convex functional and A : E × C → R
be a mapping. We consider the following generalized complementarity problem
involving XOR-operation.

Find x ∈ C, t ∈ T (x) such that

(3.1) ⟨A(t, x), x⟩ ⊕ ψ(x, x) = 0 and ⟨A(t, x), y⟩ ⊕ ψ(y, x) ≥ 0, ∀ y ∈ C.

Below we mention some special cases of problem (3.1).
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(i) If E is a real Banach space, A(t, x) = t, ψ(x, x) = ψ(x), ψ(y, x) = ψ(y), CB(E)\
{∅} = 2E \{∅} and replacing ⊕ by +, we obtain the following generalized ψ-
complementarity problem introduced and studied by Huang and Regan [11].

Find x ∈ C and t ∈ T (x) such that

(3.2) ⟨t, x⟩+ ψ(x) = 0 and ⟨t, y⟩+ ψ(y) ≥ 0, ∀ y ∈ C.

(ii) If E is a real Banach space, ⟨A(t, x), x⟩ = A(t, x), ⟨A(t, x), y⟩ = A(t, y),
ψ(x, x) = 0 = ψ(y, x), CB(E) \ {∅} = 2E \ {∅} and replacing ⊕ by +, we can
obtain the following generalized complementarity problem introduced and
studied by Farajzadeh and Harandi [9].

Find x ∈ C and t ∈ T (x) such that

(3.3) A(t, x) = 0 and A(t, y) ≥ 0, ∀ y ∈ C.

It is worth to mention that for suitable choices of operators involved in the formu-
lation of problem (3.1), one can obtain the problems studied by Yin and Xu [31],
Bazan and Lopez [3] and Isac [14,15], etc..

In connection with generalized complementarity problem involving XOR-operation
(3.1), we study the following generalized variational inequality problem involving
XOR-operation.

Find x ∈ C, t ∈ T (x) such that

(3.4) ⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ 0, ∀ y ∈ C.

Problem (3.4) includes many known variational inequalities problems available in
the literature.

We establish an equivalence result between generalized complementarity prob-
lem involving XOR-operation (3.1) and generalized variational inequality problem
involving XOR-operation (3.4).

Theorem 3.1. Let T : C → CB(E) \ {∅} be a multi-valued mapping with nonempty
values, ψ : C×C → R∪{+∞} be a proper convex functional such that ψ is positive
homogeneous in first argument and A : E × C → R be a mapping. If ⟨A(t, x), x⟩ ∝
ψ(x, x), for all x ∈ C, t ∈ T (x), then generalized complementarity problem involving
XOR-operation (3.1) and generalized variational inequality problem involving XOR-
operation (3.4) are equivalent.

Proof. Let the generalized complementarity problem involving XOR-operation (3.1)
holds. That is, x ∈ C, t ∈ T (x) such that

⟨A(t, x), x⟩ ⊕ ψ(x, x) = 0 and ⟨A(t, x), y⟩ ⊕ ψ(y, x) ≥ 0, ∀ y ∈ C.

Since ⟨A(t, x), x⟩ ∝ ψ(x, x), using (iv) of Proposition 2.4, we have

⟨A(t, x), x⟩ = ψ(x, x).(3.5)

As ⟨A(t, x), y⟩ ⊕ ψ(y, x) ≥ 0, we have

⟨A(t, x), y⟩ ⊕ (ψ(y, x)⊕ ψ(y, x)) ≥ ψ(y, x).

By (vi) and (ix) of Proposition 2.4, we obtain

⟨A(t, x), y⟩ ⊕ 0 ≥ 0⊕ ψ(y, x),
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⟨A(t, x), y⟩ ≥ ψ(y, x).(3.6)

Because

⟨A(t, x), y − x⟩ = ⟨A(t, x), y⟩ − ⟨A(t, x), x⟩.(3.7)

Using (3.5) and (3.6), (3.7) becomes

⟨A(t, x), y − x⟩ ≥ ψ(y, x)− ψ(x, x),

⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ (ψ(y, x)− ψ(x, x))⊕ (ψ(y, x)− ψ(x, x)),

⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ 0.

Thus, the generalized variational inequality problem involving XOR-operation (3.4)
holds.

Conversely, suppose that generalized variational inequality problem involving
XOR-operation (3.4) holds. That is, x ∈ C, t ∈ T (x) such that

⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ 0, ∀ y ∈ C.

Since C is a closed convex pointed cone in E, clearly y = 2x ∈ C and y = 1
2x ∈ C.

Putting y = 2x and y = 1
2x in generalized variational inequality problem involving

XOR-operation (3.4), respectively and using positive homogeneity of ψ in the first
argument, we obtain

⟨A(t, x), 2x− x⟩ ⊕ (ψ(2x, x)− ψ(x, x)) ≥ 0,

⟨A(t, x), x⟩ ⊕ ψ(x, x) ≥ 0.(3.8)

Since

⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ 0,

⟨A(t, x), y − x⟩ ≥ (ψ(y, x)− ψ(x, x)),

⟨A(t, x), 1
2
x− x⟩ ≥ ψ

(1
2
x, x

)
− ψ(x, x),

⟨A(t, x),−1

2
x⟩ ≥ −1

2
ψ(x, x),

or ⟨A(t, x), x⟩ ≤ ψ(x, x).

Thus, we have

⟨A(t, x), x⟩ ⊕ ψ(x, x) ≤ ψ(x, x)⊕ ψ(x, x) = 0,

⟨A(t, x), x⟩ ⊕ ψ(x, x) ≤ 0.(3.9)

Combining (3.8) and (3.9), we have

(3.10) ⟨A(t, x), x⟩ ⊕ ψ(x, x) = 0.

Applying (ix) of Proposition 2.4 and (3.5), from (3.4), we have

⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ 0,

⟨A(t, x), y − x⟩ ≥ (ψ(y, x)− ψ(x, x)),

⟨A(t, x), y⟩ − ⟨A(t, x), x⟩ ≥ (ψ(y, x)− ψ(x, x)),

⟨A(t, x), y⟩ − ψ(x, x) ≥ ψ(y, x)− ψ(x, x).
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That is,

⟨A(t, x), y⟩ ≥ ψ(y, x),

⟨A(t, x), y⟩ ⊕ ψ(y, x) ≥ ψ(y, x)⊕ ψ(y, x) = 0,

⟨A(t, x), y⟩ ⊕ ψ(y, x) ≥ 0.(3.11)

Equation (3.10) and inequality (3.11) constitute the required generalized comple-
mentarity problem involving XOR-operation (3.1). □

4. Existence and Convergence Result

We provide a fixed point formulation of generalized variational inequality problem
involving XOR-operation (3.4). Based on this fixed point formulation, we define an
iterative algorithm to obtain solution of generalized variational inequality problem
involving XOR-operation (3.4).

Lemma 4.1. The generalized variational inequality problem involving XOR-operation
(3.4) have a solution x ∈ C, t ∈ T (x), if and only if the following equation is satis-
fied:

(4.1) x = J ∂ψ(.,x)
ρ [x+ ρA(t, x) ],

where J ∂ψ(.,x)
ρ = [I + ρ∂ψ(., x)]−1 is the resolvent operator, ρ > 0 is a constant and

I is the identity operator.

Proof. Assume that x ∈ C, t ∈ T (x) satisfy the relation (4.1). Using the definition

of resolvent operator J ∂ψ(.,x)
ρ , we have

x = J ∂ψ(.,x)
ρ [x+ ρA(t, x) ]

= [I + ρ∂ψ(., x)]−1[x+ ρA(t, x) ],

x+ ρ∂ψ(x, x) = [x+ ρA(t, x) ].

The above relation holds if and only if

A(t, x) ∈ ∂ψ(x, x).

By the definition of subdifferential of ψ, we have

ψ(y, x)− ψ(x, x) ≥ ⟨A(t, x), y − x⟩.

Using (vi) of Proposition 2.4, we have

⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ ⟨A(t, x), y − x⟩ ⊕ ⟨A(t, x), y − x⟩
⟨A(t, x), y − x⟩ ⊕ (ψ(y, x)− ψ(x, x)) ≥ 0, ∀ y ∈ C.

It follows that x ∈ C, t ∈ T (x) is a solution of generalized variational inequality
problem involving XOR-operation (3.4). □

Based on Lemma 4.1, we construct the following iterative algorithm for solving
generalized variational inequality problem involving XOR-operation (3.4).
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Algorithm 5. Let C ⊂ E be a closed convex pointed cone and tn ∝ tn−1, for
n = 0, 1, 2, · · · . For x0 ∈ C, t0 ∈ T (x0) and α ∈ [0, 1], let

x1 = (1− α)x0 + αJ ∂ψ(.,x0)
ρ [x0 + ρA(t0, x0)].

Since t0 ∈ T (x0) ∈ CB(E), by Nadler [26], there exists t1 ∈ T (x1) and suppose that
t0 ∝ t1, using (iii) of Proposition 2.5, we have

∥t0 ⊕ t1∥ = ∥t0 − t1∥ ≤ (1 + 1)D(T (x0), T (x1)).

Continuing the above procedure inductively, we compute the sequences {xn} and
{tn} for xn ∈ C, tn ∈ T (xn) by the following scheme:

xn+1 = (1− α)xn + αJ ∂ψ(.,xn)
ρ [xn + ρA(tn, xn)],(5.1)

∥tn ⊕ tn+1∥ = ∥tn − tn+1∥ ≤
(
1 +

1

n+ 1

)
D(T (xn), T (xn+1)),(5.2)

for n = 0, 1, 2, · · ·

We prove existence and convergence result for generalized variational inequality
problem involving XOR-operation (3.4).

Theorem 5.1. Let E be a real ordered positive Hilbert space and C be a closed
convex pointed cone in E with partial ordering “ ≤ ”, xn ∝ xn−1, tn ∝ tn−1, n =
1, 2, · · · . Let T : C → CB(E) \ {∅} is a multi-valued mapping with nonempty values
such that T is D-Lipschitz continuous with constant λDT

. Let ψ : C × C → R ∪
{+∞} be a proper convex functional such that the resolvent operators associated

with ψ(., xn) and ψ(., xn−1) are comparable, that is J ∂ψ(.,xn)
ρ ∝ J ∂ψ(.,xn−1)

ρ .
Let A : E×C → R be a mapping such that A is Lipschitz continuous and relaxed

Lipschitz continuous in both the arguments with constants λA1 , λA2 , λC1 and λC2 ,
respectively. If the following conditions are satisfied:

(5.3)
∥∥∥J ∂ψ(.,xn)

ρ (z)− J ∂ψ(.,xn−1)
ρ (z)

∥∥∥ ≤ µ∥xn − xn−1∥, ∀ z ∈ C,

and

(5.4)
∣∣∣ρ− λA1λ

2
DT

+ λC2

(λA1λDT
+ λA2)

2

∣∣∣ <
√

(λC1λ
2
DT

+ λC2)
2 − (λA1λDT

+ λA2)
2(2µ− µ2)

(λA1λDT
+ λA2)

4
,

where all the constants involved in (5.3) and (5.4) are positive, then the sequences
{xn} and {tn} generated by Algorithm 5 strongly converge to the solution x and t
of generalized variational inequality problem involving XOR-operation (3.4), respec-
tively.

Proof. Since xn+1 ∝ xn, n = 1, 2, · · · , using (iii) of Proposition 2.4 and (5.1) of
Algorithm 5, we have

0 ≤ xn+1 ⊕ xn =
[
(1− α)xn + αJ ∂ψ(.,xn)

ρ [xn + ρA(tn, xn)]
]

⊕
[
(1− α)xn−1 + αJ ∂ψ(.,xn−1)

ρ [xn−1 + ρA(tn−1, xn−1)]
]

= (1− α)(xn ⊕ xn−1) + α
[
J ∂ψ(.,xn)
ρ [xn + ρA(tn, xn)]
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⊕J ∂ψ(.,xn−1)
ρ [xn−1 + ρA(tn−1, xn−1)]

]
.(5.5)

From (5.5), it follows that

∥xn+1 ⊕ xn∥ =
∥∥∥(1− α)(xn ⊕ xn−1) + α

[
J ∂ψ(.,xn)
ρ [xn + ρA(tn, xn)]

⊕J ∂ψ(.,xn−1)
ρ [xn−1 + ρA(tn−1, xn−1)]

]∥∥∥
≤ (1− α)∥xn ⊕ xn−1∥+ α

∥∥∥J ∂ψ(.,xn)
ρ [xn + ρA(tn, xn)]

⊕J ∂ψ(.,xn−1)
ρ [xn−1 + ρA(tn−1, xn−1)]

∥∥∥.(5.6)

As xn ∝ xn−1, J ∂ψ(.,xn)
ρ ∝ J ∂ψ(.,xn−1)

ρ , n = 0, 1, 2, · · · , using (iii) of Proposition

2.5, condition (5.3) and nonexpensiveness of the resolvent operator J ∂ψ(.,x)
ρ , (5.6)

becomes

∥xn+1 − xn∥ ≤ (1− α)∥xn − xn−1∥+ α
∥∥∥J ∂ψ(.,xn)

ρ [xn + ρA(tn, xn)]

−J ∂ψ(.,xn−1)
ρ [xn−1 + ρA(tn−1, xn−1)]

∥∥∥
≤ (1− α)∥xn − xn−1∥+ α

∥∥∥[J ∂ψ(.,xn)
ρ [xn + ρA(tn, xn)]

−J ∂ψ(.,xn−1)
ρ [xn + ρA(tn, xn)] + J ∂ψ(.,xn−1)

ρ [xn + ρA(tn, xn)]

−J ∂ψ(.,xn−1)
ρ [xn−1 + ρA(tn−1, xn−1)]

∥∥∥
≤ (1− α)∥xn − xn−1∥+ α

∥∥∥[J ∂ψ(.,xn)
ρ [xn + ρA(tn, xn)]

−J ∂ψ(.,xn−1)
ρ [xn + ρA(tn, xn)]

∥∥∥+ α
∥∥∥J ∂ψ(.,xn−1)

ρ [xn + ρA(tn, xn)]

−J ∂ψ(.,xn−1)
ρ [xn−1 + ρA(tn−1, xn−1)]

∥∥∥
≤ (1− α)∥xn − xn−1∥+ αµ∥xn − xn−1∥

+∥[xn + ρA(tn, xn)]− [xn−1 + ρA(tn−1, xn−1)]∥
= (1− α)∥xn − xn−1∥+ αµ∥xn − xn−1∥

+∥(xn − xn−1) + ρ
(
A(tn, xn)−A(tn−1, xn−1)

)
∥.(5.7)

Since T is D-Lipschitz continuous with constant λDT
, A is relaxed Lipschitz con-

tinuous in both the arguments with constants λC1 and λC2 , respectively, using (5.2)
of Algorithm 5, we have

∥(xn − xn−1) + ρ(A(tn, xn)−A(tn−1, xn−1)∥2

= ∥xn − xn−1∥2 + 2ρ⟨A(tn, xn)−A(tn−1, xn−1), xn − xn−1⟩
+ρ2∥A(tn, xn)−A(tn−1, xn−1)∥2

= ∥xn − xn−1∥2 + 2ρ⟨A(tn, xn)−A(tn−1, xn), xn − xn−1⟩
+2ρ⟨A(tn−1, xn)−A(tn−1, xn−1), xn − xn−1⟩
+ρ2∥A(tn, xn)−A(tn−1, xn−1)∥2

≤ ∥xn − xn−1∥2 − 2ρλC1∥tn − tn−1∥2 − 2ρλC2∥xn − xn−1∥2
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+ρ2∥A(tn, xn)−A(tn−1, xn−1)∥2.
≤ ∥xn − xn−1∥2 − 2ρλC1λ

2
DT

∥xn − xn−1∥2 − 2ρλC2∥xn − xn−1∥2

+ρ2∥A(tn, xn)−A(tn−1, xn−1)∥2.(5.8)

Since A is Lipschitz continuous in both the arguments with constants λA1 and λA2 ,
respectively, and T is D-Lipschitz continuous with constant λDT

, we have

∥A(tn, xn)−A(tn−1, xn−1)∥
= ∥A(tn, xn)−A(tn−1, xn) +A(tn−1, xn)−A(tn−1, xn−1)∥
≤ ∥A(tn, xn)−A(tn−1, xn)∥+ ∥A(tn−1, xn)−A(tn−1, xn−1)∥
≤ λA1∥tn − tn−1∥+ λA2∥xn − xn−1∥
≤ λA1D(T (xn), T (xn−1)) + λA2∥xn − xn−1∥
≤ λA1λDT

∥xn − xn−1∥+ λA2∥xn − xn−1∥
≤ (λA1λDT

+ λA2)∥xn − xn−1∥.(5.9)

Using (5.9), (5.8) becomes

∥(xn − xn−1) + ρ(A(tn, xn)−A(tn−1, xn−1)∥2

≤ ∥xn − xn−1∥2 − 2ρλ2DT
λC1∥xn − xn−1∥2 − 2ρλC2∥xn − xn−1∥2

+ρ2(λA1λDT
+ λA2)

2∥xn − xn−1∥2

≤ ∥xn − xn−1∥2 − 2ρλ2DT
λC1∥xn − xn−1∥2 − 2ρλC2∥xn − xn−1∥2

+ρ2(λA1λDT
+ λA2)

2∥xn − xn−1∥2

≤
[
1− 2ρλ2DT

λC1 − 2ρλC2 + ρ2(λA1λDT
+ λA2)

2
]
∥xn − xn−1∥2.(5.10)

Thus, we have

∥(xn − xn−1) + ρ(A(tn, xn)−A(tn−1, xn−1)∥ ≤ Θ∥xn − xn−1∥,(5.11)

where

Θ =
√

1− 2ρλ2DT
λC1 − 2ρλC2 + ρ2(λA1λDT

+ λA2)
2.

Using (5.11), (5.7) becomes

∥xn+1 − xn∥ ≤ (1− α)∥xn − xn−1∥+ αµ∥xn − xn−1∥+ αΘ∥xn − xn−1∥
≤ [(1− α) + αµ+ αΘ]∥xn − xn−1∥
= ξ∥xn − xn−1∥,(5.12)

where ξ=[(1−α)+αµ+αΘ] and Θ=
√

1− 2ρλ2DT
λC1 − 2ρλC2 + ρ2(λA1λDT

+ λA2)
2.

By condition (5.4), we have ξ < 1 and consequently {xn} is a Cauchy sequence in
E. Let xn → x ∈ E, as n → ∞. From (5.2) of Algorithm5 and as T is D-Lipschitz
continuous, we have

∥tn ⊕ tn+1∥ = ∥tn − tn+1∥ ≤
(
1 +

1

n+ 1

)
D(T (xn), T (xn+1)

≤
(
1 +

1

n+ 1

)
λDT

∥xn − xn+1∥.(5.13)
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It follows that {tn} is also a Cauchy sequence and consequently tn → t ∈ E.
Lastly, we prove that t ∈ T (x). Infact, tn ∈ T (xn) and

d(tn, T (x)) ≤ max

{
d(tn, T (x)), sup

u∈T (x)
d(T (xn), u)

}

≤ max

{
sup

v∈T (xn)
d(v, T (x)), sup

u∈T (x)
d(T (xn), u)

}
= D(T (xn), T (x)).

we have

d(t, T (x)) ≤ ∥t− tn∥+ d(tn, T (x))

≤ ∥t− tn∥+D(T (xn), T (x))

≤ ∥t− tn∥+ λDT
∥xn − x∥ → 0, as n→ ∞.

Thus, we have d(t, T (x)) = 0 and so T (x) ∈ CB(E) and t ∈ T (x). By Lemma 4.1,
the result follows.

□

Remark 5.2. By combining Theorem 3.1 and Theorem 5.1, we emphasize that the
solution of generalized variational inequality involving XOR-operation (3.4) is also
a solution of generalized complementarity problem involving XOR-operation (3.1).

6. Numerical Example

We provide a numerical example in support of some of the concepts used in our
main result.

Example 6.1. Let E = R, C = [0,∞) ⊂ E.

(i) We define the mapping A : E × C → R by

A(x, y) = −x
2
− y

2
.

Now,

∥A(x,w)−A(y, w)∥ =
∥∥∥(−x

2
− w

2

)
−
(
−y
2
− w

2

)∥∥∥
=

∥∥∥x
2
− y

2

∥∥∥
=

1

2
∥x− y∥

≤ 3

4
∥x− y∥,

that is, A is Lipschitz continuous in first argument with constant λA1 = 3
4 .

∥A(w, x)−A(w, y)∥ =
∥∥∥(−w

2
− x

2

)
−
(
−w

2
− y

2

)∥∥∥
=

∥∥∥x
2
− y

2

∥∥∥
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=
1

2
∥x− y∥

≤ 3

2
∥x− y∥,

that is, A is Lipschitz continuous in second argument with constant λA2 = 3
2 .

⟨A(x,w)−A(y, w), x− y⟩ =
〈(

−x
2
− w

2

)
−
(
−y
2
− w

2

)
, x− y

〉
=

〈
−x
2
+
y

2
, x− y

〉
= −1

2
∥x− y∥

≤ −1

4
∥x− y∥,

that is, A is relaxed Lipschitz continuous in first argument with constant λC1 = 1
4 .

⟨A(w, x)−A(w, y), x− y⟩ =
〈(

−w
2
− x

2

)
−
(
−w

2
− y

2

)
, x− y

〉
=

〈
−x
2
+
y

2
, x− y

〉
= −1

2
∥x− y∥

≤ −1

3
∥x− y∥,

that is, A is relaxed Lipschitz continuous in second argument with constant λC2 = 1
3 .

(ii) We define the mapping T : C → CB(E) by

T (x) =
{x
2

}
.

Since

D(T (x), T (y)) = max

{
sup

x∈T (x)
d(x, T (y)), sup

y∈T (y)
d(T (x), y)

}

= max

{
sup

x∈T (x)
|x− T (y)|, sup

y∈T (y)
|T (x)− y|

}
= max

{
sup

∣∣∣x
4
− y

4

∣∣∣ , sup ∣∣∣x
4
− y

4

∣∣∣}
≤ 1

2
|x− y| ,

that is, T is D-Lipschitz continuous with constant λDT
= 1

2 .

(iii) We define the mapping ψ : C × C → R ∪ {+∞} by

ψ(x, y) = x2

The subdifferential of ψ is given by

∂ψ(x, y) = 2x
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and the resolvent operator

J∂ψ(·,x)ρ (x) = [I + ρ∂ψ(·, x)]−1 (x)

= [x+ 1× 2x]−1

= (3x)−1

=
x

3
.

Clearly, if x1 ∝ x2 so that J
∂ψ(·,x)
ρ (x1) ∝ J

∂ψ(·,x)
ρ (x2).

(iv) Additionally, the condition (5.4) is satisfied for the constants computed above
λA1 = 3

4 , λA2 = 3
2 , λC1 = 1

4 , λC2 = 1
3 , λDT

= 1
2 , ρ = 1 and µ = 3. That is,∣∣∣∣∣ρ− λA1λ

2
DT

+ λC2

(λA1λDT
+ λA2)

2

∣∣∣∣∣ = 0.8518

and √
(λC1λ

2
DT

+ λC2)
2 − (λA1λDT

+ λA2)
2(2µ− µ2)

(λA1λDT
+ λA2)

4
= 0.9229

Hence,∣∣∣∣∣ρ− λA1λ
2
DT

+ λC2

(λA1λDT
+ λA2)

2

∣∣∣∣∣ <
√

(λC1λ
2
DT

+ λC2)
2 − (λA1λDT

+ λA2)
2(2µ− µ2)

(λA1λDT
+ λA2)

4
.
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