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EQUIVALENCE BETWEEN GENERALIZED
COMPLEMENTARITY PROBLEM AND GENERALIZED
VARIATIONAL INEQUALITY PROBLEM INVOLVING
XOR-OPERATION WITH EXISTENCE OF SOLUTION

RAIS AHMAD, IQBAL AHMAD, MOHD. ISHTYAK, AND ZAHOOR AHMAD RATHER

ABSTRACT. In this paper, we study a generalized complementarity problem and
a variational inequality problem involving XOR~operation. Equivalence between
both the problems is shown by using the technique of Karamardian [16,17]. An
iterative algorithm is defined for solving generalized variational inequality prob-
lem involving XOR-operation. An existence and convergence result is proved.
We provide an example in support of some of the concepts used in our main
result.

1. INTRODUCTION

The techniques of variational inequalities are powerful tools for solving many
problems related to mechanics, optimization, transportation, economics, elasticity,
etc., see for example [2,6]. Due to their applications, variational inequalities were
generalized and extended in various directions. Equally important is the area of
operations research known as complementarity theory, which has received much
recognition in recent past. If the convex set involved in a variational inequality
problem and a complementarity problem is a convex cone, then both the problems
are equivalent, see Karamardian [16,17]. Indeed, variational inequality problems
are more general than complementarity problems and include them as special cases.
For more details on variational inequalities, complementarity problems and their
applications, we refer to [4,5,7,8,10,12,13,18-20,27-30].

A Boolean logic operation called “exclusive or”, or XOR~operation is widely used
in cryptography as well as in generating parity bits for error checking and fault
tolerance. XOR compares two input bits and generate one output bit. The logic
is simple, if the bits are same, the result is zero. Suppose a system receiving a
continuous stream of data in some fixed packet size. The parity check can help
to know whether the data is received, correctly received or has been corrupted.
We mention one more application of XOR~operation, that is, when a file is being
transferred from server A to server B, it is cut into blocks, sent over piece by
piece, then reattached at its destination. To ensure each block is not corrupted,
a checksum function is run on it, generating a unique checksum. All the symbols
are then intercepted in base 2 (1’s and 0’s), and each chunk is XOR-ed together.
One can find application of XOR-terminology in digital electronics, combination
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and sequential circuits, multibit inverter, etc.. For some suitable work related to
variational inclusions involving XOR~operation, we refer to [1,21-23].

Merging all the concepts discussed above, in this paper, we study a generalized
complementarity problem and a generalized variational inequality problem involving
XOR-operation. An equivalence between them is establish by taking convex set to
be convex cone involved in both the problems. Finally, an iterative algorithm is
defined to obtain the solution of generalized variational inequality problem involving
XOR-operation. Convergence criteria is also discussed. An example is provided.

2. PRELIMINARIES

We assume E to be real ordered positive Hilbert space with its norm ||.|| and
inner product (-,-), d is the metric induced by the norm || - ||, CB(E) is the family
of nonempty, closed and bounded subsets of F, and D(.,.) is Hausdorff metric on

CB(E).

The following notations and definitions are required to prove our result, which
can be traced in [24, 25].

Definition 2.1. A nonempty closed convex subset C of E is said to be a cone, if

(2) for any x € C and A > 0, Az € C,
(73) for any x € C and —z € C, then x = 0.

Definition 2.2. For arbitrary elements x,y € E, x <y (ory < x) holds, then x
and y are said to be comparable to each other (denoted by x x y).

Definition 2.3. For arbitrary elements x,y € E, lub{z,y} and glb{x,y} means the
least upper bound and the greatest upper bound of the set {x,y}. Suppose lub{x,y}
and glb{z,y} exist, then some binary operations are defined as:

(1) = Vy=lub{z,y},
(i1) x Ay = glb{z, y},
(1i) x @y = (z—y)V(y — ),
(iv) 2Oy = (z —y) A (y — ).
The operations V, A\, @& and ® are called OR, AND, XOR and XNOR operations,
respectively.

Proposition 2.4. Let @ be an XOR-operation and @ be an XNOR-operation. Then
the following relations hold:

ifx <0, then —x0<z<xd0,
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Proposition 2.5. Let C be a cone in E. Then for each x,y € E, the following
relations hold:

(i) l]o@o] = o] =0,
(i6) @yl < lz— ol
(i#d) if = oy, then |z ® y| = |z~ y]].

Definition 2.6. Let ¢ : E — R U {400} be a proper convex functional. A vector
w € FE is called subgradient of ¢ at x € domap, if

(w,y —x) <P(y) —p(x), forally € E.

The set of all subgradients of 1 at x is denoted by OY(x) . The mapping O : E — 2F
defined by

ou(a) = {w e B (w,y— ) < v(y) — (@), Jor ally € B}
1s called subdifferential of 1.

Definition 2.7. Let ¢ : E x E — RU {400} be a proper convex functional. The
resolvent operator j/fw 1s defined as

TP (@) = 1+ pdip(,2)] (), for all w € ,
where p > 0 is a constant and I is the identity operator.

Definition 2.8. A mapping ¢ : E X E — RU {400} is said to be positive homoge-
neous in the first argument, if for allae > 0 and x € E, (ax,y) = a(x,y), for ally €
E.

Definition 2.9. A multi-valued mapping T : E — CB(FE) is said to be D-Lipschitz
continuous, if there exists a constant Ap, > 0 such that

D(T(x),T(y)) < Apgllz —yl, for allz,y € E.

Definition 2.10. A multi-valued mapping T : E — 2 is said to be relaxed Lipschitz
continuous, if there exists a constant k > 0 such that

(wy —wy, x —y) < —k|lz —y||?, for all z,y € E and wy € T(x), wy € T(y).

3. FORMULATION OF THE PROBLEM

Let E to be a real ordered positive Hilbert space and C C E be a closed convex
pointed cone. Let T': C' — CB(FE) \ {0} be a multi-valued mapping with nonempty
values, ¢ : C x C'— R U {400} be a proper convex functional and A: E x C — R
be a mapping. We consider the following generalized complementarity problem
involving XOR-~operation.

Find z € C, t € T(x) such that
(3.1) (A(t, z),2) @ ¢(x, ) = 0 and (A(t,2),y) ®d(y,x) 20, Vy e C.

Below we mention some special cases of problem (3.1).
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(1) If FE is areal Banach space, A(t,z) = t, ¢ (z,x) = ¥(x), Y (y,x) = ¥(y),CB(E)\
{0} = 2%\ {0} and replacing @& by +, we obtain the following generalized -
complementarity problem introduced and studied by Huang and Regan [11].

Find € C and t € T'(z) such that
(3.2) (t7) + (x) = 0 and (£, ) +¥(y) > 0, Vy € C.
(13) If E is a real Banach space, (A(t,z),x) = A(t,z), (A(t,x),y) = A(t,y),
Y(z,x) =0=1(y,x),CB(E)\ {0} = 27\ {0} and replacing & by +, we can

obtain the following generalized complementarity problem introduced and
studied by Farajzadeh and Harandi [9].

Find x € C and t € T'(z) such that
(3.3) A(t,x) =0 and A(t,y) >0, Vy e C.

It is worth to mention that for suitable choices of operators involved in the formu-
lation of problem (3.1), one can obtain the problems studied by Yin and Xu [31],
Bazan and Lopez [3] and Isac [14,15], etc..

In connection with generalized complementarity problem involving XOR-operation
(3.1), we study the following generalized variational inequality problem involving
XOR-operation.

Find z € C, t € T(x) such that

Problem (3.4) includes many known variational inequalities problems available in
the literature.

We establish an equivalence result between generalized complementarity prob-
lem involving XOR-operation (3.1) and generalized variational inequality problem
involving XOR-operation (3.4).

Theorem 3.1. Let T : C' — CB(E)\ {0} be a multi-valued mapping with nonempty
values, ¥ : C' x C' — RU{+o0} be a proper convez functional such that 1 is positive
homogeneous in first argument and A : E x C — R be a mapping. If (A(t,z),x) x
Y(x,x), for allz € C,t € T(x), then generalized complementarity problem involving
XOR-operation (3.1) and generalized variational inequality problem involving XOR-
operation (3.4) are equivalent.

Proof. Let the generalized complementarity problem involving XOR-operation (3.1)
holds. That is, x € C, t € T'(x) such that

(A(t,z),z) ® Y(z,z) = 0 and (A(t,z),y) ©Y(y,x) >0, Vy € C.
Since (A(t,z),x) ¢ (x,x), using (iv) of Proposition 2.4, we have
(35) <A(ta I’),.’IJ> = Qﬁ(%l’)
As (A(t,2),5) © b(y,2) > 0, we have
(A(t,2),y) © (V(y, 2) ©P(y, 2)) = Y(y, @),
By (vi) and (ix) of Proposition 2.4, we obtain
(Alt,2),y) ©0 = 0©P(y, z),
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(3.6) (Alt,x),y) > Y(y, ).
Because
(3'7) <A(t>$)>y - l’> = (A(t,:v),y> - <A(t7$)7x>'
Using (3.5) and (3.6), (3.7) becomes

<A(t,$),y—$> ¢(ya9€) —w(%x),

(At z),y — z) & (P(y, ) — P(z, 1))
<A(t>$)7y - I’> ©® (w(yv .%') - lb(%x))

Thus, the generalized variational inequality problem involving XOR-operation (3.4)
holds.

Conversely, suppose that generalized variational inequality problem involving
XOR-operation (3.4) holds. That is, x € C,t € T(z) such that

<A(t’l‘)ay - l’> ® (T/J(ZJa IL‘) - ¢(93>$)) > 07 v Y€ C.

Since C'is a closed convex pointed cone in F, clearly y = 2z € C' and y = %$ eC.

(W (y, 2) = ¥(x,2)) © (P(y, 2) = P(x, x)),
0.

(AVARAVARLY,

Putting y = 2z and y = %IL‘ in generalized variational inequality problem involving
XOR-operation (3.4), respectively and using positive homogeneity of v in the first
argument, we obtain

<A(ta$)7 2z — SL‘> D (1/)(21‘,1’) - 7/)(:17751")) > 0,
(38) (Alt,2),7) & b(,z) >

Since

(At,z),y — ) ® (Y(y,x) — Y(z,2))
(A(t,x),y — =)
(At 2), %ax e

0,
(W (y, z) — ¥(z, 7)),
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Thus, we have

<A(t7 33‘), ZL‘> ©® 111(337 l’) < 11)(1‘, l‘) @ ¢($7 :E) =0,
(3.9) (A(t,z),x) @ ¢Y(xz,x) < 0.
Combining (3.8) and (3.9), we have
(3.10) (A(t,z),z) ®Y(z,x) = 0.

Applying (ix) of Proposition 2.4 and (3.5), from (3.4), we have

(At z),y —z) @ (Y(y,z) —d(z,2)) = 0,
(At z),y —z) > (¥(y,2) —¥(z,2)),
(A(t,z),y) — (AL, z),2) > (¥(y,z) —P(z, 7)),
(At 2),y) —¥(z,2) = Y(y,z) —d(z,z)
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That is,
(Alt,z),y) = ¥(y, ),
(At,z).y) @Yy, 2) > Py, 2) @9y, 2) =0,
(3.11) (Alt,2),y) ©P(y,x) = 0.
Equation (3.10) and inequality (3.11) constitute the required generalized comple-
mentarity problem involving XOR-operation (3.1). O

4. EXISTENCE AND CONVERGENCE RESULT

We provide a fixed point formulation of generalized variational inequality problem
involving XOR-operation (3.4). Based on this fixed point formulation, we define an
iterative algorithm to obtain solution of generalized variational inequality problem
involving XOR-operation (3.4).

Lemma 4.1. The generalized variational inequality problem involving X OR-operation
(3.4) have a solution x € C, t € T(x), if and only if the following equation is satis-
fied:

(4.1) z=JD [z + pA(t,a) ],

where J, () = [T+ pdy(.,x)]~ 1 is the resolvent operator, p > 0 is a constant and
I is the identity operator.

Proof. Assume that x € C, t € T'(x) satisfy the relation (4.1). Using the definition
()

of resolvent operator j,? vl , we have

z = JND e+ pA(t,z) ]
= [+ pdu(,2)] [z + pA(t,z) ],
x4+ pdY(z,z) =[x+ pA(t,z) ].
The above relation holds if and only if
A(t,x) € 0Y(z, ).
By the definition of subdifferential of ¢, we have
Yy, z) — Yz, 2) > (A(t,2),y — ).
Using (vi) of Proposition 2.4, we have
(Alt.2),y — o) & (U(y,2) — b(a,a)) = (Alt,a),y — ) & (Alt,2)y — )
(Alt,2),y —2) © (P(y, 2) = Y(z,2)) > 0, Vyel

It follows that = € C, t € T(x) is a solution of generalized variational inequality
problem involving XOR~operation (3.4). O

Based on Lemma 4.1, we construct the following iterative algorithm for solving
generalized variational inequality problem involving XOR-operation (3.4).
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Algorithm 5. Let C C E be a closed convexr pointed cone and t, x t,_1, for
n=0,1,2,---. Forxg € C, tg € T(xp) and o € [0,1], let

x1=(1—a)zy+ aj/;%("z“)[xo + pA(to, zo)].
Since tg € T(xg) € CB(E), by Nadler [26], there exists t1 € T(x1) and suppose that
to o t1, using (iii) of Proposition 2.5, we have

[to @ ta]| = l[to — tall < (1 + 1) D(T (o), T'(x1))-

Continuing the above procedure inductively, we compute the sequences {x,} and
{tn} for x,, € C,t, € T(xy,) by the following scheme:

(5.1) Tos1 = (1= a)z, +aT2%C [z, + pA(ty, 1)),
1
69 laotual = ln—tasal < (14 257 ) D@ T
n+1
forn=0,1,2,---

We prove existence and convergence result for generalized variational inequality
problem involving XOR~operation (3.4).

Theorem 5.1. Let E be a real ordered positive Hilbert space and C be a closed
convex pointed cone in E with partial ordering “ <7, , X Tn_1,tp X th_1,n =
1,2,---. Let T : C — CB(E) \ {0} is a multi-valued mapping with nonempty values
such that T is D-Lipschitz continuous with constant Ap,.. Let ¢ : C x C' = R U
{+o0} be a proper convex functional such that the resolvent operators associated
with (., zy,) and (., zn—1) are comparable, that is jf?w("x") o jpaw("x”’l).

Let A: ExC — R be a mapping such that A is Lipschitz continuous and relazed
Lipschitz continuous in both the arguments with constants Aa,, Aa,, Ao, and Aoy,
respectively. If the following conditions are satisfied:

G3) [ g - g @) < e - vV 2 € C

and

(5.4) ‘p B A AD, +Ac ‘ \/()\Cl)\QDT +A5)2 — (Aay Apy + Aa,)2(20 — p2)

()\Al )\DT + )‘A2)2 ()‘Al)‘DT + )‘A2)4 ’

where all the constants involved in (5.3) and (5.4) are positive, then the sequences
{zn} and {t,} generated by Algorithm 5 strongly converge to the solution x and t
of generalized variational inequality problem involving XOR-operation (3.4), respec-
tively.

Proof. Since xn41 X Tp, n = 1,2,---, using (ii¢) of Proposition 2.4 and (5.1) of
Algorithm 5, we have

0<zpt1 Dz, = {(1 —a)x, + ajpaw("x")[mn + pA(ty, xn)]}
©® |:(1 - Ol)fL'n—l + Oljl?w(”rnil)[xn—l + pA(tn—lu SUn—l)]}

= (1= )@ ®2n1) + & TP g + pA(tn, )]
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(5.5) STV w1 + pA(ta—1, 70-1)]
From (5.5), it follows that

lonis @ @all = ||(1 = 0) (@0 ® 1) + @] TP + pA(tn, )]

Eijad}("x”‘l)[:L‘nq + pA(ty_1, xn_l)]} H

< (1= a)lan ® @n-a ] + 0| TP + pAltn, w0)]
(56) @jp&p(.’xn_l)[xn—l + ,OA(tn—laxn—l)]H-
As x, X xp_1, Jﬁ?w("m”) x jpaw("w"’l), n =0,1,2,---, using (iii) of Proposition

2.5, condition (5.3) and nonexpensiveness of the resolvent operator jpa V) (5.6)
becomes

Jnir = 2all < (1= )an = @noall + | JPC oy + pA(tn, w0)]

s |

< (1= a)llen = @l + o [T2C e + pA(tn, 20)]
— TP [ 4 pAltn, )] + TP [ + pAltn, )]
— T2 g+ pA(tn-t, Tn-1)] H

< (U= a)llen = @il + o [T2C o + pA(tn, 20)]
_jpaw(.,xn_l)[xn i pA(tml‘n)]H 1 a“jpa¢(.,$n—l)[xn + pA(tn, z,)]
—JOeE D gy 4 pA(t—1, Tn1)] H

< (1= a)llzn — zpa1|| + apl|z, — zp-1]|

H[xn + pA(tn, vn)] — (21 + pA(tn—1,2n-1)]]
= (I=a)|zn — znall + apllzn — zpll
(5.7) (@0 = 2n-1) + p(Altn, 20) — Altn-1, 2n-1)) -
Since T is D-Lipschitz continuous with constant Ap,, A is relaxed Lipschitz con-

tinuous in both the arguments with constants A\¢, and A¢,, respectively, using (5.2)
of Algorithm 5, we have

[(zn — zn—1) + p(A(tn, zp) — A(tn-1, xnfl)Hz
= |lzn — xn71||2 +2p(A(tn, Tn) — Altn—1,Tn-1), Tn — Tn_1)
+0? [ Altn, ) = Altn-1, 20-1)|?
= lon — xn—IHQ + 2p(A(tn, 2n) — A(tn—1,2Zn), Tn — Tn-1)
+2p(A(tp—1,2n) — Altn—1,Tn—1), T, — Tp_1)
+F’2‘|A(tna zn) — Altn-1, xnfl)HQ
lzn = 2n-1]1? = 20Aci[ltn — ta-1l? = 20X, |20 — 2o

IN
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+,02”A(tn, :I:n) - A(tnfla $n71)||2-
< len = @ac1l® = 200, N, 120 — 2o |? = 2000, |2 — @ |2
(5.8) +02 || A(tn, zn) — Altp—1, zn_1)|>

Since A is Lipschitz continuous in both the arguments with constants A4, and A4,,
respectively, and T' is D-Lipschitz continuous with constant Ap,., we have

|A(tn, 2n) — A(tn—1, Zn—1)|
= ”A(tmxn) — A(tn—1,7n) + A(tn—lawn) - A(tn—hxn—l)H
[A(tn, 2n) — Altn—1, 20)[| + [Atn—1,2n) — Altn—1,2n-1)|l
Ay lltn = ta—1ll + Aa, |0 — Zna |
A, D(T(20), T(xn-1)) + As, |20 — Tn—1||
Aa Appl|#n — o1l + Aag |20 — 2na |
(5.9) ()\AI/\DT + )\Ag)Hxn — xn_lﬂ.
Using (5.9), (5.8) becomes

[(xn — 1) + p(A(tn, Tn) — A(tn—laxn—1)||2

VAN VAN VAN VAN VAN

< o, — mnle2 - QP)‘?DT)‘CH |20 — $n71||2 = 2pAcy [|Tn — $n71||2
+p2()\A1)\DT + /\A2)2H$n - l’n_1||2
< o, - mnle2 - QP)‘?DT)‘CH |20 — xn71||2 = 2pAcy ||Tn — mn71||2

+102()‘A1)‘DT + /\A2)2”$n - l’n_1||2
(5'10) < [1 - 2p>‘2DT>‘C1 - 2/))‘02 + p2()‘A1 )‘DT + >‘A2)2] ||$n - $n71||2~
Thus, we have
(5.11)  |[(xn — #n—1) + p(A(tn, Tn) — Altn—1, Tn-1)[| < Ollzn — Tn_1]],

where

o= \/1 — 2023 Acy — 2pAc, + P2 (Aay Apy + Aay)?
Using (5.11), (5.7) becomes
[#n41 —anll < (1= a)|lzn — 2l + opllzn — 2o + aOllzn — zn|
< [(1—a)+ ap+aB]lzn — 20
(5.12) = &y — zpall,

where £ = [(1—a)+apu+0O] and © = \/1 — 203 Acy — 2pAc, + P2 (Aay Apy + Aay)?
By condition (5.4), we have £ < 1 and consequently {z,} is a Cauchy sequence in

E. Let x,, —» x € E, as n — oo. From (5.2) of Algorithmb and as T' is D-Lipschitz
continuous, we have

1
Itn @ twsall =l = twall < (14 7 ) DTG, T

(5.13)

IN

1
<1 + n—f—l) )\DTHJIn — $n+1”.
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It follows that {t,} is also a Cauchy sequence and consequently ¢, — t € E.
Lastly, we prove that t € T'(z). Infact, t,, € T(z,,) and

d(t,,T(z)) < mazx {d(tn,T(x)), sup d(T(mn),u)}
u€T (x)

IN

vET (zn) ueT (x)
= D(T(xn), T(x)).

'ma:):{ sup d(v,T(x)), sup d(T(:cn),u)}

we have
d(t,T(z)) < |t —to] + d(tn, T(x))
< Ht - tn” + D(T(xn)7 T(x))
< |t —=tull + Apgpllzn — || = 0, as n — oo.
Thus, we have d(t,T(z)) = 0 and so T'(z) € CB(FE) and ¢t € T(x). By Lemma 4.1,
the result follows.
U

Remark 5.2. By combining Theorem 3.1 and Theorem 5.1, we emphasize that the
solution of generalized variational inequality involving XOR-operation (3.4) is also
a solution of generalized complementarity problem involving XOR-operation (3.1).

6. NUMERICAL EXAMPLE

We provide a numerical example in support of some of the concepts used in our
main result.

Example 6.1. Let E=R,C =[0,00) C E.
(1) We define the mapping A : E x C' — R by

r oy
A =———-=
Now,
A1) y w
et = |(5- ) (5 3)
A, w) ~ Aty w)| -2 -(-2-3
= 53l
22
o=yl
_= — |l —
9 Yy
< eyl
S g Ylls
that is, A is Lipschitz continuous in first argument with constant A4, = %.
_ A _E_Q)H
lA@w,2) - Awy)l = |(-5-3)-(-5-%

Il
2 2
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-
= — || —
B Yy

< lz—yl
= 5 Y1l

that is, A is Lipschitz continuous in second argument with constant Aa, = %

= e = {(5-3)-(4-%)w0)

< —7llz =yl

that is, A is relazed Lipschitz continuous in first argument with constant A\c, = %.
woox woy

(Aw.o) = Awy)e =y = ((-5-3) (-3 -3)-v)
(-2 +2ams)

2 2
-
= —— || —
9 Yy
< La—y
Lo
< 3 )

that is, A is relaxed Lipschitz continuous in second argument with constant A\c, = %

(ii) We define the mapping T : C' — CB(E) by

X
@) =1{3}
Since
D(T(z),T(y)) = maxq sup d(z,T(y)), sup d(T(z),y)
zeT(z) yeT (y)
- max{ sup |z~ T(y)], sup rT<x>—y|}
zeT(z) yeT (y)
x oy x oy
- max{suP‘Z_Z ’Sup‘i_i}

IN

o=l

e —

9 Yl

that is, T is D-Lipschitz continuous with constant Ap, = %.
(iii) We define the mapping 1 : C x C — RU {+o0} by

Y(x,y) = a?
The subdifferential of 1 is given by

op(x,y) = 2x
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and the resolvent operator
oY(-,x -1
TR () [+ p0(-,2)]” (x)
= [z+1x2z"

= (3z)7!

r
= 3
Clearly, if x1 o< 22 so that J;w("x) (1) o ng("x) (x2).

(iv) Additionally, the condition (5.4) is satisfied for the constants computed above
Aa, = %,)\AQ = %,)\cl = %,)\02 = %,/\DT = %,p: 1 and p = 3. That is,

A4, )‘QDT + Ac,

— = 0.8518
P ()\Al >\DT + )‘A2)2
and
()\Cl)\ZDT + )‘02)2 - ()\Al)\DT + )‘A2)2(2M — u?)
1 = 0.9229
()\Al >‘DT + )‘Az)
Hence,
o— A4, /\%)T + Ac, < ()\Cl )‘2DT + /\02)2 - ()‘Al/\DT + )‘A2)2(2/~” - MQ)
(/\Al )\DT + )‘A2)2 ()\Al)\DT + )‘A2)4 '
REFERENCES

[1] I. Ahmad, C. T. Pang, R. Ahmad and M. Ishtyak, System of Yosida inclusions involving
XOR-operation, J. Nonlinear Convex Anal. 18 (2017), 831-845.
[2] C. Baiocchi and A. Capelo, Variational and Quasi Variational Inequalities, Wiley, New York,
1984.
[3] F. F. Bazén and R. Lopez, Asymptotic analysis, existence and sensitivity results for a class of
multivalued complementarity problems, ESAIM Control Optim. Calc. Var. 12 (2006), 271-293.
[4] Y. J. Cho, J. Li and N. J. Huang, Solvability of implicit complementarity problems, Math.
Comput. Modelling 45 (2007), 1001-1009.
[5] R. W. Cottle and G. B. Dantzig, Complementarity pivot theory of mathematical programing,
Linear Algebra Appl., 1(1968), 103-125.
[6] J. Crank, Free and Moving Boundary Problems, Oxford Univ. Press (Clarendon), London,
1984.
[7] R. W. Cottle, Complementarity and variational problems, Sympos. Math. 19 (1976), 177-208.
[8] X.P. Ding and F. Q. Xia, 4 new class of completely generalized quasivariational inclusions in
Banach spaces, J. Copmut. Appl. Math. 147 (2002), 369-316.
[9] A. P. Farajzadeh and A. Amini-Harandi, Generalized Complementarity Problems in Banach
Spaces, Albanian J. Math. 3 (2009), 35-42.
[10] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity
Problems, Springer-Verlag, New York, 2003.
[11] N.J.Huang, J. Liand D. O’Regan, Generalized f-complementarity problems in Banach Spaces,
Nonlinear Anal. 68 (2008), 3828-3840.
[12] A. Hassouni and A. Moudafi, A Perturbed algorithm for variational inclusions, J. Math. Anal.
Appl. 185 (1994), 706-712.
[13] P. T. Harker and J. S. Pang, Finite-dimensional variational inequalities and nonlinear com-
plementarity problems, A survey of theory, algorithms and applications, Math. Program. 48
(1990), 161-220.



(14]
(15]
(16]

(17]
(18]

(19]
20]
(21]
22]
23]
(24]
25]
[26]
27]
(28]
29]
(30]

31]

GENERALIZED VARIATIONAL INEQUALITY PROBLEM INVOLVING XOR-OPERATION 231

G. Isac, Complementarity Problems, in: Lecture Notes in Mathematics, Springer-Verlag,
Berlin, 1528(1992).

G. Isac, Topological Methods in Complementarity Theory, Kluwer Academic publishers, Dor-
drecht, Boston, London, 2000.

S. Karamardian, Generalized complementarity problem, J. Optim. Theory Appl. 8 (1971),
161-168.

S. Karamardian, The complementarity problem, Math. Program. 2 (1972), 107-129.

1. V. Konnov, A scalarization approach for vector variational inequalities with applications, J.
Global Optim. 32 (2005), 517-527.

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-
Verlag, New York/Berlin, 1971.

J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967),
493-519.

H. G. Li, Nonlinear inclusion problems for ordered RME set-valued mappings in ordered Hilbert
spaces, Nonlinear Funct. Anal. Appl. 16 (2001), 1-8.

H. G. Li, A nonlinear inclusion problem involving (ca, \)-NODM set-valued mappings in ordered
Hilbert space, Appl. Math. Lett. 25 (2012), 1384-1388.

H. G. Li, X. B. Pan, Z. Y. Deng and C. Y. Wang, Solving frameworks involving (vG, \)-weak-
GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl. 2014 (2014):
Article No. 146.

H. G. Li, D. Qiu and Y. Zou, Characterizations of weak-ANODD set-valued mappings with
applications to approzimate solution of GNMOQV inclusions involving & operator in ordered
Banach spaces, Fixed Point Theory Appl. 2013 (2013): Article No. 241.

H. G. Li, L. P. Li and M. M. Jin, A class of nonlinear mixed ordered inclusion problems for
ordered (aa, \)-ANODM set valued mappings with strong comparison mapping A, Fixed Point
Theory Appl. 2014 (2014): Article No. 79.

S. B. Nadler Jr., Multivalued Contraction Mapping, Pacific J. Math. 30 (1969), 475-488.

J. S. Pang, The implicit complementarity problem, in: Nonlinear Programming 4, O.L. Man-
gasarian, R. Meyer, and S. M. Robinson (eds.), Academic press, New York, 1981.

J. S. Pang, On the convergence of a basic iterative method for the implicit complementarity
problems, J. Optim. Theory Appl. 37 (1982), 149-162.

J. S. Pang and D. Chan, Iterative methods for variational and complementarity problems,
Math. Program. 24 (1982), 284-313.

J. C. Yao, On the generalized complementarity problem, J. Aust. Math. Soc. Ser. B 35 (1994),
420-428.

H. Yin and C. Xu, Vector variational inequality and implicit vector complementarity prob-
lems, in: Vector Variational Inequalities and Vector Equilibria, F. Giannessi (Ed.), vol. 38 of
Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2000, pp. 491-505.

Manuscript received February 11 2022
revised May 30 2022



232 RAIS AHMAD, IQBAL AHMAD, MOHD ISHTYAK, AND ZAHOOR AHMAD RATHER

RAIS AHMAD
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail address: raisain 123@rediffmail.com

IQBAL AHMAD
College of Engineering, Qassim University, P.O. Box 6677, Buraidah 51452, Al-Qassim, Saudi
Arabia

E-mail address: i.ahmad@qu.edu.sa

MoHD ISHTYAK
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail address: ishtyakalig@gmail.com

ZAHOOR AHMAD RATHER
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail address: zahoorrather348@gmail.com



