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VISCOSITY EXTRAGRADIENT IMPLICIT RULE FOR A
SYSTEM OF VARIATIONAL INCLUSIONS

LU-CHUAN CENG*, CHING-FENG WEN', AND JEN-CHIH YAO?

ABSTRACT. We consider solving a general system of variational inclusions with
the variational inclusion for two accretive operators and a common fixed point
problem of countably many pseudocontractive mappings as constraints in a g-
uniformly smooth and uniformly convex Banach space with ¢ € (1,2]. A viscosity
extragradient implicit rule for solving it is proposed and the strong convergence
of the suggested algorithm under some appropriate assumptions is established.

1. INTRODUCTION

Assume always that H is a real Hilbert space endowed with inner product (-, -)
and induced norm || - ||. Given a nonempty closed convex subset C' C H. Let Pc be
the metric (nearest point) projection from H onto C. Given a mapping A : C' — H.
Consider the variational inequality problem (VIP) of finding a point z* € C s.t.
(Az*,y — 2*) > 0 Yy € C. Here the solution set of the VIP is denoted by VI(C, A).
To the most of our knowledge, Korpelevich’s extragradient method [13] is now one
of the most popular methods for solving the VIP. This method was first invented by
Korpelevich in 1976. Here it is specified below: for any given xg € C, the sequence
{x;} is generated by
(1‘1) { Yi = Pc(xi — gAl‘l), '

Tit+1 = PC($1' — EAyl) Vi 2 0,
with ¢ € (0,1). Whenever VI(C, A) # (), the sequence {z;} has only weak con-
vergence. Actually, the convergence of {z;} only requires that the mapping A is
monotone and Lipschitz continuous. Till now, Korpelevich’s extragradient method
has received great attention given by many authors, who improved and modified it
in various ways; see e.g., [4-10,12,21,25,28-30] and references therein.

Let the operators A and B be a-inverse-strongly monotone on H and maximal
monotone on H, respectively. Consider the variational inclusion (VI) of finding
a point z* € H st. 0 € (A+ B)z*. Recently, Takahashi et al. [24] designed a
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Halpern-type iterative method, i.e., for any given xg,u € H, {x;} is the sequence
generated by

(1.2) Tit+1 = 513% + (1 — ﬂz)(azu + (1 — OJZ)JE (3?1 — )\zsz)) Vi 2 0.

They proved strong convergence of {z;} to a solution z* € (A + B)~'0. Later on,
Pholasa et al. [18] extended the result in [24] to the setting of Banach spaces.

In order to solve the FPP of a nonexpansive mapping S : C' — C and the VI
for an a-inverse-strongly monotone mapping A : C — H and a maximal monotone
operator B : D(B) C C — H, Takahashi et al. [23] suggested a Mann-type Halpern
iterative method, i.e., for any given z1 = z € C, {z;} is the sequence generated by

where {\;} C (0,2«) and {«;}, {8} C (0,1). They proved the strong convergence
of {x;} to a point of Fix(S) N (A + B)~'0 under some mild conditions. In the
practical life, many mathematical models have been formulated as the VI. Without
doubt, many researchers have presented and developed a great number of iterative
methods for solving the VI in several approaches; see e.g., [6-8, 14,16, 18, 22-24]
and the references therein. Thanks to the importance and interesting of the VI,
many mathematicians are now interested in finding a common solution of the VI
and FPP.

In 2011, Manaka and Takahashi [16] suggested an iterative process, i.e., for any
given g € C, {x;} is the sequence generated by

(1.4) Tit1l = 0T + (1 — Oél)SJE (1‘1 — )\ZA.Z‘Z) Vi > 0,

where {a;} C (0,1), {\} C (0,00), A: C — H is an inverse-strongly monotone
mapping, B: D(B) C C — 2H is a maximal monotone operator, and S : C — C
is a nonexpansive mapping. They proved weak convergence of {x;} to a point of
Fix(S) N (A + B)~'0 under some suitable conditions.

Furthermore, let ¢ € (1,2] and assume that E is a uniformly convex and g¢-
uniformly smooth Banach space with g-uniform smoothness coefficient x4. Let
f : E — FE be a p-contraction and S : £ — E be a nonexpansive mapping. Let
A : E — E be an a-inverse-strongly accretive mapping of order ¢ and B : E — 2F
be an m-accretive operator. Very recently, in order to solve the FPP of S and the
VI of finding z* € E s.t. 0 € (A+ B)z*, Sunthrayuth and Cholamjiak [22] proposed
a modified viscosity-type extragradient method , i.e., for any given xo € F, {x;} is
the sequence generated by

Y = J>\B (l’z — /\Z‘AJJi>,
(1.5) zi = Jy (wi — NAyi + iy — 24)),
zit1 = ai f(x;) + Bizi + Sz Vi >0,

where Jg =T +NB) {ri} {ai}, {8}, {7} € (0,1) and {)\;} C (0,0) are such
that: (i) a;+ 8+ = 1; (if) limjyeo ; = 0, D721 oy = o0; (iil) {Bi} C [a,b] C (0,1);
and (iv) 0 < A < N < Ni/ri < p < (agq/rg)@ Y 0 < r < r; < 1. They proved

the strong convergence of {x;} to a point of Fix(S) N (A + B)~'0, which solves a
certain VIP.
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On the other hand, let J : E — 2" be the normalized duality mapping from E
into 27" defined by J(z) = {¢ € E* : (x,¢) = ||z||*> = ||¢||*} Vx € E, where (-,-)
represents the generalized duality pairing between E and E*. It is known that if E
is smooth then J is single-valued. Let C be a nonempty closed convex subset of a
smooth Banach space E. Let A;, Ay : C — E and Bi, By : C — 2F be nonlinear
mappings with B,z # () Vo € C,i = 1,2. Consider the general system of variational
inclusions (GSVI) of finding (z*,y*) € C' x C s.t.

(1.6) 0 € G1(Ay* + Biz™) + o* — y*,
) 0 € (o(Agx™ + Boy™) + y* — x*,

where (; is a positive constant for i = 1,2. It is known that problem (1.6) has been
transformed into a fixed point problem in the following way.

Lemma 1.1 (see [9, Lemma 2]). Let By, By : C — 2 be two m-accretive operators
and A1, Ay : C — E be two operators. For given x*,y* € C, (x*,y*) is a solution
of problem (1.6) if and only if z* € Fix(QG), where Fix(G) is the fized point set of
the mapping G := ng(l — ClAl)J£2(I — (2A2), and y* = J£2 (I — (A2)x™.

Suppose that F is a uniformly convex and 2-uniformly smooth Banach space
with 2-uniform smoothness coefficient k9. Let By, By : C — 2E bhe two m-accretive
operators and A; : C — FE (i = 1,2) be (;-inverse-strongly accretive operator.
Let f : C — C be a contraction with constant 6 € [0,1). Let V : C — C be
a nonexpansive operator and T : C' — C be a A-strict pseudocontraction. Very
recently, using Lemma 1.1, Ceng et al. [9] introduced a composite viscosity implicit
rule for solving the GSVI (1.6) with the FPP constraint of T, i.e., for any given
xg € C, the sequence {x;} is generated by

yi = JoH (i — G Aaai),
(1.7) xi = o f(xiz1) + dixim1 + BiVai—a
Sz + (1= ) JE (v — QAw)] Vi > 1,

where p € (0,1), S := (1 —a)l + oT with 0 < o < min{1, %}, and the sequences
{ai}, {6:}. {B:}. {ni} C (0,1) are such that (i) c; +0; + B; +v = 1 Vi > 1; (i)
im0 0 = 0, limj 00 2 = 03 (ifi) lim; 00 7i = 15 (iv) 3272 @ = 0o. They proved
that {x;} converges strongly to a point of Fix(G) N Fix(T'), which solves a certain
VIP.

In a g-uniformly smooth and uniformly convex Banach space with ¢ € (1,2],
let the VI denote a variational inclusion for two accretive operators and let the
CFPP indicate a common fixed point problem of countably many pseudocontractive
mappings. In this paper, we introduce a viscosity extragradient implicit rule for
solving the GSVI (1.6) with the VI and CFPP constraints. We then prove the
strong convergence of the suggested method to a solution of the GSVI (1.6) with
the VI and CFPP constraints under some approximate assumptions.

2. PRELIMINARIES

Let E be a real Banach space with the dual E*, and ) # C C E be a closed
convex set. For convenience, we shall use the following symbols: x,, — x (resp.,
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x, — x) indicates the strong (resp., weak) convergence of the sequence {x,} to z.
Given a self-mapping T' on C. We use the symbols R and Fix(7T') to denote the set
of all real numbers and the fixed point set of T', respectively. Recall that T is called
a nonexpansive mapping if |7z — Ty|| < ||x — y|| Vz,y € C. A mapping f: C — C
is called a contraction if 36 € [0,1) s.t. ||f(z) — f(y)|| < 0|z — y| Vz,y € C. Also,
recall that the normalized duality mapping J defined by

(2.1) Jx)={p € B*: (x,¢) = |z]* = |¢|*} VzeE.
is the one from E into the family of nonempty (by Hahn-Banach’s theorem) weak*
compact subsets of E*, satisfying J(7u) = 7J(u) and J(—u) = —J(u) for all 7 > 0

and u € E.
The modulus of convexity of E' is the function dg : (0,2] — [0, 1] defined by

lz+yll
2

dp(e) = inf{l — ey e By lzl =yl =1, [z —yll > €}

The modulus of smoothness of E is the function pg : R4 := [0,00) — Ry defined
by

T+ TY|+||x—TY
pe(r) = sup(IEFTN =Ty oy e ol = ol = 13,
A Banach space E is said to be uniformly convex if dg(e) > 0 Ve € (0,2]. It is
said to be uniformly smooth if lim__,q+ p%(T) = 0. Also, it is said to be g-uniformly

smooth with ¢ > 1 if ¢ > 0 s.t. pg(t) < ct? Vt > 0. If E is g-uniformly smooth,
then ¢ < 2 and FE is also uniformly smooth and if E is uniformly convex, then F is
also reflexive and strictly convex. It is known that Hilbert space H is 2-uniformly
smooth. Further, sequence space ¢, and Lebesgue space L, are min{p, 2}-uniformly
smooth for every p > 1 [26].

Let ¢ > 1. The generalized duality mapping J, : £ — 2E" is defined by

(2.2) Jo(z) = {¢ € B : (z,¢) = ||z]|%, llgll = [l=]|“""},

where (-, -) denotes the generalized duality pairing between E and E*. In particular,
if ¢ = 2, then Jo = J is the normalized duality mapping of F. It is known that
Jy(z) = ||z||972J(z) Yz # 0 and that J, is the subdifferential of the functional
é|| -||9. If E is uniformly smooth, the generalized duality mapping J, is one-to-one
and single-valued. Furthermore, J, satisfies J; = J L where Jp is the generalized
duality mapping of E* with % + % = 1. Note that no Banach space is g-uniformly
smooth for ¢ > 2.

Let ¢ > 1 and E be a real normed space with the generalized duality mapping
Jq. Then the following inequality is an immediate consequence of the subdifferential
inequality of the functional %H |2

23) e +yl* <2l + ¢y, do(x +y)) Va,y € B, Golz +y) € Jy(x +y).

Lemma 2.1 (see [11]). If T : C — C is a continuous and strong pseudocontraction
mapping, then T has a unique fized point in C.

The following lemma can be obtained from the result in [26].
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Lemma 2.2. Let g > 1 and r > 0 be two fixed real numbers and let E be uniformly
convex. Then there exist strictly increasing, continuous and convex functions g, h :
Ry — Ry with g(0) =0 and h(0) = 0 such that

(a) [Jpz+ (1 —wyll? < pllzl|?+ (1= wllyl|? = p(1 = p)g(l|z —yll) with z € [0,1];
() h(llz = yll) < ll=l|? = g{x, jq(y)) + (¢ — Dlyl“

for all z,y € B, and j,(y) € J4(y), where B, :={x € E : ||z| <r}.
The following lemma is an analogue of Lemma 2.2 (a).

Lemma 2.3. Let g > 1 and r > 0 be two fixed real numbers and let E be uniformly
convexr. Then there exists a strictly increasing, continuous and convexr function
g: Ry — Ry with g(0) = 0 such that || Az + py + vz||? < A||z||9+ p|ly||? + v|| ]| —
Apg(||le —yl) for all z,y,z € By and A\, p,v € [0,1] with A+ p+v = 1.

Proposition 2.1 (see [2]). Let {S,}72 be a sequence of self-mappings on C' such
that Y o2 supgec |Snz — Sp—1z|| < oo. Then for each y € C, {Spy} converges
strongly to some point of C. Moreover, let S be a self-mapping on C defined by
Sy = limy, o0 Spy for all y € C. Then lim, o sup,cc ||Snx — Sz|| = 0.

Proposition 2.2 (see [26]). Let ¢ € (1,2] a fized real number and let E be q-
uniformly smooth. Then ||z + y||? < ||z||?7 4+ q(y, J4(2)) + Kqllyl|? Vz,y € E, where
kq s the g-uniform smoothness coefficient of E.

Let D be a subset of C' and let II be a mapping of C into D. Then II is said to
be sunny if I1[11(z) + t(x — II(x))] = II(z), whenever II(z) + t(x — II(z)) € C for
x € C'and t > 0. A mapping I of C into itself is called a retraction if II? = II. If a
mapping 7 of C into itself is a retraction, then II(z) = z for each z € R(IT), where
R(IT) is the range of II. A subset D of C' is called a sunny nonexpansive retract of
C' if there exists a sunny nonexpansive retraction from C onto D. In terms of [19],
we know that if E is smooth and II is a retraction of C' onto D, then the following
statements are equivalent:

(i) II is sunny and nonexpansive;
(i) |(2) — H()|]? < (& — y, J(T(z) — [(3))) Yo,y € C;

(iii) (z — H(x),J(y — II(z))) <0VxeC,y e D.

Let B : C — 2F be a set-valued operator with Bx # () Vo € C. Let ¢ > 1.
An operator B is said to be accretive if for each z,y € C, Jj,(z — y) € Jy(x —y)
s.t. (u—w,j4(z —y)) >0Vu e Bx,v € By. An accretive operator B is said to be
a-inverse-strongly accretive of order g if for each z,y € C, Jj,(z—vy) € Jy(z—y) s.t.
(u—v,jq(r—y)) > aflu—v||?Vu € Bx,v € By for some o > 0. If E = H a Hilbert
space, then B is called a-inverse-strongly monotone. An accretive operator B is
said to be m-accretive if (I +AB)C = E for all A > 0. For an accretive operator B,
we define the mapping JP : (I + AB)C — C by J? = (I + AB)™! for each A > 0.
Such J /{B is called the resolvent of B for A > 0.

Lemma 2.4 (see [14]). Let B : C — 2F be an m-accretive operator. Then the
following statements hold:

(i) the resolvent identity: J2x = JP({x+ (1 - 5)J2x) VA, u >0, z € E;
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(ii) of JAB is a resolvent of B for A > 0, then Jf s a firmly nonexpansive
mapping with Fix(JP) = B710, where B~10 = {x € C : 0 € Bx};
(iii) if E = H a Hilbert space, B is mazimal monotone.

Let A : C — E be an a-inverse-strongly accretive mapping of order ¢ and B :
C — 2F be an m-accretive operator. In the sequel, we will use the notation T :=
J/{B(I —AA) = (I +AB) (I — XA) VA > 0.

Proposition 2.3 (see [14]). The following statements hold:
(i) Fix(Ty) = (A + B)~'0 VYA > 0;
(i) lly — Tagll < 2y — Tyl for 0 < A< r andy € C.

Proposition 2.4 (see [27]). Let E be uniformly smooth, T : C' — C' be a nonexpan-
sive mapping with Fix(T) # 0 and f : C — C be a fized contraction. For each t €
(0,1), let z € C be the unique fized point of the contraction C 3 z — tf(z)+(1—t)Tz
on C, i.e., zz = tf(z) + (1 —t)Tz. Then {2z} converges strongly to a fized point
x* € Fix(T'), which solves the VIP: (I — f)z*,J(z* — x)) < 0 Vz € Fix(T).

Proposition 2.5 (see [14]). Let E be q-uniformly smooth with q € (1,2]. Suppose
that A : C — FE is an a-inverse-strongly accretive mapping of order q. Then, for
any given A > 0,

11 = M)z — (I = AA)ll? < [l — gl — Mag — kX1 [ Az — Ayl Va,y € C,
where kg > 0 is the g-uniform smoothness coefficient of E. In particular, if 0 <
1
A< (%Z)qj, then I — AA is nonexpansive.

Lemma 2.5 (see [9]). Let E be q-uniformly smooth with q¢ € (1,2]. Let By, By :
C — 2F be two m-accretive operators and A; : C — E (i = 1,2) be o;-inverse-
strongly accretive mapping of order q. Define an operator G : C — C by G :=

ng(I—ClAl)J£2(I—C2A2). If0< G < (M)q%l (1 =1,2), then G is nonexpansive.

Kq

Lemma 2.6 (see [1]). Let E be smooth, A: C — E be accretive and IIc be a sunny
nonexpansive retraction from E onto C. Then VI(C, A) = Fix(Ilc(I—XA)) VA > 0,
where VI(C, A) is the solution set of the VIP of finding z € C s.t. (Az, J(z—1y)) <
0vyeC.

Recall that if E = H a Hilbert space, then the sunny nonexpansive retraction Ilo
from F onto C' coincides with the metric projection Po from H onto C. Moreover, if
E is uniformly smooth and T is a nonexpansive self-mapping on C' with Fix(7T') # 0,
then Fix(T') is a sunny nonexpansive retract from F onto C' [20]. By Lemma 2.6
we know that, 2* € Fix(T') solves the VIP in Proposition 2.4 if and only if z* solves
the fixed point equation 2™ = Iy (7) f(z).

Lemma 2.7 (see [15]). Let {I',} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I'y,} of {I',} which satisfies
I, < I'n,41 for each integer i > 1. Define the sequence {T(n)}n>n, of integers as
follows:

7(n) =max{k <n: Iy < Ik},
where integer ng > 1 such that {k < mng: Iy < I'y11} # 0. Then, the following hold:
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(i) 7(no) < 7(no+1) <--- and 7(n) — oo,
(11) FT(TL) < FT(TL)+1 and I'y < FT(n)+1 Vn > ng.

Lemma 2.8 (see [3]). Let E be strictly convex, and {T,}5°, be a sequence of
nonexpansive mappings on C. Suppose that (\,—, Fix(T,) is nonempty. Let {\,}
be a sequence of positive numbers with Y > A, = 1. Then a mapping S on C
defined by Sz =3 > MTnx Yo € C is defined well, nonexpansive and Fix(S) =
Mo Fix(T3,) holds.

Lemma 2.9 (see [27]). Let {an} be a sequence in [0,00) such that ap+1 < (1 —
Sn)an + Sptn, Y >0, where {sp} and {v,} satisfy the conditions: (i) {s,} C [0,1],

>0 o S = 00; (i) imsup,, oo vy <0 or Y o2 o |spn] < 00. Then lim, o0 an = 0.

3. MAIN RESULT

Throughout this paper, suppose that C' is a nonempty closed convex subset of
a g-uniformly smooth and uniformly convex Banach space E with ¢ € (1,2]. Let
Bi,By : C — 2F be two m-accretive operators and A; : C — E be o;-inverse-
strongly accretive mapping of order ¢ for i = 1,2. Let the mapping G : C — C be
defined as G := ng(I—ClAl)ng(I—(gAg) with constants (1,{o > 0. Let f : C — C
be a d-contraction with constant § € [0,1) and {S,}>2, be a countable family of
l-uniformly Lipschitzian pseudocontractive self-mappings on C'. Let A : C' — E and
B : C — 2% be a o-inverse-strongly accretive mapping of order ¢ and an m-accretive
operator, respectively. Assume that 2 := (2, Fix(S,) NFix(G) N (A+ B)~10 # 0.

Algorithm 3.1. Viscosity extragradient implicit rule for the GSVI (1.6) with the
VI and CFPP constraints.

Initial Step. Given £ € (0,1) and xg € C arbitrarily.

Iteration Steps. Given the current iterate x,, calculate x, 1 as follows:

Step 1. Compute wy, = spx, + (1 — $)(ESnwy + (1 — &) Gwy,);

Step 2. Compute

U = J22 (wn — G Azwy),
Up = JBZI (Un — ClAlvn),
UYn = J)\n(un — A Auy);

Step 3. Compute z, = an (Un — A AYn + 70 (Yn — un));

Step 4. Compute Tp4+1 = anf(un) + Bntin + YnGzn,
where {7}, {sn}, {an},{Bn},{m} C (0,1] with a;, + B,, + v, = 1 and
{A\n} C (0,00).

Set n:=n + 1 and go to Step 1.

Lemma 3.1. Let {x,} be the sequence generated by Algorithm 3.1. Then {x,} is
bounded.
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Proof. Let p € 2 := (0", Fix(S,) NFix(G) N (A + B)~'0. Then we observe that

An
p=Gp=_S,p= J)]\Bn(p — A\ Ap) = an((l —7Tn)p + r(p — T—Ap)).

n

By Proposition 2.5 and Lemma 2.5, we know that I — (A1, I — (242 and G :=
Jg I —ClAl)Jg 2(I—(2A2) are nonexpansive mappings. Moreover, it can be readily
seen that for each n > 0, there is only an element w, € C s.t.

(3.1) Wy, = Spy + (1 — 8p)(ESpwy, + (1 — &) Gwy,).

In fact, consider the mapping Fpz = spy + (1 — $,) (€S + (1 — €)Gx) Vo € C.
Note that S, : C' — C' is a continuous pseudocontraction. Hence we obtain that for
all z,y € C,
(an_Fnva( _y)>
=(1- Sn)((€5nx + (1 =8Gx) = (ESny + (1 = §)Gy), J(z — y))
= (1= s0)[§(Snz — Sny, J(z —y)) + (1 = ){(Gz — Gy, J(z — y))]
< (1 —sn)llz — yHQ-
Also, from {s,} C (0,1], we get 0 < 1 — s, < 1Vn > 0. Thus, F, is a continuous
and strong pseudocontractive self-mapping on C. Using Lemma 2.1, we deduce
that for each n > 0, there is only an element w,, € C, satisfying (3.1). Since each
Sn : C — C is a pseudocontraction mapping, we get
lwn — plI?
= sp(Tn — p, J(wyn — p)) + (1 = 8p)({Snwn + (1 = §)Gwyn — p, J(wy — p))
< snllzn = pllllwn — pll + (1 = sn)[Elwn — p[|* + (1 = &) [lwn — p[|*]
= snllzn — plllwn = pll + (1 = sn)llwn — I,
and hence

|lwn, —p|| < |z —p|| Vn>0.

Using u, = Gwy,, we deduce from the nonexpansivity of G that
(32) [un —pll < llwn = pll < |zn —pl| Yn =0.
Using Lemma 2.4 (ii) and Proposition 2.5, we have

lym = I = I3, (un — AnAun) = I3 (p = AnAp) |
(3-3) <N = AnA)un — (I = X A)p||*
< lun = pl|? = Anlog — kAT || Auy — Ap]|?

)

which hence leads to

lyn — pll < l|un —pl|-
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By the convexity of || - || for all ¢ € (1,2] and (3.3), we deduce that

An
lzn =Pl = 13, (1 = r)tn + (g = = Ayn))

Tn

An
- J)i((l - Tn)p + rn(p - TAP))Hq

n

< (1 —=rp)|lun — pl|?

An An
+ral|(I — 7A)yn — (I ——A)pl|
< (T —rn)llun —pl?
A P
(3.4) + 7olllyn — p||? — 7(0(1 - :{ WAy, — Ap||9]

< (1 —=rn)ljun —pl?
+afllun = pl|7 = Anl0g — kgAEH) || Auy — Ap]?

An Y
— (oq =~ )| Ay — Ap|]
= [lun = p||? = rnAn(oq — ’fq)vqfl)HAun — Ap||? = Mn(oq
K )\q !
— )| Ay — Apl|f.

’I’L

This ensures that
lzn — pll < Jun — pl|-
So it follows from (3.2) that
Hxn—i—l - p” = Han(f(un) _p) + /Bn(un —P) + ’Yn(GZn _p)H
< apl| f(un) = pll + Bulltn — pll + llGzn — pl|
< an([lf (un) = f)I| + 1 f(p) = plI) + Bullun — pll + ¥ llGzn — pll
< an(0llzn —pll + 1 £(p) = pll) + Bullzn — pll + Wllzn — pll
= (1 = an(1 = 9))l|zn — pll + anll f(p) — 2l
/ P
ol | ( ) H}

< max{ ||z, —

By induction, we have ||z, —p|| < max{on—pH, W} Vn > 0. Therefore, {z,} is

bounded, and so are {uy},{wn},{yn}, {zn}, {G2n}, {Aun}, {Ayn}. This completes
the proof. O

Now we state and prove the main result of this paper.
Theorem 3.2. Let {x,} be the sequence generated by Algorithm 3.1. Suppose that

the following conditions hold:

(C1) limy oo oy = 0 and 02 oy = 00;
(C2)0<a<pB,<b<land0<c<s,<d<]1;

(C3) 0<r<r <land0 <A<\, <22 <p<(2)eT;
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L ,
(C4) 0< ¢ < (%:1)‘1—1 fori=1,2.

Assume that Y o7 supgep ||Snt12 — Spz|| < 0o for any bounded subset D of C. Let
S : C — C be a mapping defined by St = lim,,_,oo Spx Vx € C, and suppose that
Fix(S) = Ny, Fix(S,). Then x, — z* € 2, which is the unique solution to the
VIP: (I — f)x*, J(z*—p)) < 0Vp € {2, i.e., the fized point equation x* = I f(x*).
Proof. First of all, let z* € 2 and y* = JgQ(a:* — (2A2x™). Since v, = JSQ(I -
(o A2)wy, and u, = ng (I — (1A1)vy, we have u,, = Gw,,. Using Proposition 2.5 we
have

lom = 9717 = 22 (wn — CoApwn) — S22 (2" — G Aza®)
< Jwn = 2|7 = Co(02q — rgls )| Azwy — Aga |9,
and
lun — 2|7 = 1T (vn — CLAWR) — T (" — G Ay ™)
< lon = 9717 = Ci(01g — ralT )| Arvn — Ary*|9.
Combining the last two inequalities, we have
lun — 2|7 < [Jwn — 27|17 = Ga(02q — KgGd )| Awn — Aga™[®
— Gi(o1g — kgl | Arvn — Ary*|1 %,
Using Lemma 2.3, from (2.3), (3.2) and (3.4) we obtain that
[#n41 = 27[|* < flan(f(un) — F(27)) + Bn(un — 27)
+ (G — )| + qan(f(2") — 2%, Jy(zn1 — 27))
< anl|[f(un) = f(@)[* + Bullun — 27|
+WllGzn — 2|7 = Buyng(|lun — Gzl|)
+ qan((f = I)z", Jg(zn+1 — 7))
< anbllun — 2|7 + Bpllun — 2|7
+lllun — 2|7 = rpdn(0g = KgALT) || Ay — Az
/fq)\?fl
rdt

— An(og - WAy — Az™[[?] = Bumg(llun — Gznll)

(3.5) + qan((f = I)z*, Jg(zn+1 — 7))
< andl|zn — 277+ Bullzn — 27|
+ lllzn — 2] = Ga(02g — KgCd )| Agwy — Aga*||?
— G101 — rgCl Y[ Arvp — Ary*||
— rpAn(0q — /@q/\%_l)HAun — Ax*|?
qu)\gfl
— An(og — =i WAy — Az™[|7] = Buyng(lun — Gznll)

+ qanl(f = D", Jy(@nss — 7))
— (1= an(1 = 0)) 2 — |17 = ya[Ca(02a — KgGd ") | Az, — Asa™|°
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+ CLlo1q — KgCl I Arvn — Ary?
+ rpAn(oq — /ﬁq)\%_l)HAun — Az™||?
ﬁq)\%_l
+ An(og — 1 MAYn — Az™[|7] = Bpyng(lun — Gznll)

n
- qon{(f = 12", Jylans1 — 7).
For each n > 0, we set

I = |ln — 279,
en = an(l—9),
M = nlC2(02g — koG )| Agwn — Aga™ (|7 + C1(01q — kgl )| Arvn — Ary™|?
_ KgAL !
+ 1 (0q = AT [ Aun — Az®|[7+ A (0g — iqfl ) Ayn — Az™||]
n
+ Brng(llun — Gznl))
On = qon((f = D, Jg(xn1 — 7).
Then (3.5) can be rewritten as the following formula:
(3.6) i <(Q—e)lyy—nmn+6n Yn>0,
and hence
(3.7) g <(Q—-e)lyn+9, ¥Yn>0.

We next show the strong convergence of {I7,} by the following two cases:

Case 1. Suppose that there exists an integer ng > 1 such that {I},} is non-
increasing. Then
Iy—1IThi—0.
From (3.6), we get
0<m, <Ipy—Tpi1+ 00 —enln.
Note that combining ¢, — 0 and 4, — 0 guarantees 1, — 0. So it follows that
limy, 00 g(JJun — Gzy||) =0,

(3.8) lim ||Asw, — Asz™|| = lim [|4Ajv, — A1y*|| =0
n—oo n—oo
and
(3.9) lim ||Au, — Az*|| = lim ||Ay, — Az™|| =0.
n—oo n—oo

Since g is a strictly increasing, continuous and convex function with g(0) = 0, we
deduce that

(3.10) |un, — Gz = 0.

lim

n—oo

On the other hand, using Lemma 2.2 (b) and Lemma 2.4 (ii), we get
lon = 17 = 1952 (wn = GAzwn) = JE (a* = G Asa™) ||

< (wn — GQAgwn — (2% — QAx"), Jy(vn — "))

= (wn — 2", Jg(vn — y")) + (2(A22™ — Agwn, Jg(vn — y"))
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1 -
< Q[Hwn =27+ (¢ = Dljvn —y*[|1! = ha(lwy, — 2" — vy + y*||)]
+ <2<A21'* - A2wn7 Jq(UTL - y*)>a
which hence attains
o —y* |7 < JJwn —2*]|9 = Ry (lwn — v — 2™ +y*[|) + ql2 || Aoz™ — Agwy|[|Jvn —y* ||
In a similar way, we get
un — &7 = ([ JE (vn — G Avn) — JE (4" = CLALy")||
< <Un - ClAlvn - (y* - ClAly*)a Jq(un - x*)>
= (vn — ¥, Jq(un — ")) + C(Ay™ — Aoy, Jq(un — "))

IN

o= 5711+ (0 = Dl = "7 = Bl = 9" =+ ")
+ G {Ay" — Arvy, Jy(u, — %)),

which hence attains

fu = 2|7 < Jvn = y* (|7 = ha(on — y* = up +*]))

+qGil[ A1y — Arog|l|un — 277

(3.11) <l — 27 = ha([lwn = va — 2" +y*])
+ qGal| g™ — Agwy|[[on — ||
— ha(flon = un + 2% — y*[) + gC1l| Ary™ — Avon][[|un — 2%

Using Lemma 2.2 (b) and Lemma 2.4 (ii) again, we get

g — 219 = ITE. (0 — AnAun) — JE (2" — Ay Az
((un — MpAuy) — (2 — M Az™), Jy(yn — 7))

IN

IN

1 * * *
a[”(un — AnAun) — (27 = A Az [T+ (¢ = Dllyn — 27|
= ha([lun — An(Aun — Az™) — ynl|)],
which together with (3.3), implies that
[y — 2" < [[(un — AnAun) = (27 = AnAz)[|* = ha([lun — An(Aun — Az™) = ynl|)
< lun — 2% = ha([lun — An(Aun — Az™) = ynl]).
This together with (3.4) and (3.11), implies that
[2nt1 — 2|7 < anll f(un) — 2"[|7 + Bnllun — 27|

+ |Gz — 27|
< ol f(un) = 277 + Bullun — 277

+ (1 = 1) [lun — 2% + rollyn — 2*(|]
< o[ f(un) — 2|7 + Bullun — =

+ {1 =) lun — 2| + o [[lun — 277

= ha([lun — An(Aun — Az™) — ynl[)]}
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= anl|f(un) — 2" + Bnllun — 2|7
+ n{llun — 2% = raha([lun — An(Aup — Az™) —yn|)}
< anl|f(un) = 2"(|* + Bn
+dllzn =¥ = h(Jwn = va — 2" + 7))
- flz(an —up + 2" =y
+qG Ay — Ao |lfug — ¥ 77
+qGa| Agz* — Agwy|[[on — y*[| 77!
= rnha(|lun — An(Auy — Az™) —yn|))}
< o[ f (un) = 27 + [Jon — 277
— Ml (lwn = v — 2" + 7))
+ BZ(an —up + 2" =y
+ rpha([Jun — An(Aun — Az™) — ynl|)}
+ 4Gl Ay = Ao |fug — ¥ 77
+qGal| Agz* — Agwy|l[[on — y* |77,
which immediately yields
Yodhi(lwn = vn = 2+ y*|]) + ha(llon = un +2* = y*|))
+ rpha((Jun — An(Aun — Az™) — yu )}
< anl f(un) — 2|9+ T — Tog1 + gl Ary* — Avon||[|un — 2|
+qG2]| Aza* — Agwn|[Jon —y*||7".

|0 — 27|

Note that h1, f:LQ and hq are strictly increasing, continuous and convex functions
with h1(0) = he(0) = h1(0) = 0. So it follows from (3.8) and (3.9) that |jw, —
vy — 2+ Y| = 0, ||lvn — up + 2" —y*|| = 0 and |Ju, — yn|| — 0 as n — oco. This
immediately implies that

(3.12) Tim [, — | = T [ — | = 0,
Furthermore, we put p, := £S,w, + (1 — §)Gw, for all n > 0. Then we obtain that
[wn — 2|7 = (snan + (1 = 5n)(Snwn + (1 — §)Gwy) — 27, Jg(wy — 27))
< sp(zp —a*, Jy(wy, — %))
+ (1 = sn)((ESnwn + (1 = §)Guwn) — 2%, Jg(wp — %))
< splan — 2", Jg(w, — ™))
+ (1 = sn)[Jwn — 2™||%.

Using Lemma 2.2 (b), we get

[wn =2 |1 < (=27, Jg(wn—2")) < =[[lan—2"(|"4(g=1) [[wn—2"[|!=ha(||zn —wnl])].

| =

This together with (3.2) implies that

(3.13) Jun — 27" < flwp — 2% < ln — 2|7 = ha([l2n — wnl]).
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In a similar way, we have
|20 — 2|7 = Hjﬁ(un — MAYn + 10 (Yn — un)) — J)i (z% — A\ Az™) |2
< {(un = AMAYn +rn(Yn — un)) — (2% — Ay Ax™), Jq(zn —z"))

IN

1 * *
5[”(“71 = M AyYn + 10 (Yn — un)) — (2% — Ny Az™)[|?

+ (= Dllzn = 2™[|* = ha(llun + rn(yYn — un) = An(Ayn — Az™) — 24 )],
which together with (3.4), implies that
[2n — 2 [|* < [[(un = AnAyn + mn(yn — un)) — (2" — AnAz™) ||
— ha(lun + ra(yn — un) — An(Ayn — Az™) — 2p))
< lJun — @9 = ha([Jtn + 0 (yn — un) — An(Ayn — Az™) = 2n]).
This together with (3.13), ensures that
[#nt1 — 2|9 < anllf(un) = 2|9 + Bullun — 2" + || Gzn — 27|
< apllf(un) = 2|7 + Bullun — 2| + ynllun — 2|7
— ho([lun + r(Yn — un) — An(Ayn — Az™) — 2, |))]
< anl[f(un) = 277 + Bullzn — 277 + lllzn — 27
— h3(lzn — wall) = ha(l[un + rn(Yn — un)
— An(Ayn — Az") — zu])]
< ol f(un) — 2|7 + |lzn — 2|7 — Yalha(l|zn — wnl)
+ ha([[un + ro(Yn — un) — An(Ayn — A2") — 20|))],
which immediately leads to
Yolhs([|xn — wnll) + ho(llun + 1 (Yn — un) — An(Ayn — A2™) — 2,])]
< apllf(zn) — 2|9+ I — Loy

Since hg and hj are strictly increasing, continuous and convex functions with he(0) =
h3(0) = 0, from (3.9) and (3.12) we have

(3.14) lim ||z, — wy| = lim [Ju, — 2] = 0.

So, it follows from (3.10), (3.12) and (3.14) that
[#n = un|| < [|on = wnll + [lwn = un| =0 (0 — o0),
[z = 2n|l < [|#n = un|l + [Jun = 2n] = 0 (n — o0),

and hence

|zn — Gznll < 2 — unl| + ||un — Gzull + |G2n — G|
<zn — unll + lun — Gzl + |20 — znll = 0 (n — o0).

Since wy, = $pTp + (1 — sp)pp and p, = ESpwy, + (1 — &)y, from (3.12) and (3.14)
we get

(3.15)

s
Ipn = wnll = 7= llen = wall < 7= ll#n = wal 0 (n = o0),
n
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and hence
ESnwn—wnl| = [[pn—wn—(1=8) (un—wn)|| < [[pn—wnl[+||tn—wy] =0 (0 — c0).
Since {5y} is f-uniformly Lipschitzian on C, we deduce from (3.14) that

[Snzn — znll < [1Snwn — Spwall + |Snwn — wa | + [[wn — 24|

(3.16) < (0 + D)||@n — wal| + |Spwn — wa] = 0 (n — 00).

Next, we claim that ||z, — Sz,| — 0 as n — oo where S := (21 — $)™'. In
fact, it is first clear that S : C — C' is pseudocontractive and /-Lipschitzian where
Sz = lim, 00 Spx Vo € C. We claim that lim,,_,« || Sz, — x,|| = 0. Using the
boundedness of {z,,} and setting D = conv{z, : n > 0} (the closed convex hull of
the set {z,, : n > 0}), by the assumption we have Y >7 | sup,cp ||[Snx—Sp—12|| < 0.
Hence, by Proposition 2.1 we get lim,,_,o SuUp,cp |[|[Spz — Sz|| = 0, which immedi-
ately arrives at

lim [|Spz, — Sz,|| = 0.
n—oo

Thus, from (3.16) we have
(3.17) lxn — Sxp|| < ||Xn — Snznl| + [[Snxn — Szn|| =0 (n — 00).

Now, let us show that if we define S = (2I—S)~1, then S:C = Cis nonexpansive,
Fix(S) = Fix(S) = N2, Fix(S,) and limy, 0 ||2r — Szp || = 0. As a matter of fact,
put S := (2I — S)~!, where I is the identity operator of E. Then it is known

-~

that S is nonexpansive and Fix(S) = Fix(S) = (),_, Fix(S,) as a consequence
of [17, Theorem 6]. From (3.17) it follows that

|@p — Sap|| = |85 L2y — Sy |

3.18 ~
(3.18) < |87ty — zp| = |2 = S)zy, — 20| = |20 — S0|| > 0 (R — ).
For each n > 0, we put T), := J/{Bn (I — Ay A). Then from (3.12) we have

|zn — Tknan <z — un|l + flun — TAn“n” + ||T>\n“n - Tknan
< 2|z — upl| + ||un —ynll = 0 (n — 00).

Noticing 0 < A < A, for all n > 0 and using Proposition 2.3 (ii), we obtain
(3.19) I Th@n — ol < 2| TN, 2n —zn|| = 0 (0 — 00).

We define the mapping ¥ : C — C by ¥z := 01§x—|—02G$+(1—91—92)TA$ Ve e C
with 61 + 62 < 1 for constants 01,62 € (0,1). Then by Lemma 2.8 and Proposition
2.3 (i), we know that ¥ is nonexpansive and

Fix(¥) = Fix(5) N Fix(G) N Fix(Ty) = ﬁ Fix(S,) NFix(G) N (A + B)7'0 (=: 02).
n=0

Taking into account that
[Wan — 2y < 91H§$n — | + O2(|Gan — znl| + (1 = 61 — 02) | Than — @al,
we deduce from (3.15), (3.18) and (3.19) that
(3.20) lim ||Yz, — x,|| =0.
n—oo
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Let zg = sf(zs) + (1 — s)Wzs Vs € (0,1). Then it follows from Proposition 2.4 that
{zs} converges strongly to a point z* € Fix(¥) = {2, which solves the VIP:

(I = fz", J(@" —p)) <0 Vpe L.
Also, from (2.3) we get
[2s — @l = |s(f(2s) — 2n) + (1 — 8) (P25 — 25|
< (1= 9)YVzs — zp ||+ gs(f(25) — xn, Jg(2s — 1))
= (1= 8) [ Wzs — zn||? + gs(f (25) — 25, Jg(25 — Tn))
+qs(zs — xp, Jg(2s — Tn))
< (1= 9)!([[W2s = Vap | + [[Van — zn])?
+as(f(2s) — 25, Jg(zs — xn)) + qsl2s — zn|*
< (1 =98)"llzs — znll + [[Pzn — 20 |])*
+qs(f(2s) — 25, Jg(2s — n)) + gsllzs — zn||?,
which immediately attains

gs —1

(Il2s = znll + 1Vzn — 20 |)? +

|25 — zn|9.

(1) = 2 ofon = 2)) < S8

From (3.20), we have

lim sup(f (2) = 24, Jy(an — 2)) < (G20 4 25l
(321) n—o0 _ (%)M
qs )

where M is a constant such that ||zs — z,||? < M for all n > 0 and s € (0,1). It
is easy to see that ((1 —s)?+¢s—1)/gs — 0 as s — 0. Since J;; is norm-to-norm
uniformly continuous on bounded subsets of E' and z; — x*, we get

| Jg(xn — 2s) — Jg(zn —2")|| = 0 (s —0).
So we obtain
[(f(2s) = 25, Jg(@n — 25)) — (f(27) — 2", Jg(@n — 7))
= [(f(zs) = f(27), Jg(mn — 25)) + (f(2") — 27, Jg(2n — 25))
+(@" = 25, Jg(@n — 25)) = (f(@") — 2", Jg(an — z7))|
< [(f@") — 2% Jg(@n — 25) — Jg(@n — )| + [(f (25) = f(27), Jq(@n — 25))]
+ (2" — 25, Jg(Tn — 25))|
<\ f (@) = a1 Jg(@n = 25) = Jg(@n — 2| + (1 + 6)[|2s — 2*[[ [l — 2|71
Thus, for each n > 0, we have
Hm (f(zs) = 25, Jy(wn — 25)) = (f(27) — 2", Jo(zn — 27)).
From (3.21), as s — 0, it follows that
(3.22) limsup(f(z*) — z*, Jy(zn, — 2")) < 0.

n—oo
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By (C1) and (3.10), we get
[2nt1 = @nll = llanf (un) + Brun + mGzn — ||

< apl|f(un) — zall + Ballun — zn |l
(3.23) + M (1Gzn — un|l + [[un — 24l])

< ol f(un) — | + llun — 24|

+ |Gz —un|| = 0 (n — o).

Using (3.22) and (3.23), we have
(3.24) limsup(f(z*) — 2%, Jg(zpt1 — z¥)) <O0.

n—o0

Using Lemma 2.9 and (3.24), we can infer that I, — 0 as n — oo. Thus, z, — =*
as n — oo.

Case 2. Suppose that there exists {I7,} C {I1} s.t. I}, < I},41 Vi € N, where
N is the set of all positive integers. Define the mapping 7: N — N by
7() :=max{i <1:I; < [y}
Using Lemma 2.7, we get
Iy < rgyyr and Iy < Iy

Putting I = ||z; — 2*||¢ VI € N and using the same inference as in Case 1, we can
obtain
2 li — =
(3.25) Aim 271 — 2@l =0
and
(3.26) msup((a°) —2°, Jy 41 — ) <0
—00
Thanks to Iy < I'7)+1 and a ) > 0, we conclude from (3.7) that
* q * * *
lzrq) —2*[|9 < m(f(l“ ) — 2, Jy(Tr )41 — 27))
and hence

limsup |lz,q) — 2|7 <0.
l—00
Thus, we get
I — 2|1 =0.
Jim |zrq) — 27|
Using Proposition 2.2 and (3.25), we obtain
sy =21 = lzry — 2
< Q<x‘r(l)+1 BEZIUE Jq(xf(l) - JI*)> + ’iq||37-r(l)+1 - J:T(l)Hq
< qllzrgyr1 — o llllzr — 27
+ tgllzr @y — 2o @)|? = 0 (1= 00).
Noticing I} < I (341, we get

e = 2™ < N2y 1 = 27 < Nlarqy — 2% 117 + dllzr@yen — 2 llwr@) — 2]
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+ Kgllzr@yr1 — 2@ |7

It is easy to see from (3.25) that z; — z* as [ — oco. This completes the proof. O
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