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exist an integrable function a1(t) ∈ L1[0, T ] and a positive constant b1 > 0,
such that

|f1(t, x)| ≤ |a1(t)|+ b1|x|.
(2) f2 : [0, T ]× [0, T ]×R2 → R satisfies Carathéodory condition i.e., measurable

in t, s ∈ [0, T ] for all x ∈ R and continuous in x ∈ R for all t, s ∈ [0, T ].
There exist an integrable function k(t, s) ∈ L1[0, T ] and a positive constant
b2 > 0, such that

|f2(t, s, x, u)| ≤ |k(t, s)|+ b2(|x|+ |u|).
(3) ∫ T

0

∫ t

0
k(t, s)dsdt ≤ M.

(4) g : [0, T ]×R → R+ satisfies Carathéodory condition. There exist a measur-
able function a2(t) ∈ L1[0, T ] and a positive constant b3 > 0, such that

g(t, u) ≤ |a2(t)|+ b3(|u|).
(5) b1b2T < 1, b3|λ| < 1.

Definition 2.1. By a solution of the functional integral equation (1.1) we mean a
function x ∈ L1[0, T ] that satisfies (1.1).

Theorem 2.2. Let the assumptions 1–5 be satisfied, then the functional integral
equation (1.1), has at least one solution x ∈ L1[0, T ] depending on the existence of
at least one solution u ∈ L1[0, T ] of the functional equation (1.2).

Proof. Let the operators A1, A2 associated with the functional equation (1.2) and
the functional integral equation (1.1) respectively by

A1u(t) = g(t, λu(t)),

A2x(t) = f1(t,

∫ t

0
f2(t, s, x(s), u(s))ds).

Let Qr = {u ∈ L1[0, T ] : ||u||L1 ≤ r}, where r =
∥a2∥L1
1−b3|λ| .

Then we have, for u ∈ Qr

|A1u(t)| ≤ |g(t, λu(t))|
≤ a2(t) + b3|λu(t)|

Integrating the above inequality from 0 to T and making the change of variable we
have ∫ T

0
|A1u(t)|dt ≤

∫ T

0
(a2(t) + b3|λu(t)|)dt

≤
∫ T

0
|a2(t)|dt+ b3|λ|

∫ T

0
|u(t)|dt.

Hence

∥A1u∥L1 ≤ ∥a2∥L1 + b3|λ|∥u∥L1

≤ ∥a2∥L1 + b3|λ|r = r.
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Therefor A1 : Qr → Qr and the class of functions {A1u} is uniformly bounded in
Qr.

Let Ω be bounded subset of Qr, then A1(Ω) is also bounded on Qr.
Let u ∈ Ω, then

∥(A1u)h −A1u∥L1 =

∫ T

0
|(A1u)h(t)− (A1u)(t)|dt

=

∫ T

0
|1
h

∫ t+h

t
|(A1u)(s)ds− (A1u)(t)|dt

≤
∫ T

0

1

h

∫ t+h

t
|g(s, λu(s))− g(t, λu(t))|dsdt

since f ∈ L1[0, T ], It follows that

1

h

∫ t+h

t
|g(s, λu(s))− g(t, λu(t))|dsdt → 0 as h → 0,

From Egorov’s theorem [13]

∃ δ > 0, Eδ ⊂ [0, 1], µ(E) <
δ

4r
s.t

A1(u)h −A1(u) → 0 uniformly on I − Eδ.

∥A1(u)h −A1u∥L1 =

∫ 1

0
|(A1(u))h −A1(u)|dt

=

∫
I−Eδ

|(A1(u))h −A1(u)|dt+
∫
Eδ

|(A1(u))h −A1(u)|dt,(2.1)

using assumptions 1 and 2 we obtain

1

h

∫ t+h

t

∣∣∣∣g(s, λu(s))− g(t, λu(t))|dsdt ≤ 2
1

h

∫ t+h

t

[
m3(s) + λb3|u(s)]dt

≤ 2(∥m3∥+ λr)
1

h

∫ t+h

t
ds ≤ 2r.(2.2)

from (2.1) and (2.2), we have

∥(A1u)h −A1u∥L1 ≤ ϵ

2µ(I − Eδ)

∫
I−Eδ

dt+ 2r

∫
Eδ

dt

=
ϵ

2µ(I − Eδ)
µ(I − Eδ) + 2rµ(Eδ)

≤ ϵ

2
+

ϵ

2
= ϵ,

then (A1u)h → (A1u) uniformly. Hence, by Arzela Theorem [13], A1(Ω) is relatively
compact. Hence A1 is compact operator.

Let {un} ⊂ Qr and un → u, then from ( assumption 4) the continuity of the
function g we obtain

lim
n→∞

A1un = lim
n→∞

g(t, λun(t), µ)
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= g(t, λ lim
n→∞

un(t), µ) = A1u.

Then un → u ⇒ A1un → A1u as n → ∞. This mean that the operator A1 is
continuous operator.

Then by Schauder fixed point Theorem [11] there exist at least one solution
u ∈ L1[0, T ] of the ( constraint) functional equations (1.2).

Now, for the existence of solutions of the functional integral equation (1.1) we
have the following.

Let Qr1 = {x ∈ L1[0, T ] : ||x||L1 ≤ r1}, where r1 =
∥a1∥L1

+b1M+b1b2Tr1
1−b1b2T

.
Then we have, for x ∈ Qr1

|A2x(t)| ≤ |f1(t,
∫ t

0
f2(t, s, x(s), u(s))ds)|

≤ a1(t) + b1

∫ t

0
|f2(t, s, x(s), u(s))|ds

≤ a1(t) + b1

∫ t

0
(k(t, s) + b2|x(s)|+ b2|u(s)|)ds

Integrating the above inequality from 0 to T and making the change of variable we
have ∫ T

0
|A2x(t)|dt ≤

∫ T

0
(a1(t) + b1

∫ t

0
(k(t, s) + b2|x(s)|+ b2|u(s)|)ds)dt

≤
∫ T

0
|a1(t)|dt+ b1

∫ T

0

∫ t

0
k(t, s)dsdt

+b1b2

∫ T

0

∫ t

0
(|x(s)|+ |u(s)|)dsdt.

Hence

∥A2x∥L1 ≤ ∥a1∥L1 + b1M + b1b2T (∥x∥L1 + ∥u∥L1)

≤ ∥a1∥L1 + b1M + b1b2T (r1 + r) = r1,

Therefor A2 : Qr1 → Qr1 and the class of functions {A2x} is uniformly bounded in
Qr1 .

Let Ω1 be bounded subset of Qr1 , then A2(Ω1) is also bounded on Qr1 .
Let x ∈ Ω1, then

∥(A2x)h −A2x∥L1 =

∫ T

0
|(A2x)h(t)− (A2x)(t)|dt

=

∫ T

0
|1
h

∫ t+h

t
|(A2x)(s)ds− (A2x)(t)|dt

≤
∫ T

0

1

h

∫ t+h

t
|f1(s,

∫ s

0
f2(s, θ, x(θ), u(θ))dθ)

−f1(t,

∫ t

0
f2(t, s, x(s), u(s))ds)|dsdt
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since f1, f2 ∈ L1[0, T ], It follows that

1

h

∫ t+h

t
|f1(s,

∫ s

0
f2(s, θ, x(θ), u(θ))dθ)

− f1(t,

∫ t

0
f2(t, s, x(s), u(s))ds)|ds → 0 as h → 0,

then (A2x)h → (A2x) uniformly. Hence, by Arzela Theorem [13], A2(Ω1) is rela-
tively compact. Hence A2 is compact operator.

Let {xn} ⊂ Qr1 and xn → x

lim
n→∞

A2xn = lim
n→∞

f1(t,

∫ t

0
f2(t, s, xn(s), u(s))ds) = A2x.

Then xn → x ⇒ A2xn → A2x as n → ∞. This mean that the operator A2 is
continuous operator.

Then by Schauder fixed point Theorem [11] there exist at least one solution
x ∈ L1[0, T ] of the functional integral equation (1.1). □

3. Measure of non compactness

The usefulness of the measure of noncompactness was pointed out by [2]. For
papers studied such kind of equations (see [1, 3, 5], and references therein).

Consider Problem (1.1) under the constrain (1.2) with the following assumptions:

1
′
: f1 : I = [0, T ] × R+ → R+ satisfies Carathéodory condition, that is, f1 is
measurable with respect to t for all x ∈ R+ and continuous in x ∈ R+ for
almost all t ∈ [0, T ].

f1(t, x) ≤ |m1(t)|+ k1|x|.

where m1 ∈ L1[0, T ] and k1 is a positive constant. Moreover, f1 is nonde-
creasing with respect to all variables.

2
′
: f2 : I × I ×R+ ×R+ → R+ satisfies Carathéodory condition, that is, f2 is
measurable with respect to t, s for all (x, y) ∈ R+ × R+ and continuous in
x, y ∈ R+ for almost all t ∈ [0, T ].

f2(t, s, x, y) ≤ |m2(t, s)|+ k2(|x|+ |y|).

where m2 ∈ L1[0, T ] and k2 is a positive constant. Moreover, f2 is nonde-
creasing with respect to all variables.

3
′
: g : I×R+ → R+ satisfies Carathéodory condition, there exist an integrable
function b3 > 0, such that

|g(t, x)| ≤ |m3(t)|+ b(|x|),

where m3(t) ∈ L1[0, T ] and b is a positive constant. Moreover g is nonde-
creasing with respect to all variable.

4
′
:

Theorem 3.1. Let the assumptions 1
′
–2

′
be satisfied, if b3λ < 1, then problem

(1.1)–(1.2) has at least one positive monotonic nondecreasing solution x ∈ L1[0, T ].
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Proof. Let the operator F1 defined by the formula

(F1u)(t) = g(t, λu(t)), t ∈ [0, T ].

Br1 = {u ∈ L1[0, 1] : ||u||L1 ≤ r1}. Let u ∈ L1[0, T ], then we have

|(F1u)(t)| ≤ |m3(t)|+ b3λ|u|.
This implies that

∥F1u∥ =

∫ T

0
|(F1u)(t)|dt

≤
∫ 1

0
[|m3(t)|+ b3λ|u|]dt

≤ ∥m3∥+ b3λ∥u∥
≤ ∥m3∥+ b3λr1 = r1.

Hence F1u ∈ L1[0, 1], moreover the operator F1 maps Br1 into itself, where

r1 =
∥m3∥
1− b3λ

.

Now, let Qr1 ⊂ Br1 containing of all functions positive and nondecreasing on [0, 1].
Clear that Qr1 is nonempty, closed, bounded and convex. This mean that Qr1 is
a bounded subset of L1 consisting of all functions positive and nondecreasing on
[0, 1]. Then by [4] Qr1 is compact in measure. Now, we show that F1 transform
the a positive nondecreasing function into functions of the same type. If x ∈ Qr1 ,
then u(t) is positive nondecreasing function on [0, T ] and g(s, λu(s))ds, t ∈ [0, T ] is
positive and nondecreasing function on [0, T ] [4]. Thus the operator F1 : Qr1 → Qr1 .

Now, we show that F1 is continuous operator on Qr1 . Let un ∈ Qr1 such that
un → u. Then from our assumptions, we get

lim
n→∞

F1un = lim
n→∞

(g(t, λun(t)))

= g(t, λ lim
n→∞

un(s))ds = F1u.

Thus F1 is continuous on Qr1 .
Finally, we show that F1 is contraction with respect to the measure of non com-

pactness χ.
Let U be a nonempty subset of Qr1 . Fix ϵ > 0 and take a measurable subset

D ⊂ I such that meas D ≤ ϵ. Then for any u ∈ U , we get

∥F1u∥D ≤
∫
D
|g(t, λu(t))|dt

≤ ∥m3∥D + b|λ|∥u∥D + .

But

lim
ϵ→0

{sup[
∫
D
|m3(t)|dt : D ⊂ [0, T ], meas. D < ϵ]} = 0.

Thus, we obtain
β(F1u)(t) ≤ bβλ(u(t)),

and
β(F1U) ≤ bβλ(U),
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since Qr1 is compact in measure, thus

χ(F1U) ≤ bλχ(U),

since b < 1, it follows that F1 is contraction. Now by Darbo fixed point theorem,
then exist at least one fixed point in Qr1 . Consequently, there exist at least one
solution u ∈ [0, T ] of problem (1.2) and solution is positive and nondecreasing on
[0, T ].

Now, let the operator F2 defined by the formula

(F2x)(t) = f1(t,

∫ t

0
f2(t, s, x(s), u(s))ds), t ∈ [0, T ].

Br2 = {x ∈ L1[0, 1] : ||x||L1 ≤ r2}. Let x ∈ L1, then we have

|(F2x)(t)| ≤ |f1(t,
∫ t

0
f2(t, s, x(s), u(s))ds)|

≤ |m1(t)|+ k1

∫ t

0
|f2(t, s, x(s), u(s))|ds

≤ |m1(t)|+ k1

∫ t

0
[|m2(t, s)|+ k2(|x(s)|+ |u(s)|)]ds.

This implies that

∥(F2x)∥ ≤
∫ T

0
|m1(t)|dt+ k1

∫ T

0

∫ t

0
[|m2(t, s)|+ k2(|x(s)|+ |u(s)|)]dsdt

≤ ∥m1∥+ k1M + k1k2T∥x∥+ k1k2T∥u∥.

Hence F2x ∈ L1, moreover the operator F2 maps Br2 into itself, where

r2 =
∥m1∥+ k1M + k1k2Tr1

1− k1k2T
.

Now, let Qr2 ⊂ Br2 containing of all functions positive and nondecreasing on [0, 1],
thus Qr2 is compact in measure.

Similarly, the operator F2 : Qr2 → Qr2 and it is continuous operator on Qr2 .
Finally, we show that F2 is contraction with respect to the measure of non com-

pactness χ.
Let X be a nonempty subset of Qr2 . Fix ϵ > 0 and take a measurable subset

D ⊂ I such that meas. D ≤ ϵ. Then for any x ∈ X, we get

∥F2x∥D ≤
∫
D
|m1(t)|dt+ k1

∫
D

∫ t

0
[|m2(t, s)|+ k2(|x(s)|+ |u(s)|)]dsdt.

But

lim
ϵ→0

{sup[
∫
D
|m1(t)|dt : D ⊂ [0, T ],meas. D < ϵ]} = 0,

lim
ϵ→0

{sup[
∫
D
|m2(t, s)|dt : D ⊂ [0, T ],meas. D < ϵ]} = 0,

and

lim
ϵ→0

{sup[
∫
D
|u(t)|dt : D ⊂ [0, T ],meas. D < ϵ]} = 0.
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Thus, we obtain
β(F2x)(t) ≤ k1k2β(x(t)),

and
β(F2X) ≤ k1k2β(X),

since Qr2 is compact in measure, thus

χ(F2X) ≤ k1k2χ(X),

since (k1B + k2) < 1, it follows that F2 is contraction. Now by Darbo fixed point
theorem, there exist at least one solution x ∈ [0, T ] of Problem (1.1) under the con-
strain (1.2) and the solution is positive and nondecreasing on [0, T ]. This completes
the proof. □

4. Continuous dependence

4.1. Continuous dependence on the set of solutions of the constraint.
Consider firstly the following assumptions

1∗: f1 : [0, T ] × R → R is measurable in t ∈ [0, T ] and satisfies the Lipschitz
condition

(4.1) |f1(t, x)− f1(t, y)| ≤ b1|x− y|,
2∗: f2 : [0, T ] × [0, T ] × R2 → R is measurable in t, s ∈ [0, T ] and satisfies the

Lipschitz condition

|f2(t, s, x, u)− f2(t, s, x1, u1)| ≤ b2(|x− x1|+ |u− u1|).

Theorem 4.1. Let the assumptions 1∗–2∗ be satisfied, then the solution of the
functional integral equation (1.1) is unique. Moreover, this solution depends con-
tinuously on the set of solutions of the ( constraint) functional equations (1.2) in
the sense that, if

∀ϵ > 0, ∃ δ(ϵ) s.t ∥u− u∗∥L1 < δ ⇒ ||x− x∗||L1 < ϵ,

where x∗(t) is the solution of

(4.2) x∗(t) = f1(t,

∫ t

0
f2(t, s, x

∗(s), u∗(s))ds), t ∈ (0, T ],

and u, u∗ are any two solutions of the ( constraint) functional equations (1.2).

Proof. From assumption 1∗, we obtain

|f1(t, x)| − |f1(t, 0)| ≤ |f1(t, x)− f1(t, 0)| ≤ b1|x|
and

|f1(t, x)| ≤ b1|x|+ |f1(t, 0)| = b1|x|+ a1(t), a1(t) = |f1(t, 0)|.
Therefor assumption 1 is satisfied, also by the same way we can show that as-
sumption 2 is satisfied. Then the assumptions of Theorem 2.2 are satisfied and the
solutions of the functional integral equation (1.1) exist.

Let x, y be two the solution of (1.1), then

|x(t)− y(t)| = |f1(t,
∫ t

0
f2(t, s, x(s), u(s))ds)
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−f1(t,

∫ t

0
f2(t, s, y(s), u(s))ds)|

≤ b1

∫ t

0
|f2(t, s, x(s), u(s))− f2(t, s, y(s), u(s))|ds

≤ b1b2

∫ t

0
|x(s)− y(s)|ds

Integrating the above inequality from 0 to T and making the change of variable we
have ∫ T

0
|x(t)− y(t)|dt ≤

∫ T

0
(b1b2

∫ t

0
|x(s)− y(s)|ds|)dt

≤ b1b2T∥x− y∥L1 .

Hence

(1− b1b2T )∥x− y∥L1 ≤ 0.

Since b1b2T < 1, then x(t) = y(t) and the solution of the functional integral equation
(1.1) is unique.

Now, Let x, x∗ be two solutions of the functional integral equations (1.1) and
(4.2) respectively corresponding to the two solutions u, u∗ of the ( constraint)
functional equations (1.2). Then

|x(t)− x∗(t)| = |f1(t,
∫ t

0
f2(t, s, x(s), u(s))ds)

−f1(t,

∫ t

0
f2(t, s, x

∗(s), u∗(s))ds)|

≤ b1

∫ t

0
|f2(t, s, x(s), u(s))− f2(t, s, x

∗(s), u∗(s))|ds

≤ b1b2

∫ t

0
|x(s)− x∗(s)|ds+ b1b2

∫ t

0
|u(s)− u∗(s)|ds

Integrating the above inequality from 0 to T and making the change of variable we
have ∫ T

0
|x(t)− x∗(t)|dt ≤

∫ T

0
[b1b2

∫ t

0
|x(s)− x∗(s)|ds

+b1b2

∫ t

0
|u(s)− u∗(s)|ds]dt

≤ b1b2T∥x− x∗∥L1 + b1b2Tδ

Hence

∥x− x∗∥L1 ≤ b1b2Tδ

1− b1b2T
.
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Then the solution of the functional integral equation (1.1) depends continuously on
the set of solutions u ∈ L1[0, T ] of the ( constraint ) functional equation (1.1).. □
4.2. Continuous dependence on the parameter λ and the functional g.
Consider firstly the following assumptions

3∗: g : [0, T ] × R → R is measurable in t ∈ [0, T ] and satisfies the Lipschitz
condition

(4.3) |g(t, x)− g(t, y)| ≤ b3|x− y|.

Theorem 4.2. Let the assumption 3∗ be satisfied, then the solution of the func-
tional equation (1.2) is unique. Moreover, this solution depends continuously on the
parameters λ, µ and the functional g, if

∀ϵ > 0, ∃ δ(ϵ) s.t |λ− λ∗| < δ1, ∥g − g∗∥L1 < δ3 ⇒ ||u− u∗||L1 < ϵ1,

where u∗(t) is the solution of

(4.4) u∗(t) = g(t, λ∗u∗(t)), t ∈ (0, T ],

Proof. From assumption 3∗, we obtain

|g(t, x)| − |g(t, 0)| ≤ |g(t, x)− g(t, 0)| ≤ b3|x|
and

|g(t, x)| ≤ b3|x|+ |g(t, 0)| = b3|x|+ a2(t), a2(t) = |g(t, 0)|.
Therefor assumption 4 is satisfied. Then the assumptions of Theorem 2.2 are satis-
fied and the solutions of the functional equation (1.2) exist.

Let u, v be two the solution of equation (1.2), then

|u(t)− v(t)| = |g(t, λu(t))− g(t, λv(t))|
≤ b3|λu(t)− λv(t)|

Integrating the above inequality from 0 to T and making the change of variable we
have ∫ T

0
|u(t)− v(t)|dt ≤

∫ T

0
(b3|λu(t)− λv(t)|)dt

≤ b3|λ|
∫ T

0
|u(t)− v(t)|dt.

Hence
∥u− v∥L1 ≤ b3|λ|∥u− v∥L1 .

Since b3|λ| < 1, then u(t) = v(t) and the solution of the functional equation (1.2)
is unique.

Let u, u∗ be two solutions of the functional equations (1.2) and (4.4) respectively.
Then

|u(t)− u∗(t)| = |g(t, λu(t))− g∗(t, λ∗u∗(t))|
≤ |g(t, λu(t))− g(t, λ∗u(t))|

+|g(t, λ∗u(t))− g(t, λ∗u∗(t))|
+|g(t, λ∗u∗(t))− g∗(t, λ∗u∗(t))|
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≤ b3|λu(t)− λ∗u(t)|+ b3|λ∗u(t)− λ∗u∗(t)|
+|g(t, λ∗u∗(t))− g∗(t, λ∗u∗(t))|.

Integrating the above inequality from 0 to T and making the change of variable we
have ∫ T

0
|u(t)− u∗(t)|dt ≤

∫ T

0
[b3|λu(t)− λ∗u(t)|+ b3|λ∗u(t)

−λ∗u∗(t)|]dt

+

∫ T

0
|g(t, λ∗u∗(t))− g∗(t, λ∗u∗(t))|dt

≤ b3Tδ1 + b3δ2∥u∥L1 + b3|λ∗|∥u− u∗∥L1 + δ3.

Hence

(4.5) ∥u− u∗∥L1 ≤ b3δ1∥u∥L1 + δ3
1− b3|λ∗|

= ϵ1.

Then the solution of the functional integral equation (1.2) depends continuously on
the parameter λ and the functional g. □

Definition 4.3. The solution x ∈ L1[0, T ] of the functional integral equation (1.1)
depends continuously on the parameter λ and the functional g, if

∀ϵ > 0, ∃ δ(ϵ) s.t |λ− λ∗| < δ1, ∥g − g∗∥L1 < δ3 ⇒ ||x− x∗||L1 < ϵ2,

where x∗(t) is the solution of equation (4.2).

Theorem 4.4. Let the assumptions of Theorem 4.1 and 4.2 be satisfied, then the
solution of the functional integral equation (1.1) depends continuously on the pa-
rameters λ, µ and the functional g.

Proof. Let x, x∗ be the two solutions of the functional integral equations (1.1) and
(4.2) respectively. Then

|x(t)− x∗(t)| = |f1(t,
∫ t

0
f2(t, s, x(s), u(s))ds)

−f1(t,

∫ t

0
f2(t, s, x

∗(s), u∗(s))ds)|

≤ b1

∫ t

0
|f2(t, s, x(s), u(s))− f2(t, s, x

∗(s), u∗(s))|ds

≤ b1b2

∫ t

0
|x(s)− x∗(s)|ds+ b1b2

∫ t

0
|u(s)− u∗(s)|ds

Integrating the above inequality from 0 to T and making the change of variable we
have ∫ T

0
|x(t)− x∗(t)|dt ≤

∫ T

0
[b1b2

∫ t

0
|x(s)− x∗(s)|ds
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+b1b2

∫ t

0
|u(s)− u∗(s)|ds]dt

≤ b1b2T∥x− x∗∥L1 + b1b2T∥u− u∗∥L1 ,

(4.6)

from (4.5) and (4.6), we obtain

∥x− x∗∥L1 ≤ b1b2T (b3δ1∥u∥L1 + Tδ3)

(1− b1b2T )(1− b3|λ∗|)
= ϵ2.

Then the solution of the functional integral equation (1.1) depends continuously on
the parameters λ, µ and the functional g. □

5. Examples:

Example 5.1. Consider the nonlinear integro–differential equation

x(t) = t4e−t +

∫ t

0

1

2
(sin(3s+ 3t) +

ln(1 + |x(s)|)
4 + s3

+
s4 cosu(s)

e|u(s)|
)dt, t ∈ [0, T ],(5.1)

where

(5.2) u(t) = t5 + t2 + 1 +
|λu(t)|√

|λu(t)|+ t+ 9
t ∈ [0, T ],

Set

f1(t,

∫ t

0
f2(t, s, x(s), u(s))ds) = t4e−t +

∫ t

0

1

2
(sin(3s+ 3t) +

ln(1 + x(s))

4 + s3

+
s4 cosu(s)

e|u(s)|
)ds.

and

g(t, λu(t)) = t5 + t2 + 1 +
|λu(t)|√

|λu(t)|+ t+ 9

Then

f2(t, s, x(s), u(s)))| ≤ 1

2
(sin(3s+ 3t)) +

1

8
|x(s)|

+
1

8

s4 cosu(s)

e|u(s)|
,

and

|g(t, λu(t))| = |t5 + t2 + 1|+ 1

3
(|λu(t)|)

The assumptions 1–5 of Theorem 2.2 are satisfied with a1(t) = t4e−t ∈ L1[0, 1],
k(t, s) = 1

2 sin(3s + 3t) ∈ L1[0, 1], a2(t) = t5 + t2 + 1 ∈ L1[0, 1], b1 = 1
2 , b2 =

1
8 , b3 =

1
3 , b3|λ| =

1
3 |λ| < 1, b1b2T = 1

16 < 1 Therefore, by applying to Theorem 2.2,
the given the control problem of the functional integral equation (5.1)-(5.2) has a
solution x ∈ L1[0, T ].



ON A NONLINEAR CONSTRAINED PROBLEM 107

References

[1] J. Bana’s, On the superposition operator and integrable solutions of some functional equation,
Nonlinear Analysis: Theory, Methods & Applications 12 (1988), 777–784.

[2] J. Bana’s, Integrable solutions of hammerstein and urysohn integral equations, Journal of the
Australian Mathematical Society, 46 (1989), , 61–68.

[3] J. Bana’s and A. Chlebowicz, On integrable solutions of a nonlinear volterra integral equation
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