ON A NONLINEAR CONSTRAINED PROBLEM OF A NONLINEAR FUNCTIONAL INTEGRAL EQUATION

A. M. A. EL-SAYED, E. M. HAMDALLAH, AND REDA GAMAL AHMED

Abstract

In this article, we study a nonlinear constrained problem of a nonlinear functional integral equation constrained with a nonlinear positive constraint of functional equation with parameters in the class of Lebegue integrable functions $L_{1}[0, T]$.

1. Introduction

It is well-known that a lot of problems investigated in engineering, mechanics, mathematical physics, vehicular traffic theory, queuing theory and also several real world problems can be described with help of various functional integral equations. The theory of functional integral equations is highly developed and constitutes a significant and important branch of nonlinear analysis. It is also known control theory in control systems engineering deals with the control of continuously operating dynamical systems in engineered processes and machines. There have been published, up to now, numerous research papers; see [6-10,12, 14-16].

In this paper, we are concerned with the nonlinear positive constrained problem of the nonlinear functional integral equation

$$
\begin{equation*}
x(t)=f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right), \quad t \in[0, T], \tag{1.1}
\end{equation*}
$$

under the positive constraint u satisfies the (constraint) functional equation with parameter λ

$$
\begin{equation*}
u(t)=g(t, \lambda u(t)), \quad t \in[0, T] . \tag{1.2}
\end{equation*}
$$

The existence of at least and exactly one solution $x \in L_{1}[0, T]$ under certain conditions will be proved. The continuous dependence of the solution $x \in L_{1}[0, T]$ on the set of solutions u of the (constraint) functional equation (1.2) and on the parameter λ and the functional g will be studied.

2. Existence of solution

Consider the constrained problem of the nonlinear functional integral equation (1.1) and the nonlinear positive constraint (1.2) with the following assumptions:
(1) $f_{1}:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies Caratheodory condition i.e., measurable in $t \in[0, T]$ for all $x \in R$ and continuous in $x \in R$ for all $t \in[0, T]$. There

[^0]exist an integrable function $a_{1}(t) \in L^{1}[0, T]$ and a positive constant $b_{1}>0$, such that
$$
\left|f_{1}(t, x)\right| \leq\left|a_{1}(t)\right|+b_{1}|x| .
$$
(2) $f_{2}:[0, T] \times[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies Carathéodory condition i.e., measurable in $t, s \in[0, T]$ for all $x \in R$ and continuous in $x \in R$ for all $t, s \in[0, T]$. There exist an integrable function $k(t, s) \in L^{1}[0, T]$ and a positive constant $b_{2}>0$, such that
$$
\left|f_{2}(t, s, x, u)\right| \leq|k(t, s)|+b_{2}(|x|+|u|)
$$
(3)
$$
\int_{0}^{T} \int_{0}^{t} k(t, s) d s d t \leq M
$$
(4) $g:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}_{+}$satisfies Carathéodory condition. There exist a measurable function $a_{2}(t) \in L^{1}[0, T]$ and a positive constant $b_{3}>0$, such that
$$
g(t, u) \leq\left|a_{2}(t)\right|+b_{3}(|u|)
$$
(5) $b_{1} b_{2} T<1, b_{3}|\lambda|<1$.

Definition 2.1. By a solution of the functional integral equation (1.1) we mean a function $x \in L_{1}[0, T]$ that satisfies (1.1).

Theorem 2.2. Let the assumptions $1-5$ be satisfied, then the functional integral equation (1.1), has at least one solution $x \in L_{1}[0, T]$ depending on the existence of at least one solution $u \in L_{1}[0, T]$ of the functional equation (1.2).
Proof. Let the operators A_{1}, A_{2} associated with the functional equation (1.2) and the functional integral equation (1.1) respectively by

$$
\begin{aligned}
A_{1} u(t) & =g(t, \lambda u(t)) \\
A_{2} x(t) & =f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right)
\end{aligned}
$$

Let $Q_{r}=\left\{u \in L_{1}[0, T]:\|u\|_{L_{1}} \leq r\right\}$, where $\quad r=\frac{\left\|a_{2}\right\|_{L_{1}}}{1-b_{3}|\lambda|}$.
Then we have, for $u \in Q_{r}$

$$
\begin{aligned}
\left|A_{1} u(t)\right| & \leq|g(t, \lambda u(t))| \\
& \leq a_{2}(t)+b_{3}|\lambda u(t)|
\end{aligned}
$$

Integrating the above inequality from 0 to T and making the change of variable we have

$$
\begin{aligned}
\int_{0}^{T}\left|A_{1} u(t)\right| d t & \leq \int_{0}^{T}\left(a_{2}(t)+b_{3}|\lambda u(t)|\right) d t \\
& \leq \int_{0}^{T}\left|a_{2}(t)\right| d t+b_{3}|\lambda| \int_{0}^{T}|u(t)| d t
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|A_{1} u\right\|_{L_{1}} & \leq\left\|a_{2}\right\|_{L_{1}}+b_{3}|\lambda|\|u\|_{L_{1}} \\
& \leq\left\|a_{2}\right\|_{L_{1}}+b_{3}|\lambda| r=r
\end{aligned}
$$

Therefor $A_{1}: Q_{r} \rightarrow Q_{r}$ and the class of functions $\left\{A_{1} u\right\}$ is uniformly bounded in Q_{r}.

Let Ω be bounded subset of Q_{r}, then $A_{1}(\Omega)$ is also bounded on Q_{r}.
Let $u \in \Omega$, then

$$
\begin{aligned}
\left\|\left(A_{1} u\right)_{h}-A_{1} u\right\|_{L_{1}} & =\int_{0}^{T}\left|\left(A_{1} u\right)_{h}(t)-\left(A_{1} u\right)(t)\right| d t \\
& \left.=\int_{0}^{T}\left|\frac{1}{h} \int_{t}^{t+h}\right|\left(A_{1} u\right)(s) d s-\left(A_{1} u\right)(t) \right\rvert\, d t \\
& \leq \int_{0}^{T} \frac{1}{h} \int_{t}^{t+h}|g(s, \lambda u(s))-g(t, \lambda u(t))| d s d t
\end{aligned}
$$

since $f \in L_{1}[0, T]$, It follows that

$$
\frac{1}{h} \int_{t}^{t+h}|g(s, \lambda u(s))-g(t, \lambda u(t))| d s d t \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

From Egorov's theorem [13]

$$
\begin{align*}
& \qquad \begin{array}{l}
\exists>0, \quad E_{\delta} \subset[0,1], \quad \mu(E)<\frac{\delta}{4 r} \quad \text { s.t } \\
A_{1}(u)_{h}-A_{1}(u) \rightarrow 0 \quad \text { uniformly on } \quad I-E_{\delta}
\end{array} \\
& \begin{array}{l}
\left\|A_{1}(u)_{h}-A_{1} u\right\|_{L_{1}}
\end{array}=\int_{0}^{1}\left|\left(A_{1}(u)\right)_{h}-A_{1}(u)\right| d t \\
& =\int_{I-E_{\delta}}\left|\left(A_{1}(u)\right)_{h}-A_{1}(u)\right| d t+\int_{E_{\delta}}\left|\left(A_{1}(u)\right)_{h}-A_{1}(u)\right| d t
\end{align*}
$$

using assumptions 1 and 2 we obtain

$$
\begin{align*}
\frac{1}{h} \int_{t}^{t+h}|g(s, \lambda u(s))-g(t, \lambda u(t))| d s d t & \leq 2 \frac{1}{h} \int_{t}^{t+h}\left[m_{3}(s)+\lambda b_{3} \mid u(s)\right] d t \\
& \leq 2\left(\left\|m_{3}\right\|+\lambda r\right) \frac{1}{h} \int_{t}^{t+h} d s \leq 2 r \tag{2.2}
\end{align*}
$$

from (2.1) and (2.2), we have

$$
\begin{aligned}
\left\|\left(A_{1} u\right)_{h}-A_{1} u\right\|_{L_{1}} & \leq \frac{\epsilon}{2 \mu\left(I-E_{\delta}\right)} \int_{I-E_{\delta}} d t+2 r \int_{E_{\delta}} d t \\
& =\frac{\epsilon}{2 \mu\left(I-E_{\delta}\right)} \mu\left(I-E_{\delta}\right)+2 r \mu\left(E_{\delta}\right) \\
& \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

then $\left(A_{1} u\right)_{h} \rightarrow\left(A_{1} u\right)$ uniformly. Hence, by Arzela Theorem [13], $A_{1}(\Omega)$ is relatively compact. Hence A_{1} is compact operator.

Let $\left\{u_{n}\right\} \subset Q_{r}$ and $u_{n} \rightarrow u$, then from (assumption 4) the continuity of the function g we obtain

$$
\lim _{n \rightarrow \infty} A_{1} u_{n}=\lim _{n \rightarrow \infty} g\left(t, \lambda u_{n}(t), \mu\right)
$$

$$
=g\left(t, \lambda \lim _{n \rightarrow \infty} u_{n}(t), \mu\right)=A_{1} u
$$

Then $u_{n} \rightarrow u \Rightarrow A_{1} u_{n} \rightarrow A_{1} u$ as $n \rightarrow \infty$. This mean that the operator A_{1} is continuous operator.

Then by Schauder fixed point Theorem [11] there exist at least one solution $u \in L_{1}[0, T]$ of the (constraint) functional equations (1.2).

Now, for the existence of solutions of the functional integral equation (1.1) we have the following.

Let $Q_{r_{1}}=\left\{x \in L_{1}[0, T]:\|x\|_{L_{1}} \leq r_{1}\right\}$, where $\quad r_{1}=\frac{\left\|a_{1}\right\|_{L_{1}}+b_{1} M+b_{1} b_{2} T r_{1}}{1-b_{1} b_{2} T}$.
Then we have, for $x \in Q_{r_{1}}$

$$
\begin{aligned}
\left|A_{2} x(t)\right| & \leq\left|f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right)\right| \\
& \leq a_{1}(t)+b_{1} \int_{0}^{t}\left|f_{2}(t, s, x(s), u(s))\right| d s \\
& \leq a_{1}(t)+b_{1} \int_{0}^{t}\left(k(t, s)+b_{2}|x(s)|+b_{2}|u(s)|\right) d s
\end{aligned}
$$

Integrating the above inequality from 0 to T and making the change of variable we have

$$
\begin{aligned}
\int_{0}^{T}\left|A_{2} x(t)\right| d t \leq & \int_{0}^{T}\left(a_{1}(t)+b_{1} \int_{0}^{t}\left(k(t, s)+b_{2}|x(s)|+b_{2}|u(s)|\right) d s\right) d t \\
\leq & \int_{0}^{T}\left|a_{1}(t)\right| d t+b_{1} \int_{0}^{T} \int_{0}^{t} k(t, s) d s d t \\
& +b_{1} b_{2} \int_{0}^{T} \int_{0}^{t}(|x(s)|+|u(s)|) d s d t
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|A_{2} x\right\|_{L_{1}} & \leq\left\|a_{1}\right\|_{L_{1}}+b_{1} M+b_{1} b_{2} T\left(\|x\|_{L_{1}}+\|u\|_{L_{1}}\right) \\
& \leq\left\|a_{1}\right\|_{L_{1}}+b_{1} M+b_{1} b_{2} T\left(r_{1}+r\right)=r_{1}
\end{aligned}
$$

Therefor $A_{2}: Q_{r_{1}} \rightarrow Q_{r_{1}}$ and the class of functions $\left\{A_{2} x\right\}$ is uniformly bounded in $Q_{r_{1}}$.

Let Ω_{1} be bounded subset of $Q_{r_{1}}$, then $A_{2}\left(\Omega_{1}\right)$ is also bounded on $Q_{r_{1}}$.
Let $x \in \Omega_{1}$, then

$$
\begin{aligned}
\left\|\left(A_{2} x\right)_{h}-A_{2} x\right\|_{L_{1}}= & \int_{0}^{T}\left|\left(A_{2} x\right)_{h}(t)-\left(A_{2} x\right)(t)\right| d t \\
= & \left.\int_{0}^{T}\left|\frac{1}{h} \int_{t}^{t+h}\right|\left(A_{2} x\right)(s) d s-\left(A_{2} x\right)(t) \right\rvert\, d t \\
\leq & \left.\int_{0}^{T} \frac{1}{h} \int_{t}^{t+h} \right\rvert\, f_{1}\left(s, \int_{0}^{s} f_{2}(s, \theta, x(\theta), u(\theta)) d \theta\right) \\
& -f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right) \mid d s d t
\end{aligned}
$$

since $f_{1}, f_{2} \in L_{1}[0, T]$, It follows that

$$
\begin{aligned}
& \left.\frac{1}{h} \int_{t}^{t+h} \right\rvert\, f_{1}\left(s, \int_{0}^{s} f_{2}(s, \theta, x(\theta), u(\theta)) d \theta\right) \\
& -f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right) \mid d s \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
\end{aligned}
$$

then $\left(A_{2} x\right)_{h} \rightarrow\left(A_{2} x\right)$ uniformly. Hence, by Arzela Theorem [13], $A_{2}\left(\Omega_{1}\right)$ is relatively compact. Hence A_{2} is compact operator.

Let $\left\{x_{n}\right\} \subset Q_{r_{1}}$ and $x_{n} \rightarrow x$

$$
\lim _{n \rightarrow \infty} A_{2} x_{n}=\lim _{n \rightarrow \infty} f_{1}\left(t, \int_{0}^{t} f_{2}\left(t, s, x_{n}(s), u(s)\right) d s\right)=A_{2} x
$$

Then $x_{n} \rightarrow x \Rightarrow A_{2} x_{n} \rightarrow A_{2} x$ as $n \rightarrow \infty$. This mean that the operator A_{2} is continuous operator.

Then by Schauder fixed point Theorem [11] there exist at least one solution $x \in L_{1}[0, T]$ of the functional integral equation (1.1).

3. Measure of non compactness

The usefulness of the measure of noncompactness was pointed out by [2]. For papers studied such kind of equations (see $[1,3,5]$, and references therein).

Consider Problem (1.1) under the constrain (1.2) with the following assumptions:
$1^{\prime}: f_{1}: I=[0, T] \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfies Carathéodory condition, that is, f_{1} is measurable with respect to t for all $x \in \mathbb{R}^{+}$and continuous in $x \in \mathbb{R}^{+}$for almost all $t \in[0, T]$.

$$
f_{1}(t, x) \leq\left|m_{1}(t)\right|+k_{1}|x| .
$$

where $m_{1} \in L_{1}[0, T]$ and k_{1} is a positive constant. Moreover, f_{1} is nondecreasing with respect to all variables.
$2^{\prime}: f_{2}: I \times I \times \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfies Carathéodory condition, that is, f_{2} is measurable with respect to t, s for all $(x, y) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$and continuous in $x, y \in \mathbb{R}^{+}$for almost all $t \in[0, T]$.

$$
f_{2}(t, s, x, y) \leq\left|m_{2}(t, s)\right|+k_{2}(|x|+|y|)
$$

where $m_{2} \in L_{1}[0, T]$ and k_{2} is a positive constant. Moreover, f_{2} is nondecreasing with respect to all variables.
$3^{\prime}: g: I \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfies Carathéodory condition, there exist an integrable function $b_{3}>0$, such that

$$
|g(t, x)| \leq\left|m_{3}(t)\right|+b(|x|)
$$

where $m_{3}(t) \in L^{1}[0, T]$ and b is a positive constant. Moreover g is nondecreasing with respect to all variable.
4^{\prime} :
Theorem 3.1. Let the assumptions $1^{\prime}-2^{\prime}$ be satisfied, if $b_{3} \lambda<1$, then problem (1.1)-(1.2) has at least one positive monotonic nondecreasing solution $x \in L_{1}[0, T]$.

Proof. Let the operator F_{1} defined by the formula

$$
\left(F_{1} u\right)(t)=g(t, \lambda u(t)), \quad t \in[0, T] .
$$

$B_{r_{1}}=\left\{u \in L_{1}[0,1]:\|u\|_{L_{1}} \leq r_{1}\right\}$. Let $u \in L_{1}[0, T]$, then we have

$$
\left|\left(F_{1} u\right)(t)\right| \leq\left|m_{3}(t)\right|+b_{3} \lambda|u|
$$

This implies that

$$
\begin{aligned}
\left\|F_{1} u\right\| & =\int_{0}^{T}\left|\left(F_{1} u\right)(t)\right| d t \\
& \leq \int_{0}^{1}\left[\left|m_{3}(t)\right|+b_{3} \lambda|u|\right] d t \\
& \leq\left\|m_{3}\right\|+b_{3} \lambda\|u\| \\
& \leq\left\|m_{3}\right\|+b_{3} \lambda r_{1}=r_{1}
\end{aligned}
$$

Hence $F_{1} u \in L_{1}[0,1]$, moreover the operator F_{1} maps $B_{r_{1}}$ into itself, where

$$
r_{1}=\frac{\left\|m_{3}\right\|}{1-b_{3} \lambda}
$$

Now, let $Q_{r_{1}} \subset B_{r_{1}}$ containing of all functions positive and nondecreasing on $[0,1]$. Clear that $Q_{r_{1}}$ is nonempty, closed, bounded and convex. This mean that $Q_{r_{1}}$ is a bounded subset of L_{1} consisting of all functions positive and nondecreasing on $[0,1]$. Then by [4] $Q_{r_{1}}$ is compact in measure. Now, we show that F_{1} transform the a positive nondecreasing function into functions of the same type. If $x \in Q_{r_{1}}$, then $u(t)$ is positive nondecreasing function on $[0, T]$ and $g(s, \lambda u(s)) d s, t \in[0, T]$ is positive and nondecreasing function on $[0, T][4]$. Thus the operator $F_{1}: Q_{r_{1}} \rightarrow Q_{r_{1}}$.

Now, we show that F_{1} is continuous operator on $Q_{r_{1}}$. Let $u_{n} \in Q_{r_{1}}$ such that $u_{n} \rightarrow u$. Then from our assumptions, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} F_{1} u_{n} & =\lim _{n \rightarrow \infty}\left(g\left(t, \lambda u_{n}(t)\right)\right) \\
& =g\left(t, \lambda \lim _{n \rightarrow \infty} u_{n}(s)\right) d s=F_{1} u
\end{aligned}
$$

Thus F_{1} is continuous on $Q_{r_{1}}$.
Finally, we show that F_{1} is contraction with respect to the measure of non compactness χ.

Let U be a nonempty subset of $Q_{r_{1}}$. Fix $\epsilon>0$ and take a measurable subset $D \subset I$ such that meas $D \leq \epsilon$. Then for any $u \in U$, we get

$$
\begin{aligned}
\left\|F_{1} u\right\|_{D} & \leq \int_{D}|g(t, \lambda u(t))| d t \\
& \leq\left\|m_{3}\right\|_{D}+b|\lambda|\|u\|_{D}+
\end{aligned}
$$

But

$$
\lim _{\epsilon \rightarrow 0}\left\{\sup \left[\int_{D}\left|m_{3}(t)\right| d t: D \subset[0, T], \text { meas. } D<\epsilon\right]\right\}=0
$$

Thus, we obtain

$$
\beta\left(F_{1} u\right)(t) \leq b \beta \lambda(u(t))
$$

and

$$
\beta\left(F_{1} U\right) \leq b \beta \lambda(U)
$$

since $Q_{r_{1}}$ is compact in measure, thus

$$
\chi\left(F_{1} U\right) \leq b \lambda \chi(U)
$$

since $b<1$, it follows that F_{1} is contraction. Now by Darbo fixed point theorem, then exist at least one fixed point in $Q_{r_{1}}$. Consequently, there exist at least one solution $u \in[0, T]$ of problem (1.2) and solution is positive and nondecreasing on $[0, T]$.

Now, let the operator F_{2} defined by the formula

$$
\left(F_{2} x\right)(t)=f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right), \quad t \in[0, T]
$$

$B_{r_{2}}=\left\{x \in L_{1}[0,1]:\|x\|_{L_{1}} \leq r_{2}\right\}$. Let $x \in L_{1}$, then we have

$$
\begin{aligned}
\left|\left(F_{2} x\right)(t)\right| & \leq\left|f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right)\right| \\
& \leq\left|m_{1}(t)\right|+k_{1} \int_{0}^{t}\left|f_{2}(t, s, x(s), u(s))\right| d s \\
& \leq\left|m_{1}(t)\right|+k_{1} \int_{0}^{t}\left[\left|m_{2}(t, s)\right|+k_{2}(|x(s)|+|u(s)|)\right] d s .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left\|\left(F_{2} x\right)\right\| & \leq \int_{0}^{T}\left|m_{1}(t)\right| d t+k_{1} \int_{0}^{T} \int_{0}^{t}\left[\left|m_{2}(t, s)\right|+k_{2}(|x(s)|+|u(s)|)\right] d s d t \\
& \leq\left\|m_{1}\right\|+k_{1} M+k_{1} k_{2} T\|x\|+k_{1} k_{2} T\|u\|
\end{aligned}
$$

Hence $F_{2} x \in L_{1}$, moreover the operator F_{2} maps $B_{r_{2}}$ into itself, where

$$
r_{2}=\frac{\left\|m_{1}\right\|+k_{1} M+k_{1} k_{2} T r_{1}}{1-k_{1} k_{2} T} .
$$

Now, let $Q_{r_{2}} \subset B_{r_{2}}$ containing of all functions positive and nondecreasing on $[0,1]$, thus $Q_{r_{2}}$ is compact in measure.

Similarly, the operator $F_{2}: Q_{r_{2}} \rightarrow Q_{r_{2}}$ and it is continuous operator on $Q_{r_{2}}$.
Finally, we show that F_{2} is contraction with respect to the measure of non compactness χ.

Let X be a nonempty subset of $Q_{r_{2}}$. Fix $\epsilon>0$ and take a measurable subset $D \subset I$ such that meas. $D \leq \epsilon$. Then for any $x \in X$, we get

$$
\left\|F_{2} x\right\|_{D} \leq \int_{D}\left|m_{1}(t)\right| d t+k_{1} \int_{D} \int_{0}^{t}\left[\left|m_{2}(t, s)\right|+k_{2}(|x(s)|+|u(s)|)\right] d s d t .
$$

But

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0}\left\{\sup \left[\int_{D}\left|m_{1}(t)\right| d t: D \subset[0, T], \text { meas. } D<\epsilon\right]\right\}=0 \\
& \lim _{\epsilon \rightarrow 0}\left\{\sup \left[\int_{D}\left|m_{2}(t, s)\right| d t: D \subset[0, T], \text { meas. } D<\epsilon\right]\right\}=0
\end{aligned}
$$

and

$$
\lim _{\epsilon \rightarrow 0}\left\{\sup \left[\int_{D}|u(t)| d t: D \subset[0, T] \text {, meas. } D<\epsilon\right]\right\}=0 .
$$

Thus, we obtain

$$
\beta\left(F_{2} x\right)(t) \leq k_{1} k_{2} \beta(x(t)),
$$

and

$$
\beta\left(F_{2} X\right) \leq k_{1} k_{2} \beta(X)
$$

since $Q_{r_{2}}$ is compact in measure, thus

$$
\chi\left(F_{2} X\right) \leq k_{1} k_{2} \chi(X)
$$

since $\left(\frac{k_{1}}{B}+k_{2}\right)<1$, it follows that F_{2} is contraction. Now by Darbo fixed point theorem, there exist at least one solution $x \in[0, T]$ of Problem (1.1) under the constrain (1.2) and the solution is positive and nondecreasing on $[0, T]$. This completes the proof.

4. Continuous dependence

4.1. Continuous dependence on the set of solutions of the constraint. Consider firstly the following assumptions
$1^{*}: f_{1}:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is measurable in $t \in[0, T]$ and satisfies the Lipschitz condition

$$
\begin{equation*}
\left|f_{1}(t, x)-f_{1}(t, y)\right| \leq b_{1}|x-y| \tag{4.1}
\end{equation*}
$$

$2^{*}: f_{2}:[0, T] \times[0, T] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is measurable in $t, s \in[0, T]$ and satisfies the Lipschitz condition

$$
\left|f_{2}(t, s, x, u)-f_{2}\left(t, s, x_{1}, u_{1}\right)\right| \leq b_{2}\left(\left|x-x_{1}\right|+\left|u-u_{1}\right|\right)
$$

Theorem 4.1. Let the assumptions $1^{*}-2^{*}$ be satisfied, then the solution of the functional integral equation (1.1) is unique. Moreover, this solution depends continuously on the set of solutions of the (constraint) functional equations (1.2) in the sense that, if

$$
\forall \epsilon>0, \quad \exists \quad \delta(\epsilon) \quad \text { s.t } \quad\left\|u-u^{*}\right\|_{L_{1}}<\delta \Rightarrow\left\|x-x^{*}\right\|_{L_{1}}<\epsilon
$$

where $x^{*}(t)$ is the solution of

$$
\begin{equation*}
x^{*}(t)=f_{1}\left(t, \int_{0}^{t} f_{2}\left(t, s, x^{*}(s), u^{*}(s)\right) d s\right), \quad t \in(0, T] \tag{4.2}
\end{equation*}
$$

and u, u^{*} are any two solutions of the (constraint) functional equations (1.2).
Proof. From assumption 1*, we obtain

$$
\left|f_{1}(t, x)\right|-\left|f_{1}(t, 0)\right| \leq\left|f_{1}(t, x)-f_{1}(t, 0)\right| \leq b_{1}|x|
$$

and

$$
\left|f_{1}(t, x)\right| \leq b_{1}|x|+\left|f_{1}(t, 0)\right|=b_{1}|x|+a_{1}(t), a_{1}(t)=\left|f_{1}(t, 0)\right|
$$

Therefor assumption 1 is satisfied, also by the same way we can show that assumption 2 is satisfied. Then the assumptions of Theorem 2.2 are satisfied and the solutions of the functional integral equation (1.1) exist.

Let x, y be two the solution of (1.1), then

$$
|x(t)-y(t)|=\mid f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right)
$$

$$
\begin{aligned}
& -f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, y(s), u(s)) d s\right) \mid \\
\leq & b_{1} \int_{0}^{t}\left|f_{2}(t, s, x(s), u(s))-f_{2}(t, s, y(s), u(s))\right| d s \\
\leq & b_{1} b_{2} \int_{0}^{t}|x(s)-y(s)| d s
\end{aligned}
$$

Integrating the above inequality from 0 to T and making the change of variable we have

$$
\begin{aligned}
\int_{0}^{T}|x(t)-y(t)| d t & \leq \int_{0}^{T}\left(b_{1} b_{2} \int_{0}^{t}|x(s)-y(s)| d s \mid\right) d t \\
& \leq b_{1} b_{2} T\|x-y\|_{L_{1}}
\end{aligned}
$$

Hence

$$
\left(1-b_{1} b_{2} T\right)\|x-y\|_{L_{1}} \leq 0
$$

Since $b_{1} b_{2} T<1$, then $x(t)=y(t)$ and the solution of the functional integral equation (1.1) is unique.

Now, Let x, x^{*} be two solutions of the functional integral equations (1.1) and (4.2) respectively corresponding to the two solutions u, u^{*} of the (constraint) functional equations (1.2). Then

$$
\begin{aligned}
\left|x(t)-x^{*}(t)\right|= & \mid f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right) \\
& -f_{1}\left(t, \int_{0}^{t} f_{2}\left(t, s, x^{*}(s), u^{*}(s)\right) d s\right) \mid \\
\leq & b_{1} \int_{0}^{t}\left|f_{2}(t, s, x(s), u(s))-f_{2}\left(t, s, x^{*}(s), u^{*}(s)\right)\right| d s \\
\leq & b_{1} b_{2} \int_{0}^{t}\left|x(s)-x^{*}(s)\right| d s+b_{1} b_{2} \int_{0}^{t}\left|u(s)-u^{*}(s)\right| d s
\end{aligned}
$$

Integrating the above inequality from 0 to T and making the change of variable we have

$$
\begin{aligned}
\int_{0}^{T}\left|x(t)-x^{*}(t)\right| d t \leq & \int_{0}^{T}\left[b_{1} b_{2} \int_{0}^{t}\left|x(s)-x^{*}(s)\right| d s\right. \\
& \left.+b_{1} b_{2} \int_{0}^{t}\left|u(s)-u^{*}(s)\right| d s\right] d t \\
\leq & b_{1} b_{2} T\left\|x-x^{*}\right\|_{L_{1}}+b_{1} b_{2} T \delta
\end{aligned}
$$

Hence

$$
\left\|x-x^{*}\right\|_{L_{1}} \leq \frac{b_{1} b_{2} T \delta}{1-b_{1} b_{2} T}
$$

Then the solution of the functional integral equation (1.1) depends continuously on the set of solutions $u \in L_{1}[0, T]$ of the (constraint) functional equation (1.1)..
4.2. Continuous dependence on the parameter λ and the functional g. Consider firstly the following assumptions
$3^{*}: g:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is measurable in $t \in[0, T]$ and satisfies the Lipschitz condition

$$
\begin{equation*}
|g(t, x)-g(t, y)| \leq b_{3}|x-y| . \tag{4.3}
\end{equation*}
$$

Theorem 4.2. Let the assumption 3^{*} be satisfied, then the solution of the functional equation (1.2) is unique. Moreover, this solution depends continuously on the parameters λ, μ and the functional g, if

$$
\forall \epsilon>0, \exists \delta(\epsilon) \text { s.t }\left|\lambda-\lambda^{*}\right|<\delta_{1},\left\|g-g^{*}\right\|_{L_{1}}<\delta_{3} \Rightarrow\left\|u-u^{*}\right\|_{L_{1}}<\epsilon_{1},
$$

where $u^{*}(t)$ is the solution of

$$
\begin{equation*}
u^{*}(t)=g\left(t, \lambda^{*} u^{*}(t)\right), \quad t \in(0, T], \tag{4.4}
\end{equation*}
$$

Proof. From assumption 3^{*}, we obtain

$$
|g(t, x)|-|g(t, 0)| \leq|g(t, x)-g(t, 0)| \leq b_{3}|x|
$$

and

$$
|g(t, x)| \leq b_{3}|x|+|g(t, 0)|=b_{3}|x|+a_{2}(t), a_{2}(t)=|g(t, 0)| .
$$

Therefor assumption 4 is satisfied. Then the assumptions of Theorem 2.2 are satisfied and the solutions of the functional equation (1.2) exist.

Let u, v be two the solution of equation (1.2), then

$$
\begin{aligned}
|u(t)-v(t)| & =|g(t, \lambda u(t))-g(t, \lambda v(t))| \\
& \leq b_{3}|\lambda u(t)-\lambda v(t)|
\end{aligned}
$$

Integrating the above inequality from 0 to T and making the change of variable we have

$$
\begin{aligned}
\int_{0}^{T}|u(t)-v(t)| d t & \leq \int_{0}^{T}\left(b_{3}|\lambda u(t)-\lambda v(t)|\right) d t \\
& \leq b_{3}|\lambda| \int_{0}^{T}|u(t)-v(t)| d t
\end{aligned}
$$

Hence

$$
\|u-v\|_{L_{1}} \leq b_{3}|\lambda|\|u-v\|_{L_{1}} .
$$

Since $b_{3}|\lambda|<1$, then $u(t)=v(t)$ and the solution of the functional equation (1.2) is unique.

Let u, u^{*} be two solutions of the functional equations (1.2) and (4.4) respectively. Then

$$
\begin{aligned}
\left|u(t)-u^{*}(t)\right|= & \left|g(t, \lambda u(t))-g^{*}\left(t, \lambda^{*} u^{*}(t)\right)\right| \\
\leq & \left|g(t, \lambda u(t))-g\left(t, \lambda^{*} u(t)\right)\right| \\
& +\left|g\left(t, \lambda^{*} u(t)\right)-g\left(t, \lambda^{*} u^{*}(t)\right)\right| \\
& +\left|g\left(t, \lambda^{*} u^{*}(t)\right)-g^{*}\left(t, \lambda^{*} u^{*}(t)\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
\leq & b_{3}\left|\lambda u(t)-\lambda^{*} u(t)\right|+b_{3}\left|\lambda^{*} u(t)-\lambda^{*} u^{*}(t)\right| \\
& +\left|g\left(t, \lambda^{*} u^{*}(t)\right)-g^{*}\left(t, \lambda^{*} u^{*}(t)\right)\right| .
\end{aligned}
$$

Integrating the above inequality from 0 to T and making the change of variable we have

$$
\begin{aligned}
\int_{0}^{T}\left|u(t)-u^{*}(t)\right| d t \leq & \int_{0}^{T}\left[b_{3}\left|\lambda u(t)-\lambda^{*} u(t)\right|+b_{3} \mid \lambda^{*} u(t)\right. \\
& \left.-\lambda^{*} u^{*}(t) \mid\right] d t \\
& +\int_{0}^{T}\left|g\left(t, \lambda^{*} u^{*}(t)\right)-g^{*}\left(t, \lambda^{*} u^{*}(t)\right)\right| d t \\
\leq & b_{3} T \delta_{1}+b_{3} \delta_{2}\|u\|_{L_{1}}+b_{3}\left|\lambda^{*}\right|\left\|u-u^{*}\right\|_{L_{1}}+\delta_{3} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|u-u^{*}\right\|_{L_{1}} \leq \frac{b_{3} \delta_{1}\|u\|_{L_{1}}+\delta_{3}}{1-b_{3}\left|\lambda^{*}\right|}=\epsilon_{1} \tag{4.5}
\end{equation*}
$$

Then the solution of the functional integral equation (1.2) depends continuously on the parameter λ and the functional g.

Definition 4.3. The solution $x \in L_{1}[0, T]$ of the functional integral equation (1.1) depends continuously on the parameter λ and the functional g, if

$$
\forall \epsilon>0, \exists \delta(\epsilon) \text { s.t }\left|\lambda-\lambda^{*}\right|<\delta_{1},\left\|g-g^{*}\right\|_{L_{1}}<\delta_{3} \Rightarrow\left\|x-x^{*}\right\|_{L_{1}}<\epsilon_{2}
$$

where $x^{*}(t)$ is the solution of equation (4.2).
Theorem 4.4. Let the assumptions of Theorem 4.1 and 4.2 be satisfied, then the solution of the functional integral equation (1.1) depends continuously on the parameters λ, μ and the functional g.

Proof. Let x, x^{*} be the two solutions of the functional integral equations (1.1) and (4.2) respectively. Then

$$
\begin{aligned}
\left|x(t)-x^{*}(t)\right|= & \mid f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right) \\
& -f_{1}\left(t, \int_{0}^{t} f_{2}\left(t, s, x^{*}(s), u^{*}(s)\right) d s\right) \mid \\
\leq & b_{1} \int_{0}^{t}\left|f_{2}(t, s, x(s), u(s))-f_{2}\left(t, s, x^{*}(s), u^{*}(s)\right)\right| d s \\
\leq & b_{1} b_{2} \int_{0}^{t}\left|x(s)-x^{*}(s)\right| d s+b_{1} b_{2} \int_{0}^{t}\left|u(s)-u^{*}(s)\right| d s
\end{aligned}
$$

Integrating the above inequality from 0 to T and making the change of variable we have

$$
\int_{0}^{T}\left|x(t)-x^{*}(t)\right| d t \leq \int_{0}^{T}\left[b_{1} b_{2} \int_{0}^{t}\left|x(s)-x^{*}(s)\right| d s\right.
$$

$$
\begin{align*}
& \left.+b_{1} b_{2} \int_{0}^{t}\left|u(s)-u^{*}(s)\right| d s\right] d t \\
\leq & b_{1} b_{2} T\left\|x-x^{*}\right\|_{L_{1}}+b_{1} b_{2} T\left\|u-u^{*}\right\|_{L_{1}} \tag{4.6}
\end{align*}
$$

from (4.5) and (4.6), we obtain

$$
\left\|x-x^{*}\right\|_{L_{1}} \leq \frac{b_{1} b_{2} T\left(b_{3} \delta_{1}\|u\|_{L_{1}}+T \delta_{3}\right)}{\left(1-b_{1} b_{2} T\right)\left(1-b_{3}\left|\lambda^{*}\right|\right)}=\epsilon_{2}
$$

Then the solution of the functional integral equation (1.1) depends continuously on the parameters λ, μ and the functional g.

5. Examples:

Example 5.1. Consider the nonlinear integro-differential equation

$$
\begin{align*}
x(t)= & t^{4} e^{-t}+\int_{0}^{t} \frac{1}{2}\left(\sin (3 s+3 t)+\frac{\ln (1+|x(s)|)}{4+s^{3}}\right. \\
& \left.+\frac{s^{4} \cos u(s)}{e^{|u(s)|}}\right) d t, \quad t \in[0, T] \tag{5.1}
\end{align*}
$$

where

$$
\begin{equation*}
u(t)=t^{5}+t^{2}+1+\frac{|\lambda u(t)|}{\sqrt{|\lambda u(t)|+t+9}} \quad t \in[0, T] \tag{5.2}
\end{equation*}
$$

Set

$$
\begin{aligned}
f_{1}\left(t, \int_{0}^{t} f_{2}(t, s, x(s), u(s)) d s\right)= & t^{4} e^{-t}+\int_{0}^{t} \frac{1}{2}\left(\sin (3 s+3 t)+\frac{\ln (1+x(s))}{4+s^{3}}\right. \\
& \left.+\frac{s^{4} \cos u(s)}{e^{|u(s)|}}\right) d s
\end{aligned}
$$

and

$$
g(t, \lambda u(t))=t^{5}+t^{2}+1+\frac{|\lambda u(t)|}{\sqrt{|\lambda u(t)|+t+9}}
$$

Then

$$
\begin{aligned}
\left.f_{2}(t, s, x(s), u(s))\right) \mid \leq & \frac{1}{2}(\sin (3 s+3 t))+\frac{1}{8}|x(s)| \\
& +\frac{1}{8} \frac{s^{4} \cos u(s)}{e^{|u(s)|}}
\end{aligned}
$$

and

$$
|g(t, \lambda u(t))|=\left|t^{5}+t^{2}+1\right|+\frac{1}{3}(|\lambda u(t)|)
$$

The assumptions $1-5$ of Theorem 2.2 are satisfied with $a_{1}(t)=t^{4} e^{-t} \in L_{1}[0,1]$, $k(t, s)=\frac{1}{2} \sin (3 s+3 t) \in L^{1}[0,1], a_{2}(t)=t^{5}+t^{2}+1 \in L_{1}[0,1], b_{1}=\frac{1}{2}, b_{2}=$ $\frac{1}{8}, b_{3}=\frac{1}{3}, b_{3}|\lambda|=\frac{1}{3}|\lambda|<1, b_{1} b_{2} T=\frac{1}{16}<1$ Therefore, by applying to Theorem 2.2, the given the control problem of the functional integral equation (5.1)-(5.2) has a solution $x \in L_{1}[0, T]$.

References

[1] J. Bana's, On the superposition operator and integrable solutions of some functional equation, Nonlinear Analysis: Theory, Methods \& Applications 12 (1988), 777-784.
[2] J. Bana's, Integrable solutions of hammerstein and urysohn integral equations, Journal of the Australian Mathematical Society, 46 (1989), , 61-68.
[3] J. Bana's and A. Chlebowicz, On integrable solutions of a nonlinear volterra integral equation under Carathéodory conditions, Bulletin of the London Mathematical Society 41 (2009), 10731084.
[4] J. Bana's and J. Rivero, On measures of weak noncompactness, Annali di Matematica Pura ed Applicata, 151 (1988), 213-224.
[5] J. Bana's and B. Rzepka, An application of a measure of noncompactness in the study of asymptotic stability, Applied Mathematics Letters 16 (2003), 1-6.
[6] H. El-Owaidy and A. M. A. El-Sayed and R. G. Ahmed, On an Integro-Differential equation of arbitary(fractional) orders with nonlocal integral and Infinite Point boundary Conditions, Fract. Differ. Calculus, 9 (2019) 227-242.
[7] A. M. A. El-Sayed and R. G. Ahmed, Existence of Solutions for a Functional IntegroDifferential Equation with Infinite Point and Integral Conditions, Int. J. Appl. Comput. Math. 5 (2019): Paper No. 108, 15 pp.
[8] A. M. A. El-Sayed and R. G. Aahmed, Solvability of the functional integro-differential equation with self-reference and state-dependence, J. Nonlinear Sci. Appl., 13 (2020), 1-8.
[9] A. M. A. El-Sayed and R. G. Ahmed, Solvability of a coupled system of functional integrodifferential equations with infinite point and Riemann-Stieltjes integral conditions, Appl. Math. Comput, $\mathbf{3 7 0}$ (2020): 124918, 18 pp.
[10] A. El-Sayed and R. Gamal, Infinite point and Riemann-Stieltjes integral conditions for an integro-differential equation, Nonlinear Anal. Model. Control, 24 (2019) 733-754.
[11] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambirdge Universty Press, 1990.
[12] T. L. Guo Controllability and observability of impulsive fractional linear time-invariant system, Computers \& Mathematics with Applications 64 (2012), 3171-3182.
[13] A. N. Kolomogorov and S. V. Fomin, Inroductory real analysis, Dover Puble. Inc, 1975.
[14] D. Xu, Y. Li and W. Zhou Controllability and observability of fractional linear systems with two different orders, The Scientific World Journal, 2014 (2014).
[15] X. Zhang and L. Liu and Y. Wu and Y. Zou, Fixed-Point Theorems for Systems of Operator Equations and Their Applications to the Fractional Differential Equations, J. Funct. Spaces. (2018): Art. ID 7469868, 9 pp.
[16] Q. Zhong and X. Zhang, Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian, Adv. Difference Equ. (2016): Paper No. 11, 11 pp.

A. M. A. El-Sayed

Faculty of Science, Alexandria University, Egypt
E-mail address: amasayed@alexu.edu.eg
E. M. Hamdallah

Faculty of Science, Alexandria University, Egypt E-mail address: emanhamdalla@hotmail.com
R. G. Ahmed

Faculty of Science, Al-Azhar University, Cairo, Egypt
E-mail address: redagamal@azhar.edu.eg

[^0]: 2020 Mathematics Subject Classification. 34H05, 49J15, 34A12, 34k20, 34k25.
 Key words and phrases. Nonlinear constraint; nonlinear functional integral equations, solutions in $L_{1}[0, T]$, continuous dependence.

