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NOVEL SOLITARY WAVE AND LUMP WAVE SOLUTION IN
FLUID DYNAMICS

MD. MOHIUDDIN ZILLU AND MD. HABIBUL BASHAR

ABSTRACT. In this script, the central inspiration is the appliance of the uni-
fied scheme to build the soliton solution, which encompasses some controlling
constraints of the standard Drinfel’d-Sokolov—Wilson (DSW) equivalence. Also
unified scheme used for finding the exact solution of the standard Drinfel’d-
Sokolov—Wilson (DSW) equivalence. Here the graphical solution of the equiv-
alence represents various physical phenomena like as Lump wave, Dark Kink,
Bright Kink, Singular Kink, Kink with interaction and Periodic soliton behavior.
This scheme is able and highly operative mathematical tools for taking out the
solution of NLPDEs in physical mathematics and all other fields of engineering.

1. INTRODUCTION

In the study of accurate results of NLPDEs shows a vital role in the inquisition
of nonlinear physical spectacles like as fluid dynamics, visual strands, electrical con-
duction shapes, plasma physical science, artificial intelligence, engineering, physics,
earth sciences, and bioinformatics and so on. In short, it is a fundamental in-
gredient of all modern sciences. In future, it may be focused on fluid mechanics,
optimal control and biochemical problems. At present, various effective methods
for gaining exact solution of NLPDEs had been introduced, like as solitary waves
of the DSW equation were examined the algebraic approach [2,8], the Darboux
conversion of the DSW equation was assembled with a Lax hand [6], some man-
agement laws of the DSW scheme were gained via the multiplier technique [16]
and Noether’s technique [27], the double reductions of the scheme were calculated
with the formulation of the relationship between balances and preservations formu-
las [15], the nonlocal balance and its bargains for the DSW equation were calcu-
lated by the Painlev %% e approaches [18],the Homogeneous balance scheme [20, 24]
and the scheme of B JR cklund transformation [13], Hyperbolic tangent function
expansion scheme [1,22],scheme of Bifurcation [19,21, 23], Jacobi elliptic function
scheme [4,5,12] ,The Hirotas bilinear scheme [7] Et Cetra.

In this script, we consider the standard DSW equivalence, [14]

gt + prvy = 07

1.1
(1.1) VUt + QUazz + 700, + slpv = 0,

In the above equation p,q,r, s are some nonzero constraints. At present, The
Drinfel’d-Sokolov-Wilson (DSW) equivalence and the joined Drinfel’d-Sokolov—Wilson
(DSW) equivalence, a special case of DSW equation had been investigated through
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many writers [3,9-11,17,25,26]. In this investigation, we use complicated deviation
of £ defined by ¢ = kx — wt, Now transfer the equation (1.1) in ODE which write

(1.2) —wl' + pukv' = 0,

(1.3) —wv' 4 gk*v" + rkv’ + skot’ =0,
In the above equations the das represents the differentiation by the help of £ Inte-
grating (1.2) we get,

pkv?
- 2w
Putting the value of ¢ and ¢’ in equation (1.3) we obtain,

14

+ h,

(1.4) 2wqk3v™ + (2wrhk — 2w)v + (rpk? + 2psk?)v*v’ = 0,

We divide this article into five sections. The overview section is our first section. We
have talked about the depiction of the strategy in the 2nd section. The 3rd section
we have applied the technique in Drinfel’d-Sokolov—Wilson (DSW) equivalence or
appliance. The 4th section has delivered the graphical representation and discussion
section. Finally, we have given our conclusion in the 5th section.

2. ENLARGEMENT OF THE UNIFIED METHOD

In this portion, we will narrate the unified method for determining different types
of roaming wave results of nonlinear evolution equations. Suppose the NLPDEs in
two free variables x and t, is given by

(2.1) R(w, Uy, Ut Ugg, Utt, Ugt, - . ) = 0,

With wave conversion:

(2.2) u(z,t) = u(§), & = kax — wt,

Transformed Equivalence (2.1) to ordinary differential equation (ODE):

(2.3) S(u,u ;o W) =0,

Let the trail solution of ODE Equivalence (2.3) is the following system:
n

(24) U() = My+ > [MiF(€)' + NiF(¢)™],
i=1

Where M;(i = 0,1,2,3,...,n) and N;(i = 0,1,2,3,...,n) are coefficients to be
investigated afterward such that M,, and N,, cannot be zero at a time. Suppose an
ODE namely Riccati differential equivalence:

(2.5) F' = (F(&)* +,

It is satisfied by u(&). The result of the seeing Riccati differential equivalence is
given below:
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Case-1: Hyperbolic function solutions (When 7 < 0):

(/—(H? + B?)7 — Hy/=7 cosh (2y/=7 (£ + C))
Hsinh (2y/-7(£+C)) + B ’
—v/—(H? + B%)1 — Hy/=7cosh (2y/=7 (£ + C))
Hsinh (2¢/=7 (£ +C)) + B ’
- oH~T
Ve H + cosh (2¢/=7 (£ + C)) — sinh (2y/=7 (£ + C))’
2H /=7
—VoT H + cosh (2y/=7 (£ + C)) +sinh (2y/=7 (£ 4 C))’

Where H and B are two real random coefficients, and C arbitrary coefficients.
Case-2: Trigonometric function results (When 7 > 0):

(VT =B%7 — HFeos (27 (€ + C))
Hsin(2y/7(£+C))+ B ’

—/(H? = B?)7 — Hy/Toos (27 (£ + O))
Hsin(2/7(£+C))+ B ’

, —2iH+\/T

W H +cos(2/7(£+C)) —isin (2y/7 (£+C))’

. 2iH\/T

—iVTH H +cos(2y/7(£+C)) +isin(2y/7 (£ +C))’

Where H and B are two real random coefficients, and C arbitrary coefficients.

Case-3: Rational function results. (When 7 = 0)

b
£E+C’

Where H # 0,B and C are real random coefficients. We determine the positive
integer n in Equivalence (2.3) by taking into account the homogeneous balance
between the highest number of derivatives and the nonlinear terms in Equivalence
(2.3). Moreover, the degree of U as D(U(§)) = n which gives the order of others
expression as follows:

(2.9) D <C§;;> =n+gq,D (Up (fg)s) =pn+s(n+q)

Inserting Equivalence (2.4) into Equivalence (2.3) and making use of Equivalence
(2.5) and then extracting all terms of like powers of F(§) together, then set each
coefficient of them to zero yield an over-determined system of algebraic equa-
tions and then solving this system of algebraic equations M; (i = 0,1,2,3,...,n),
N; = (i =0,1,2,3,...,n) k and w. We obtain several sets of solutions. Finally,
substituting M; (¢ = 0,1,2,...,n),N; (i = 0,1,2,...,n), k and w into Eq. (2.4)
and using the trail results of Equivalence (2.5), clear results of Equivalence (2.2)
can be obtained immediately depending on the value b.

(2.8) F() =
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3. APPLIANCE OF THE UNIFIED SCHEME

In the present paragraph we apply the unified scheme for equivalence (1.4) and
since here the irregular term is v? and the maximum number of derivative is v"’
.So the balance number is n = 1. So the result of equivalence (1.4) proceeds the
following system

1
(3.1) v(€) Mo—i-Ml.F(f)—i-Nl.F(é_) ,
Differentiating (3.1) with respect to ¢ and placing the values of v,v" and v” in
equation (1.4) and comparing the coefficient of F(¢)? equivalent to zero (where
i=0,£1,+£2...). Explaining those systems of equivalences, we obtain the results
set for the equation (1.4) is:

Set 1:
24 2 2
— w:( Tk=q +3hq7“)k’ My =0,
3q
247k2¢% + 3h 247k%q% + 3h
M,y — 49| HATRG F3har, o [ 24TR74" + Shar,
pr + 2ps pr 4+ 2ps
Set 2:
—127k?¢?
k= k. w:( Tk“q —|—3hqr)k’ My =0,
3q
—127k%¢%2 + 3h —127k%¢% + 3h
My — 49, |- Z1FRG £ 3har, o [ Z12TRTE + Sk
pr + 2ps pr + 2ps
Set 3:
1 2 2.2
— wzfp(r—l— s)(67k*q —|—3hqr)l<:7 My =0,
3 (pr + 2ps)q
2,2
M1:i2\/_67kq+3hq7’k’ N; =0,
pr + 2ps
Set 4:
k%q® 4+ 3hqr)k
PR G q3+3 E My =0,
q

67k2q% + 3hqr

kT,
pr + 2ps

My =0, N :ﬂ\/

Case I: Hyperbolic function solutions (When 7 < 0):

Family 1:
2\/@"?( —(H? + B%)7 — H\/=7 cosh(2y/=7(£ + C)))
vig(w,t) = £

Hsinh(2\/—7(£+ C)) + B

k22 r .
2\/%]@7([{ sinh(2y/—7(£ 4+ C)) + B)

© /(B + BY)r — Hy = cosh(2y/=7(€ + C)) |
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iQ’ [~ HECEShar (/= (H? + B2)r — Hy/=7 cosh(2y/=7 (£ + C)))

Hsinh(2/~7(£+C))+ B

2/~ BT ko (1 sinh(2y/~7(€ + O)) + B)

- _\/W—H\/jcosh(%/:(ﬁ-l-c)),

V3,4 ('Ia t) =

247k2q? + 3h
vsg(z,t) = £2y |~ 1 - Shar
’ pr + 2ps

20/~
T com@V (& + C)) —smh@v—( + C))

247k%g%+3hgr
W=

— 2H/—7 ’
VT ™ Hicosh(2v/—7(€+C))—sinh(2y/—7 (61 C))

2471k2g% + 3h
vr8(T,t) = £24 [ — i e

= 2H\/~T
H + cosh(2y/=7(§ 4 O)) + sinh(2y/—7(£ + C))
247k2q%+3hgr

= 2H\/—7 ’
VT + H+cosh(2y/—7(+C))+sinh(2/—7(£+C))

k(—

)

iNWkwm — Hy/=7 cosh(2y/=7(£ + C)))

vg,10(2,t) = Hsinh(2y/-7(£+C))+ B
2\/%/%7(}[ sinh(2y/~7 (¢ + O)) + B)
TR+ B — Hy/ 7 cosh(2y/7(6+ C))
» 2\#%’“(—% — H\/=7 cosh(2y/=7(¢ + C)))
vi112(2,t) = £

Hsinh(2y/—7(£ +C)) + B

2/~ T2 (] sinh(2y/=7 (£ + C)) + B)

T+ B — Hy—rcosh(2y 7 (€ + C))
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—127k%¢? + 3hqr
t) = £24/—
U13,14(9U, ) \/ pr+ 2ps

2H/—1
(V=7 - H + cosh(2y/—7(£ + C)) — sinh(2y/—7(£ + C)))
N
pr+2ps

2H\/—7 ’
V=T - H+cosh(2/—7(£+C))—sinh(2/—7(£4C))

—127k%q? + 3hqr
’U15716(I, t) = :|:2\/
pr + 2ps

2H /-7
M=Vt H + cosh(2y/—7(£ + C)) + sinh(2y/—7(£ + O))
2\/M;W
pr+2ps

2H/—7 ’
B \/_77- + H+cosh(2y/—7(£+C))+sinh(2/—7(£+C))

iz, [ St j(/=(H? + B)7 — Hy/=7 cosh(2y/=7(£ + C)))

_|_

)

+

prelnt) = Hsinh(2y/~7({+C)) + B ;
DI Ol s Ly WG 2 P - VA VR & S (/=T (€ + C
v19.20(x, 1) = £ m ( \/ﬁ /=7 cosh(2v/—7(¢ M)

Hsinh(2\/-7(£+C))+ B ’

67k2q% + 3hgr
U21722(ZL‘, t) = :|:2\/—q
pr + 2ps

2H\/—7
k(V=T — H + cosh(2y/=7(§ + C)) — sinh(2y/=7({ + 0)) ’

67k2q2% + 3hqr
t) =24/ ——mF————
023,24(1‘, ) \/ pr+ 2ps

2H\/—1
Y T o3V (€ + 0)) - smh (V€ + 0))

2/~ LI (I sinh(2y/~7 (£ + C)) + B)
+ —

V/—(H? + B?)7 — Hy/—7 cosh(2y/—7(£ + C))

k22 ” .
2\/%%'([{ sinh(2y/—7(£ + C)) + B)

) = B - reosh(2y A6+ O))

67k2q2+3h
— 27 )
"7 T Hicosh(2y 7 (€+C))—smh(2v/7(€+0))

v95,26(T,t) =

vag 30(x,t) = &
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67k2q2+3h
- 2H\/—7 ’
VT + H+cosh(2y/—7(£€+C))+sinh(2/—7(£+C))

Case II: Trigonometric function solutions (When 7 > 0):

v31,32(x,t) = =

Family 2:
2\/%,&\/@_ H\/7cos(2y/7(£ + C)))
v3334(z,t) = & Hsin(24/7(£4+C))+ B
2/~ ML o (H sin(2/7(€ + ©)) + B)
- V(H? = B2)7 — Hy\/Tcos(2\/T(E +C))
- jE2\/Wk(_\/m—Hﬁcos@ﬁ(ﬁ(?)))
V35,36\Ls 1) =

Hsin(2/7(¢+C))+ B

k22 ’ .
2\/%1{37(}] sin(2y/7(§+ C)) + B)

—/(H? = B%)1 — Hy/Tcos(2y/T(£ + C))

241k2q> h
v37,38(7,1) = i2\/_ - q+—2F3 -
pr - 2ps

2IH /7
VT o2y €+ O) — Tsm(@yA (e + 0))

247k2q%+3hgr
2\ = T

- 21H\/T ’
I\/F © H+cos(24/7(E+C))—I sin(2/7(€+C))

247k?q* + 3hqr
v39.40(2,t) = i2\/— ! !

)

pr + 2ps
2IH.\/7
k(—IVT+ H + cos(2y/7(£+ C)) + Isin(2\/7(€ + C))

247k%g%+3hgr

2IH\/T ’
~INT + Frem@ A @ 0) Hem@vr € )

)

I B HFeos2yRE + O))
Hsin(2y/7(+C))+ B

—127k2¢g2 r :
2%[57@]51“2\5(5 +0C)) + B)

V(H? = B2)1 — Hy\/Tcos(2\/T(E+C))

va1,42(2, 1) =

_l’_
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jVW’“‘M_ HA/T cos(2y/T(€ + C)))
Hsin(2/7(§+C)) + B
2%1{7(H31n(2ﬁ(5 +C))+ B)
—/(H? = B2)7 — H\/Tcos(2\/T(£+ C))

—127k%¢2 + 3hqr
) = £24 ) —
1145,46(35 ) \/ pr + 2ps

vazaa(z,t) =

+

2T H /7
k(I —
VT = sV € 1 O)) — TsinyrE + 0)))
—127k2q2+3hgr
9 \/% o
21H\/T ’
INT = G G0 TmB /G0

—127k%q% + 3hgr
Vg7 a8(,t) = i2\/_ ! :
pr + 2ps

2IH\/7
k(—IVT+ H+COS(2W(§+C))+Isin(2\ﬁ(§+c)))
N 2%%[{7

2IH\/7 ’
71\/7i + H+cos(2+/7(E+C))+1 sin(2/7(€+C))

9 67k 2+3hq7"

vigs0(z,t) = % o7 F2ps \/W_HWCOS 2\““0)))
19,50(%, 1) =

Hsin(2y/7(£+C)) +
P B e
t) ==+
Us1,52(, 1) Hsin(2y/7(£+C)) +
B 67k2q% + 3hqr
53,542, 1) = i2\/_107«4-2105
i 2HI\/7

H + cos(2y/7(£ + C)) — I'sin(2/7(£ + C)))’

67k2q? + 3hqr
vs5,56 (2, 1) = j:2\/qq
pr + 2ps

2HI\/T
T @/ 1 O)) + Tom(a /& 1 )

) i2\/Wk7-(}]sm(2\ﬁ(€ +C)) + B)
57,58( 25 V(H? = B2 — H\/Tcos(2\/T(E +C))
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i2¢f&§i§ﬁwwgwm@¢ﬂg+0»+3)
— (2= B?)7 — Hy/Tcos(2y7(€+ C))

67k2q2+3hgr
24/— pr+2ps k

vs9,60(%, 1) =

ve1,62(z,t) = = NG ,

I\ﬁ T H+cos(2/7(E+C))—TI sin(2y/7(€+C))

67k2q2+3hqr
24/~ pr+2ps k

v63,64(,t) = = NG ;
~INT + @A o) Ham@vr € o)
Case III: Rational function solutions. (When 7 = 0):

Family 3:

247k%g%+3hgr
24/~ pr+2ps k

§+C ’

—127k2¢%2+3hqr
2\/_ pr+2ps k
{+C ’
2./ 67k2q2+3hqr k
pr+2ps

§+C ’

ve5,66(2, 1) = F

ver,68(T,t) = F

ve9,70(x,t) = F

4. OUTCOMES AND CONSIDERATION

In the present part, we will deliberate the physical clarification and graphical
demonstration of the gained particular and solitary wave result of Drinfel’d-Sokolov—
Wilson (DSW) equivalence.

4.1. Physical Clarification. In the present unit, using the unified scheme the
DSW equivalence affords particular roaming wave results. The results

Ul,2(£7 t): 1)3,4("1;7 t)v ’U576(.’E, t)? U7,8(x7 t)7

vg,10(, 1), v11,12(2, ), v13,14(2, 1), V15,16 (7, 1)

v17,18(2, 1), v19,20(, 1), v21,22(7, 1), V23 24(T, 1),

v25,26(, ), var 28(2, 1), V29 30(, 1), v31,32(7, 1)

all are trigonometric hyperbolic function results.
v33,34(7, 1), V35,36 (7, ), v37,38(T, 1), V39 40(,

) (
v41,42(2, 1), v43,44(2, 1), V45 46 (2, 1), Va7 48 (2,
) (

I

t)
t)
V49,50(, ), V51,52(2, 1), V53 54(7, 1), V55 56 (T, 1),

57,58 (7, 1), v59,60(7, 1), v61,62(, 1), V63 64(T, 1)
all are trigonometric function results. And rational function result is vesg6(, 1),
ver,68(, 1), ve970(x,t). The explanation of v17(z,t) is a composite system and the
structure appearances in imaginary system which characterizes in Fig. 1. Which
looks like the Dark Kink kind of particular roaming wave result with

b=-2,p=1,k=1,g=1,h=5r=1,s=1,A=1,B=1,C=1
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within the movements —10 < z,¢ < 10. And the result of vi9(z,t) is a composite
system and the structure shows in imaginary form which symbolizes in Fig. 2. It
appearances the Singular-Kink form particular roaming wave result with

b=-2,p=1,k=1,¢9g=1,h=5r=1,s=1,A=1,B=1,C=1

within the movements —10 < z,¢ < 10. Then the result of ve7(z,t) is a multipart
form and the structure shows in imaginary form which characterizes in Fig. 3.
which looks like the Bright Kink style particular roaming wave explanation with

b=-2p=1Lk=19g=1,h=5r=1,s=1,A=1,B=1,C=1

within the shifts —10 < z,¢ < 10. So the clarification of vag(x,t) is a multipart
system and the structure shows in imaginary form which symbolizes in Fig. 4. It
forms the Kink with interaction form particular roaming wave result with

b=-2,p=1,k=1,g=1,h=5r=1,s=1,A=1,B=1,C=1

within the movements —10 < z,¢t < 10. And the result vs¢(x,t) is a composite
form and the structure displays in imaginary form which signifies in Fig. 5. It
appearances the Periodic-style form exact roaming wave result with

b=2,p=1,k=1,g=1,h=5,r=1,s=1,A=1,B=1,C =1

within the shifts —10 < z,¢ < 10. And the result of vg7(z,t) is a multipart system
and the structure confirmations in real form which indicates in Fig. 6. It forms the
Lump wave-kind exact roaming wave result with b =0,p = 2v/-3,k=1,q=1,h =
05, r=+v-9,s =1,A=1,B =1,C = 1 within the movements —10 < z,t < 10.
Finally the solution of vgg(x,t) is a composite system and the structure shows in
imaginary form which symbolizes in Fig. 7. It presences the Lump wave form exact
roaming wave result with

b=0,p=vV-3k=1,9q=1,h=05,r=v-9,s=1,A=1,B=1,C=1
within the shifts —10 < z,t < 10.

4.2. Graphical Explanation. In this segment, we will discuss the achieved solu-
tions by graphically with 3D, 2D and density plots. For the diverse condition on the
parameters, the solutions are expressed as complex and real valued function form.
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Im v, (x, 1)

[2D)]

[Density]

FIGURE 1. Structure of vi7(z,t)for imaginary form.The figure 3D
form, 2D form and Density plot are depicted for t=1.
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Im v, (x 1)

[2D] i

[Density]

FIGURE 2. Structure of vig(z,t)for imaginary form.The figure 3D
form, 2D form and Density plot are depicted for t=1.
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Im v, (x, 1) e

[Density]

FIGURE 3. Structure of ver(x,t) for imaginary form.The figure 3D
form, 2D form and Density plot are depicted for t=1.
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10H

5

3D
101
e
Im v, (. 1) 61
44
p
10 5 0 5 10
=
-4 4 !‘
-6
-84
[2D]
3
[Density] _ _ .

FIGURE 4. Structure of vyg(z,t) for imaginary form.The figure 3D
form, 2D form and Density plot are depicted for t=1.
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[2D]

- 40000 -

- 60000

= 80000 -

-1 00000

-120000

-140000

__1*
i

[Density]

FIGURE 5. Structure of vsg(x,t) for imaginary form.The figure 3D
form, 2D form and Density plot are depicted for t=1.
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Real v-(x, 1)

0.1

Real v, (x.1) /—\

[Density]

FIGURE 6. Structure of vgr(x,t) for real form.The figure 3D form,
2D form and Density plot are depicted for t=1.
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Im v, 1)

[Density]

FIGURE 7. Structure of vgg(x,t)for imaginary form.The figure 3D
form, 2D form and Density plot are depicted for t=1.
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5. CONCLUSION

In this article, we applied the unified method successfully and this method gives
some novel particular roaming wave results of various mathematical and physical
graphs for specific unrestricted constraints. For some special constraints we have
some special types of displays from this equation. Finally, we think that this scheme
is a controlling and straightforward mathematical tool for gaining exact roaming
wave results and the present scheme can be applied to more kinds of nonlinear
problems or equations.
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21]
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