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and so on, see [4, 5, 17]. Such circumstances generate a differential equation, which
is known as impulsive differential equation. More precisely, there are three parts of
differential equations with impulse impact: an instantaneous impulsive differential
equation, in which the impulse action is defined at certain discrete points; non–
instantaneous impulsive differential equation, it establishes the effect of impulse on
an interval; and the third one is an impulse rule, in which we define a distinct and
well defined collection of impulse events having an active impulse equation.

Fractional differential and integral equations play a key role not only in mathe-
matics but also in the modeling of various physical phenomena in physics, control
systems and dynamical systems. In fact, fractional order derivatives and integrals
are assumed to be more realistic and practical than derivatives and integrals of inte-
gral order. These are excellent tools to model genetic transformation and memory
retention qualities of several systems and products.

It is to be noted that, the pioneers of the Ulam’s type stability for impulsive
ordinary differentiable equations are Wang et al. [36]. Following their own work, in
2014, they proved the Hyers–Ulam–Rassias stability and generalized Hyers–Ulam–
Rassias stability of impulsive evolution equations on a compact interval [37] which
then they extended for infinite impulses in the same paper. Wang and Zhang [39],
initially studied nonlinear differential equations having fractional integrable im-
pulses, which are more interesting. They presented four Bielecki–Ulam’s type sta-
bilities for this class of differential equations. Also Lin et al. [15] discussed the ex-
istence and stability results for impulsive integro-differential equations. The work
of Wang et al. [39] was extended by Zada et al. [43] in which they discussed Hyers–
Ulam stability of higher-order nonlinear differential equations with fractional inte-
grable impulses. They established Bielecki–Ulam–Hyers–Rassias stability, general-
ized Bielecki–Ulam–Hyers–Rassias stability and Bielecki–Ulam–Hyers stability for
this class of differential equations on a compact interval. Recently, Zada et al. [48]
obtained very interesting results about the Hyers–Ulam stability of nonlinear im-
pulsive Volterra integro–delay dynamic system on time scales.

However, despite the situations where only impulsive factor is involved or delay
effects happened, we have a wide variety of evolutionary processes with both delay
and impulsive effects. To model such phenomena which are subject to impulsive
perturbations as the time delays, an impulsive delay differential equation is used.

The theory of dynamic equations on time scales has been rising fast and has
acknowledged a lot of interest in recent years. This theory was introduced by Hilger
[10] in 1988, with the inspiration to provide a unification of continuous and discrete
calculus. For more details on time scales, see [1–3,6–9,16,20,28,30–33,41,44,47].

As far as we know, not too many results of stability of delay dynamic equations
with impulses are analyzed by researchers. Although, to the extent of our knowl-
edge, the stability observations of Ulam’s type of non–linear Volterra Fredholm
integro–delay dynamic system having integral impulsions of fractional order are not
yet investigated.

Motivated by the work done in [30, 48], the utmost purpose of this manuscript
is to find different Hyers–Ulam and Hyers–Ulam–Rassias outcomes of stability for
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the following non–linear Volterra Fredholm integro–delay dynamic system with in-
tegrable impulses having fractional order

(1.1)



ω∆(t) = M(t)ω(t) +

∫ t

t0

K(t, s, ω(s), ω(h(s)))∆s

+

∫ b

a
K(t, s, ω(s), ω(h(s)))∆s,

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

ω(t) = Iαti,tgi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

ω(t) = α(t), t ∈ [s0 − λ, s0] ∩ TS ,

ω(t0) = α(t0) = ω0,

where λ > 0, TS is a time scale, M(t) is a piecewise continuous regressive square
matrix, 0 = t0 = s0 < t1 ≤ s1 ≤ t2 < . . . tm ≤ sm ≤ tm+1 = tf are pre–fixed
numbers, K(t, s, ω(s), ω(h(s))) is piecewise continuous operator on Γ = {(t, s, ω) :
t0 ≤ s ≤ t ≤ tf , ω ∈ Rm}, gi : (ti, si] ∩ TS × Rn × Rn → Rn, i = 1, 2, . . . ,m are
continuous functions, ϕ : [s0 − λ, s0] ∩ TS → Rn is history function and Iαti,tgi are
the so called Riemann–Liouville integrals having fractional order α ∈ (0, 1), with
the representation:

Iαti,tgi(t, ω(t), ω(h(t))) =
1

Γ(α)

∫ t

ti

(t− s)α−1gi(s, ω(s), ω(h(s)))∆s.

Moreover, (si, ti+1] ∩ TS , (ti, si] ∩ TS , [s0 − λ, s0] ∩ TS are non-empty sets and
h : [s0 − λ, tf ] ∩ TS → (si, ti+1] ∩ TS is a delay function with the consumption of
continuity, additionally h(t) ≤ t.

2. Preliminaries

In this section, we recall the main definitions and some basic notations of time
scales calculus.

An arbitrary non–empty closed subset of real numbers TS is called a time scale.
The forward jump operator Θ : TS → TS , backward jump operator ρ : TS → TS

and graininess operator µ : TS → [0,∞), are defined by:

Θ(s) = inf{t ∈ TS : t > s}, ρ(s) = sup{t ∈ TS : t < s}, µ(s) = Θ(s)− s,

respectively. An arbitrary t ∈ TS is called left scattered (resp. left dense) when
t < ρ(t) (resp. t = ρ(t)). While, in case of t < Θ(t) (resp. Θ(t) = t), we call t right
scattered (resp. right dense). For a time scale TS , the set of all limiting points TS

z

is called the derived set and illustrated as follows:

TS
z =

{
TS\(ρ(supTS), supTS ], if supTS < ∞,

TS , if supTS = ∞.

The function W : TS → R is called right–dense continuous if it is continuous at
every right dense point on TS and its left sided limit exists at every left dense point
on TS . The function W : TS → R is called regressive (resp. positively regressive) if
1 + µ(t)W(t) ̸= 0, ( resp. 1 + µ(t)W(t) > 0) ∀ t ∈ TS

z. The set of all right–dense
continuous regressive functions (resp. right–dense continuous positively regressive
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functions) will be denoted by RG(TS) (resp. RG(TS)
+). The delta derivative of the

function W : TS → R on t ∈ T z
S , is given by

W∆(t) = lim
s→t, s ̸=Θ(t)

W (Θ(t))−W (s)

Θ(t)− s
.

For a rd–continuous function W : TS → R, the ∆−integral is defined to be∫ b

a
W (t)∆t = w(b)− w(a), for all a, b ∈ TS ,

where w is the anti–derivative of W , i.e., w∆ = W on TS
z.

For p ∈ RG(TS), the generalized exponential function is defined by

ep(a, b) = exp

(∫ b

a
αµ(s)p(s)∆s

)
for all a, b ∈ TS ,

while,

αµ(t)p(t) =


Log(1 + µ(t)p(t))

µ(t)
, if µ(t) ̸= 0,

p(t), if µ(t) = 0,

is the cylindrical transformation.
The fundamental matrix ΨM (t, t0) is the unique solution of the dynamic equation

ω∆(t) = M(t)ω(t), ω(t0) = ω0, t ∈ TS
0.

3. Basic concepts and remarks

Let C(J,Rn) (resp. PC(J,Rn)) be the Banach space of all continuous functions
(resp. the Banach space of piecewise continuous functions) with the norm ||ω||∞ =
supt∈J ||ω(t)||, J = [s0 − λ, tf ] ∩ TS and R represents the set of real numbers.

Finally, we denote by PC1(J,Rn) = {ω ∈ PC(J,Rn) : ω∆ ∈ PC(J,Rn)}, the
Banach space with norm ∥ω∥1 = max{∥ω∥∞, ∥ω∆∥∞}. Here, as usual we denote by
∥x∥ =

∑n
i=1 |xi| for x = (x1, . . . , xn) ∈ Rn. Consider the following inequalities,

(3.1)



∣∣∣∣ϕ∆(t)−M(t)ϕ(t)−
∫ t

t0

K(t, s, ϕ(s), ϕ(h(s)))∆s

−
∫ b

a
K(t, s, ϕ(s), ϕ(h(s)))∆s

∣∣∣∣ ≤ ϵ, t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,∣∣∣∣ϕ(t)− Iαti,tgi(t, ϕ(t), ϕ(h(t)))
∣∣∣∣ ≤ ϵ, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

(3.2)

∣∣∣∣ϕ∆(t)−M(t)ϕ(t)−
∫ t

t0

K(t, s, ϕ(s), ϕ(h(s)))∆s

−
∫ b

a
K(t, s, ϕ(s), ϕ(h(s)))∆s

∣∣∣∣ ≤ φ(t), t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,∣∣∣∣ϕ(t)− Iαti,tgi(t, ϕ(t), ϕ(h(t)))
∣∣∣∣ ≤ κ, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

where ϵ > 0, κ ≥ 0 and φ ∈ PC(J,R+) is an increasing function.
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Definition 3.1. Eq. (1.1) is said to be stable in the sense of Hyers–Ulam, if for every
ϵ > 0 there exists a positive number K such that for every ϕ ∈ PC1(J,Rn) satisfying
(3.1), there exists a solution ϕ0 ∈ PC1(J,Rn) of (1.1) such that ∥ϕ0(t)−ϕ(t)∥ ≤ Kϵ
for all t ∈ J . Here K is a positive number that depends on ϵ and do not depend on
fi.

Definition 3.2. Eq. (1.1) is said to be stable in the sense of Hyers–Ulam–Rassias,
provided for all (φ, κ) ∈ PC(J,R+) × R+ there exists M > 0 such that for all
ϕ ∈ PC1(J,Rn) satisfying (3.2), there exists a solution ϕ0 ∈ PC1(J,Rn) of (1.1)
such that the inequality ∥ϕ0(t) − ϕ(t)∥ ≤ Mφ(t) is true for all t ∈ J . Here M > 0
depends on (φ, κ).

Definition 3.3. In a metric space (X; d), a mapping Λ : X → X is said to be
Picard operator if it has precisely a unique fixed point x∗ ∈ X, so that for every
x ∈ X, the sequence {Λ(n)(x)}n∈N converges to x∗.

Lemma 3.4 ([16]). Suppose τ ∈ T+
S , y, b ∈ RG(TS

+), p ∈ RG(TS
+)+ and c, bk ∈

R+, k = 1, 2, . . . , so

y(t) ≤ c+

∫ t

τ
p(s)y(s)∆s+

∑
τ<tk<t

bky(tk),

implies

y(t) ≤ c
∏

τ<tk<t

(1 + bk)ep(t, τ), t ≥ τ.

Lemma 3.5 (Abstract Grönwall Lemma [27]). Let (X, d,≤) be an ordered metric
space and let x∗ be a fixed point for the increasing mapping Λ : X → X. So, being
arbitrary x ∈ X, x ≤ Λ(x) entails x ≤ x∗ and x ≥ Λ(x) entails x ≥ x∗, where x∗

denotes the fixed point in Λ.

Remark 3.6. A function ϕ ∈ PC1(J,Rn) satisfies inequality (3.1) (resp. inequality
(3.2)) if and only if there exist a function f ∈ PC1(J,Rn) and a finite sequence
{fk : k = 1, . . . ,m} ⊂ Rn (dependent on ϕ) such that ∥f(t)∥ ≤ ϵ for all t ∈ J and
∥fi∥ ≤ ϵ (resp. ∥fi∥ ≤ κ) for every i = 1, 2, . . . ,m and

ϕ∆(t) = M(t)ϕ(t) +

∫ t

t0

K(t, s, ϕ(s), ϕ(h(s)))∆s

+

∫ b

a
K(t, s, ϕ(s), ϕ(h(s)))∆s+ f(t),

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

ϕ(t) = Iαti,tgi(t, ϕ(t), ϕ(h(t))) + fi, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.
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Lemma 3.7. If ϕ ∈ PC1(J,Rn) satisfies inequality (3.1) (resp. inequality (3.2)),
then the following inequalities

∣∣∣∣∣∣∣∣ϕ(t)− ϕ0 −ΨM (t, t0)ϕ0 −
∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, ϕ(u), ϕ(h(u)))∆u∆s

−
∫ t

si

ΨM (t,Θ(s))

∫ b

a
K(s, u, ϕ(u), ϕ(h(u)))∆u∆s

− Iαti,tgi(t, ϕ(t), ϕ(h(t)))

∣∣∣∣∣∣∣∣ ≤ (Ctf − Csi +m)ϵ,

t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m,∣∣∣∣∣∣∣∣ϕ(t)− Iαti,tgi(t, ϕ(t), ϕ(h(t)))

∣∣∣∣∣∣∣∣ ≤ mϵ, (resp. mκ),

t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

are true. Here C is the bound of fundamental matrix ΨM (t,Θ(s)).

Proof. If ϕ ∈ PC1(J,Rn) satisfies (3.1), then by Remark 3.6, we have

(3.3)



ϕ∆(t) = M(t)ϕ(t) +

∫ t

t0

K(t, s, ϕ(s), ϕ(h(s)))∆s

+

∫ b

a
K(t, s, ϕ(s), ϕ(h(s)))∆s+ f(t),

t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

ϕ(t) = Iαti,tgi(t, ϕ(t), ϕ(h(t))) + fi, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.

Clearly the solution of (3.3) is given as

ϕ(t) =



ϕ0 +ΨM (t, t0)ϕ0 +

∫ t

si

ΨM (t,Θ(s))

(∫ s

s0

K(s, u, ϕ(u), ϕ(h(u)))∆u

+

∫ b

a
K(s, u, ϕ(u), ϕ(h(u)))∆u+ f(s)

)
∆s+ Iαti,tgi(t, ϕ(t), ϕ(h(t))),

t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m,

Iαti,tgi(t, ϕ(t), ϕ(h(t))) + fi, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.

For t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, we get∣∣∣∣∣∣∣∣ϕ(t)− ϕ0 −ΨM (t, t0)ϕ0 −
∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, ϕ(u), ϕ(h(u)))∆u∆s

−
∫ t

si

ΨM (t,Θ(s))

∫ b

a
K(s, u, ϕ(u), ϕ(h(u)))∆u∆s− Iαti,tgi(t, ϕ(t), ϕ(h(t)))

∣∣∣∣∣∣∣∣
≤

∫ t

si

||ΨM (t,Θ(s))||∥f(s)∥ds+
m∑
i=1

∥fi∥

≤ (Ct− Csi +m)ϵ

≤ (Ctf − Csi +m)ϵ.
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Proceeding as above we derive∣∣∣∣∣∣∣∣ϕ(t)− Iαti,tgi(t, ϕ(t), ϕ(h(t)))

∣∣∣∣∣∣∣∣ ≤ mϵ, t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m.

We have similar processions for (3.2). □

4. Main results

Onward we will state our major results. The first solution to be establish is
Hyers–Ulam stablity. First we assume the following conditions:
(A1) The function K is piecewise continuous with the Lipschitz condition

||K(t, s, x1, x2) − K(t, s, y1, y2)|| ≤
∑2

k=1 L||xk − yk||, L > 0, for all t ∈ (si, ti+1] ∩
TS , i = 0, 1, . . . ,m and xk, yk ∈ Rn, k ∈ {1, 2};

(A2) gi : (ti, si]∩TS×Rn×Rn → Rn satisfies the Lipschitz condition ||gi(t, u1, u2)−
gi(t, v1, v2)|| ≤

∑2
k=1 Lgi ||uk − vk||, Lgi > 0, for all t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m

and u1, u2, v1, v2 ∈ Rn ;

(A3)

(
2Lgi
Γ(α)

∫ si
ti
(si − s)α−1∆s+ 2CL

∫ t
si

∫ s
s0
∆u∆s+ 2CL(tf − si)(b− a)

)
< 1, i =

1, 2, . . . ,m;

(A4) φ ∈ PC(J,R+) is increasing so that for some ρ > 0,∫ t

t0

φ(r)∆r ≤ ρφ(t).

Theorem 4.1. If conditions (A1)− (A3) hold, then Eq. (1.1) has precisely a
unique solution in PC1(J,Rn).

Proof. Determine an operator Λ : PC(J,Rn) → PC(J,Rn) as
(4.1)

(Λω)(t) =



α(t), t ∈ [s0 − λ, s0] ∩ TS ,

Iαti,sigi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m, α ∈ (0, 1),

α(t0) + ΨM (t, t0)ω0 + Iαti,sigi(si, ω(si), ω(h(si)))

+

∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, ω(u), ω(h(u)))∆u∆s

+

∫ t

si

ΨM (t,Θ(s))

∫ b

a
K(s, u, ω(u), ω(h(u)))∆u∆s,

t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, α ∈ (0, 1).

For any ω1, ω2 ∈ PC(J,Rn), t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, we have∣∣∣∣(Λω1)(t)− (Λω2)(t)
∣∣∣∣

≤
∣∣∣∣Iαti,sigi(si, ω1(si), ω1(h(si)))− Iαti,sigi(si, ω2(si), ω2(h(si)))

∣∣∣∣
+

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣∣∣∣∣K(s, u, ω1(u), ω1(h(u)))
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−K(s, u, ω2(u), ω2(h(u)))

∣∣∣∣∣∣∣∣∆u∆s

+

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ b

a

∣∣∣∣∣∣∣∣K(s, u, ω1(u), ω1(h(u)))

−K(s, u, ω2(u), ω2(h(u)))

∣∣∣∣∣∣∣∣∆u∆s

≤ 1

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣gi(s, ω1(s), ω1(h(s)))

− gi(s, ω2(s), ω2(h(s)))
∣∣∣∣∆s

+ L

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣ω1(u)− ω2(u)
∣∣∣∣∆u∆s

+ L

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣ω1(h(u))− ω2(h(u))
∣∣∣∣∆u∆s

+ L

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ b

a

∣∣∣∣ω1(u)− ω2(u)
∣∣∣∣∆u∆s

+ L

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ b

a

∣∣∣∣ω1(h(u))− ω2(h(u))
∣∣∣∣∆u∆s

≤ Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣ω1(s)− ω2(s)

∣∣∣∣∆s

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣ω1(h(s))− ω2(h(s))

∣∣∣∣∆s

+ 2CL

∫ t

si

∫ s

s0

sup
si≤s≤ti+1

∣∣∣∣ω1(u)− ω2(u)
∣∣∣∣∆u∆s

+ 2CL

∫ t

si

∫ b

a
sup

si≤s≤ti+1

∣∣∣∣ω1(u)− ω2(u)
∣∣∣∣∆u∆s

≤ 2Lgi

Γ(α)

∫ si

ti

(si − s)α−1 sup
ti≤s≤si

∣∣∣∣ω1(s)− ω2(s)
∣∣∣∣∆s

+ 2CL

∫ t

si

∫ s

s0

sup
si≤s≤ti+1

∣∣∣∣ω1(s)− ω2(s)
∣∣∣∣∆u∆s

+ 2CL

∫ t

si

∫ b

a
sup

si≤s≤ti+1

∣∣∣∣ω1(s)− ω2(s)
∣∣∣∣∆u∆s

≤
(
2Lgi

Γ(α)

∫ si

ti

(si − s)α−1∆s+ 2CL

∫ t

si

∫ s

s0

∆u

+ 2CL(tf − si)(b− a)

)
∥ω1 − ω2∥∞.

According to (A3), we are dealing here with the strictly contractive operator on
(si, ti+1]∩TS , i = 1, 2, . . . ,m, and hence a Picard operator on PC(J,Rn). Regarding
to (4.1), it shows that the unique solution of Eq. (1.1) in PC1(J,Rn) is in fact the
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unique fixed point of this operator.
□

Theorem 4.2. If conditions (A1)− (A3) hold, then Eq. (1.1) has Hyers–Ulam
stability on J .

Proof. Assume that (3.1) has a solution ϕ ∈ PC1(J,Rn). Then for dynamic equa-
tion 

ω∆(t) = M(t)ω(t) +

∫ t

t0

K(t, s, ω(s), ω(h(s)))∆s

+

∫ b

a
K(t, s, ω(s), ω(h(s)))∆s, t ∈ (si, ti+1] ∩ TS , i = 0, 1, . . . ,m,

ω(t) = Iαti,tgi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m,

ω(t) = ϕ(t), t ∈ [s0 − λ, s0] ∩ TS ,

ω(t0) = ϕ(t0) = ω0,

we have the unique solution

ω(t) =



ϕ(t), t ∈ [s0 − λ, s0] ∩ TS ,

Iαti,sigi(t, ω(t), ω(h(t))), t ∈ (ti, si] ∩ TS , i = 1, 2, . . . ,m, α ∈ (0, 1),

ϕ(t0) + ΨM (t, t0)ω0 + Iαti,sigi(si, ω(si), ω(h(si)))

+

∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, ω(u), ω(h(u)))∆u∆s

+

∫ t

si

ΨM (t,Θ(s))

∫ b

a
K(s, u, ω(u), ω(h(u)))∆u∆s,

t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m.

We observe that for all t ∈ (si, ti+1]∩TS , i = 1, 2, . . . ,m, using Lemma 3.7, we have∣∣∣∣ϕ(t)− ω(t)
∣∣∣∣

≤
∣∣∣∣ϕ(t)− ϕ0 −ΨM (t, t0)ϕ0 −

∫ t

si

ΨM (t,Θ(s))

∫ s

s0

K(s, u, ϕ(u), ϕ(h(u)))∆u

−
∫ t

si

ΨM (t,Θ(s))

∫ b

a
K(s, u, ϕ(u), ϕ(h(u)))∆u∆s

− Iαti,tgi(t, ϕ(t), ϕ(h(t)))
∣∣∣∣+ ∣∣∣∣Iαti,sigi(si, ϕ1(si), ϕ1(h(si)))

− Iαti,sigi(si, ϕ2(si), ϕ2(h(si)))
∣∣∣∣

+

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ s

s0

∣∣∣∣K(s, u, ϕ1(u), ϕ1(h(u)))

−
∫ s

s0

K(s, u, ϕ2(u), ϕ2(h(u)))
∣∣∣∣∆u∆s

+

∫ t

si

∣∣∣∣ΨM (t,Θ(s))
∣∣∣∣ ∫ b

a

∣∣∣∣K(s, u, ϕ1(u), ϕ1(h(u)))

−K(s, u, ϕ2(u), ϕ2(h(u)))
∣∣∣∣∆u∆s
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≤ (m+ Ctf − Csi)ϵ+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣ϕ1(s)− ϕ2(s)

∣∣∣∣∆s

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣ϕ1(h(s))− ϕ2(h(s))

∣∣∣∣∆s

+ CL

∫ t

si

∫ s

s0

∣∣∣∣ϕ1(u)− ϕ2(u)
∣∣∣∣∆u∆s

+ CL

∫ t

si

∫ s

s0

∣∣∣∣ϕ1(h(u))− ϕ2(h(u))
∣∣∣∣∆u∆s

+ CL

∫ t

si

∫ b

a

∣∣∣∣ϕ1(u)− ϕ2(u)
∣∣∣∣∆u∆s

+ CL

∫ t

si

∫ b

a

∣∣∣∣ϕ1(h(u))− ϕ2(h(u))
∣∣∣∣∆u∆s.

Next, we show that the operator T : PC(J,R+) → PC(J,R+) given below is an
increasing Picard operator:

(Tg)(t) = (m+ Ctf − Csi)ϵ+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g(s)∆s

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g(h(s))∆s+ CL

∫ t

si

∫ s

s0

g(u)∆u∆s

+CL

∫ t

si

∫ s

s0

g(h(u))∆u∆s+ CL

∫ t

si

∫ b

a
g(u)∆u∆s+ CL

∫ t

si

∫ b

a
g(h(u))∆u∆s.

For any g1, g2 ∈ PC(J,R+), t ∈ (si, ti+1] ∩ TS , i = 1, 2, . . . ,m, we have∣∣∣∣(Tg1)(t)− (Tg2)(t)
∣∣∣∣ ≤ Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣g1(s)− g2(s)

∣∣∣∣∆s

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1
∣∣∣∣g1(h(s))− g2(h(s))

∣∣∣∣∆s

+CL

∫ t

si

∫ s

s0

∣∣∣∣g1(u)− g2(u)
∣∣∣∣∆u∆s

+CL

∫ t

si

∫ s

s0

∣∣∣∣g1(h(u))− g2(h(u))
∣∣∣∣∆u∆s

+CL

∫ t

si

∫ b

a

∣∣∣∣g1(u)− g2(u)
∣∣∣∣∆u∆s

+CL

∫ t

si

∫ b

a

∣∣∣∣g1(h(u))− g2(h(u))
∣∣∣∣∆u∆s

≤ 2Lgi

Γ(α)

∫ si

ti

(si − s)α−1 sup
ti≤s≤si

∣∣∣∣g1(s)− g2(s)
∣∣∣∣∆s

+2CL

∫ t

si

∫ s

s0

sup
si≤s≤ti+1

∣∣∣∣g1(s)− g2(s)
∣∣∣∣∆u∆s
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+2CL

∫ t

si

∫ b

a
sup

si≤s≤ti+1

∣∣∣∣g1(s)− g2(s)
∣∣∣∣∆u∆s

≤
(
2Lgi

Γ(α)

∫ si

ti

(si − s)α−1∆s+ 2CL

∫ t

si

∫ s

s0

∆u∆s

+2CL(tf − si)(b− a)

)
∥g1 − g2∥∞.

Again according to (A3), we are dealing here with the strictly contractive operator
on (si, ti+1]∩TS , i = 1, 2, . . . ,m and hence a Picard operator on PC(J,R+). Banach
fixed point theorem imply, T is Picard operator having unique fixed point g∗ ∈
PC(J,R+) i.e.,

g∗(t) = (m+ Ctf − Csi)ϵ+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g∗(s)∆s

+
Lgi

Γ(α)

∫ si

ti

(si − s)α−1g∗(h(s))∆s+ CL

∫ t

si

∫ s

s0

g∗(u)∆u∆s

+CL

∫ t

si

∫ s

s0

g∗(h(u))∆u∆s+ CL

∫ t

si

∫ b

a
g∗(u)∆u∆s

+CL

∫ t

si

∫ b

a
g∗(h(u))∆u∆s.

As, g∗ is increasing, therefore g∗(h(t)) ≤ g∗(t), (m+Ctf −Csi) ≤ δ for some δ > 0,

i = 1, 2, . . . ,m and
∫ b
a g∗(h(u))∆u = ϱϵ be a fixed value, then we can write

g∗(t) ≤ δϵ+
2Lgi

mΓ(α)

∫ si

ti

(si − s)α−1g∗(s)∆s+ 2CL

∫ t

s0

∫ s

s0

g∗(u)∆u∆s

+2CL

∫ t

s0

ϱϵ∆s

≤ δϵ+
2Lgi

mΓ(α)

∫ si

ti

(si − s)α−1g∗(s)∆s+ 2CL

∫ t

s0

∫ s

s0

g∗(u)∆u∆s

+2CL(tf − s0)ϱϵ

Using Lemma 3.4, we have

g∗(t) ≤ (δ + 2CL(tf − s0)ϱ)ϵ
∏

si<s<t

(
1 +

2Lgi

mΓ(α)

∫ si

ti

(si − s)α−1∆s

)
eq(t, si).

where q = 2CL
∫ s
s0
∆u. If we determine g =

∣∣∣∣ϕ − ω
∣∣∣∣, then g(t) ≤ (Tg)(t), which

follows by utilizing abstract Grönwall lemma that g(t) ≤ g∗, hence∣∣∣∣ϕ(t)−ω(t)
∣∣∣∣ ≤ (δ+2CL(tf −s0)ϱ)ϵ

∏
si<s<t

(
1+

2Lgi

mΓ(α)

∫ si

ti

(si−s)α−1∆s

)
eq(t, si).

□

Similarly we can establish the Hyers–Ulam–Rassias stability of (1.1) on J . Its
proof will be omitted.
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Theorem 4.3. If conditions (A1)− (A4) hold, then Eq. (1.1) has Hyers–Ulam–
Rassias stability on J .

5. Conclusion

This manuscript is about the establishment of Hyers–Ulam stability and Hyers–
Ulam–Rassias stability of equation (1.1) with the utilization of fixed point approach.
Also, the unique solution to (1.1) in PC1(J,Rn) is obtained. Furthermore, abstract
Grönwall lemma and Lemma 3.4 presented a fruitful outcome to our end. Our work
assures the existence of an exact solution of (1.1) near to approximate solution. In
fact, our results are significant when finding exact solution is quite difficult and
hence are important to approximation theory etc.
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Boston, Mass, USA, 2003.

[8] J. J. Dachunha, Stability for time varying linear dynamic systems on time scales, J. Comput.
Appl. Math. 176 (2005), 381–410.

[9] A. Hamza and K. M. Oraby, Stability of abstract dynamic equations on time scales, Adv.
Difference Equ. 2012 (2012): 143.

[10] S. Hilger, Analysis on measure chains–A unified approach to continuous and discrete calculus,
Result math. 18 (1990), 18–56.

[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A.
27 (1941), 222–224.

[12] S.-M. Jung, Hyers–Ulam stability of linear differential equations of first order, Appl. Math.
Lett. 17 (2004), 1135–1140.

[13] S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis,
Springer Optim. Appl., vol. 48, Springer, NewYork, 2011.

[14] Y. Li and Y. Shen, Hyers–Ulam stability of linear differential equations of second order, Appl.
Math. Lett. 23 (2010), 306–309.

[15] Z. Lin, W. Wei and J. Wang, Existence and stability results for impulsive integro-differential
equations, Ser. Math. Inform. 29 (2014), 119–130.

[16] V. Lupulescu and A. Zada, Linear impulsive dynamic systems on time scales, Electron. J.
Qual. Theory Differ. Equ. (2010), 1–30.

[17] S. I. Nenov, Impulsive controllability and optimization problems in population dynamics, Non-
linear Anal. Theory Methods Appl. 36 (1999), 881–890.

[18] M. Ob loza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace
Mat. (1993), 259–270.



STABILITY IN TERMS OF HYERS–ULAM 121

[19] M. Ob loza, Connections between Hyers and Lyapunov stability of the ordinary differential
equations, Rocznik Nauk.-Dydakt. Prace Mat. 14 (1997), 141–146.
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