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In nineteenth century some work on fractional derivatives is given by Watanabe,
Riesz, B.S. Nagy, M. Caputo ([2, 13,23,27]).

In twentieth century, an advanced work on fractional calculus started in almost
mid of it.

1.1.1. What is Fractional Operator? If η1 and η2 are two real numbers then the
simplest fractional operator is given below

(1.1) Θη1Θη2 = Θη1+η2 .

A fractional operator is an operator which is applied to an operand with a non-
integral power or a real number time. For example, if in particular η1 = η2 = 1/2,
then in equation (1.1)

(1.2) Θ1/2Θ1/2 = Θ1/2+1/2 = Θ1 = Θ.

1.1.2. Operator Definition and Properties. This section includes some useful func-
tions and some popular definitions of fractional derivatives as well as integrals. The
literature of fractional calculus includes several fractional derivatives and integrals.
Some popular names among them are

i) Riemann-Liouville type
ii) Caputo type
iii) Grünwald-Letnikof type and Chen type etc.

Their equivalence on some functions can be seen in the standard books ([3,26,33]).
About advatages and importance point of view, we can say that these definitions

have their own place in several kind of mathematics related problems. First of all
we define Gamma functions and then Mittag-Leffler functions.

1.1.3. The Gamma-Functions. In the fractional calculus theory, the most impor-
tant and fundamental function is Gamma function, which is a generalized form
of factorial, n! which allows one to take n as a real number as well as a complex
number.

This function is defined as

(1.3) Γ(k) =

∫ ∞

0
e−ηηk−1dη.

Its limiting form is defined as

(1.4) Γ(k) = lim
θ→0

θ!θη

η(η + 1) . . . (η + θ)
, Re(η) > 0.

Useful properties of this function are

Firstly

Γ(k + 1) = kΓ(k) = θ(θ − 1)! = θ!.

Secondly, at η = −θ, (θ = 0, 1, 2, . . . ) the Gamma function will have sample poles.
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1.1.4. The Mittag-Leffler Fucntion. This function is a generalization for an expo-
nential function in terms of one-parameter [1].

The generalization is given below

(1.5) Ek(η) =

∞∑
θ=0

ηθ

Γ(kη + 1)
.

For two-parameters form see [36] and is given by

(1.6) Ek,q(η) =

∞∑
θ=0

ηθ

Γ(kη + q)
, (k > 0, q > 0).

When q = 1, we get Mittag-Leffler Function in one-paramter.
This function can be seen particularly in a relationship with hyperbolic sine and

hyperbolic cosine functions by

E2,1(η
2) = cosh(η)

and

ηE2,2(η
2) = sinh(η),

and it can also be linked with error function and can also be used as a tool in the
solution of systems of fractional order, for further details see ([7, 34]).

1.1.5. The Riemann-Liouville Type. Left Riemann-Liouville fractional derivative

(1.7) ♯Dk
x+ [ϕ(η)] =

1

Γ(θ − k)

dθ

dηθ

∫ η

x
(η − ν)θ−k−1ϕ(ν)dν, η ≥ x.

Right Riemann-Liouville fractional derivative

(1.8) ♯Dk
y− [ϕ(η)] =

(1)θ

Γ(θ − k)

dθ

dηθ

∫ y

η
(ν − η)θ−k−1ϕ(ν)dν, η ≤ y.

For example, consider the function

ϕ(η) = (η − x)v,

♯Dk[(η − x)v] =
Γ(1 + v)

Γ(1 + v + k)
(η − x)v−k.

Similarly, for ϕ(η) = eγη

♯Dk[eγη] = η−kE1,1−k(γ).

Left Riemann-Liouville fractional integral

(1.9) ♯Ikx+ [ϕ(η)] =
1

Γ(k)

∫ η

x
(η − ν)k−1ϕ(ν)dν, η ≥ x.

Right Riemann-Liouville fractional integral

(1.10) ♯Iky− [ϕ(η)] =
1

Γ(k)

∫ y

η
(ν − η)k−1ϕ(ν)dν, η ≤ y.
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1.1.6. The Caputo Type. Left Caputo fractional derivative

(1.11) ♯♯Dk
x+ [ϕ(η)] =

1

Γ(θ − k)

∫ η

x
(η − ν)θ−k−1 d

θ

dνθ
[ϕ(ν)]dν, η ≥ x.

Right Caputo fractional derivative

(1.12) ♯♯Dk
y− [ϕ(η)] =

(−1)θ

Γ(θ − k)

∫ y

η
(ν − η)θ−k−1 d

θ

dνθ
[ϕ(ν)]dν, η ≤ y.

The Caputo fractional integral

(1.13) ♯♯Ik[ϕ(η) = ϕ(η)−
θ−1∑
i=0

ϕi(0)
ηi

i!
, (θ − 1 < k ≤ θ).

For more details see [16]. The Caputo fractional derivative is useful for both kind
of homogeneous and in-homogeneous boundary as well as initial conditions in ap-
plication of modeling of several real life systems. Relationships between Riemann-
Liouville type fractional integrals and derivatives with Caputo type fractional inte-
grals and derivatives is discussed with the help of Laplace transforms, see [25].

1.1.7. The Grünwald-Letnikof Type. Left Grünwald-Letnikof fractional derivative

(1.14) ♯♯♯Dk
x+ [ϕ(η)] = lim

p→0

1

pk

θ∑
i=0

(−1)i
Γ(k + 1)ϕ(η − ip)

Γ(i+ 1)Γ(k − i+ 1)
, θp = η − x.

Right Grünwald-Letnikof fractional Derivative

(1.15) ♯♯♯Dk
y− [ϕ(η)] = lim

p→0

1

pk

θ∑
i=0

(−1)i
Γ(k + 1)ϕ(η + ip)

Γ(i+ 1)Γ(k − i+ 1)
, θp = y − η.

1.1.8. The Chen Type. Left Chen Fractional Derivative

(1.16) Dk
z [ϕ(η)] =

1

Γ(1− k)

d

dη

∫ η

z
(η − ν)−kϕ(ν)dν, η > z.

Right Chen fractional derivative

(1.17) Dk
z [ϕ(η)] =

−1

Γ(1− k)

d

dη

∫ z

η
(ν − η)−kϕ(ν)dν, η < z.

Left Chen fractional integral

(1.18) Ikz [ϕ(η)] =
1

Γ(k)

∫ η

z
(η − ν)k−1ϕ(ν)dν, η > z.

Right Chen fractional integral

(1.19) Ikz [ϕ(η)] =
1

Γ(k)

∫ z

η
(ν − η)k−1ϕ(ν)dν, η < z.

1.2. Fractional Order Differential Equations. In this section, we will define
fractional order ordinary and partial differential equations.
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1.2.1. Fractional Order ODE’s. Those ordinary differential equations which involve
the derivatives of non-integral order are known as fractional order ordinary differ-
ential equations. The researchers in the history of mathematics got an interest
in fractional order ordinary differential equations not so far but since the mid of
twentieth century. The reason of the development and progress in fractional order
ordinary differential equations is that these equations can make complex kind of
mathematical models easily. Other than local connections in space-time, this kind
of equations solved with the help of kernels present in integral equations. Also
these equations are useful in science and engineering almost all over the world of
researchers [24].

In this section,firstly, we will define Riemann-Liouville fractional order differential
equation. Secondly, we will define Caputo fractional order differential equation.
Lastly, we will state a result which will relate Caputo differential equation with
Volterra integral equation.

1.2.2. Riemann-Liouville Fractional Order Differential Equation.

(1.20) (♯Dk
x+ϕ)(η) = ψ[η, ϕ(η)], k > 0, η > x.

Along with the conditions

(♯Dk−i
x+ ϕ)(x+) = yi, i = 1, 2, 3, . . . , θ.

1.2.3. Caputo Fractional Order Differential Equations.

(1.21) (♯♯Dk
x+ϕ)(η) = ψ[η, ϕ(η)], k > 0, η > x.

Along with the initial conditions

(♯♯Diϕ)(0) = yi, i = 0, 1, 2, 3, . . . , θ − 1.

Lemma 1.1. Let Jc(0) = [0, c] be an interval in which the function ϕ(η) has con-
tinuous derivatives with outputs in [ϕ0 − ξ, ϕ0 + ξ], then ϕ(η) satisfies the equation

♯♯Dkϕ(η) = ψ(η, ϕ(η)), 0 < k ≤ 1, η > 0, ϕ(0) = ϕ0

if it satisfies the following Volterra integral equation [5]

ϕ(η) = ϕ0 +
1

Γ(k)

∫ η

0
(η − ν)k−1ψ(ν, ϕ(ν))dν.

1.2.4. Fractional Order PDE’s. Derivation of theorems of existence as well as unique-
ness for ordinary differential equations as well as partial differential equations is
already a hard problem that is seen by the researchers in the history of mathemat-
ics. As a result, each problem is a special case inside itself. Therefore for fractional
partial differential equations, the process of finding solutions will be more awful.
Hence, in this section we will present only some results for simple fractional partial
differential equations.
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1.2.5. Linear and Homogeneous Fractional Order Partial Differential Equation. Con-
sider

(1.22)
∂kϕ(η, ξ)

∂tk
= i

∂qϕ(η, ξ)

∂xq
, ξ ∈ R+, η ∈ R

and the initial condition is

ϕ(η, 0) = ϕ0(η),

where i is a coefficient which is positive, 0 < k < q ≤ 1, ϕ(η, ξ) is a real valued

function, ∂k

∂tk
and ∂q

∂xq are Riemann-Liouville fractional partial derivatives and ϕ0(η)
is continuous over all values of η. The general solution of equation (1.22) is given
by the following lemma.

Lemma 1.2. Assume that both η, ξ ∈ R+ then general solution of equation (1.22)
is

(1.23) ϕ(η, ξ) = ϕ0((η
q +

Γ(q + 1)

Γ(k + 1)
iξk)

1
q ),

where ϕ0(η) is available in initial condition.

1.2.6. In-Homogeneous Fractional Order Partial Differential Equation. Consider

(1.24)
∂kϕ(η, ξ)

∂tk
− i

∂qϕ(η, ξ)

∂xq
= ψ(η, ξ), ξ ∈ R+, η ∈ R

and the initial condition is

ϕ(η, 0) = ϕ0(η).

The general solution of equation (1.24) can be found with the help of Fourier trans-
forms.

1.2.7. Fractional Partial Differential Equation (Wave). Consider

(1.25)
∂2kϕ(η, ξ)

∂t2k
= i2

∂2qϕ(η, ξ)

∂x2q
, η ∈ [x, y], ξ ∈ R2, η ∈ R.

Along with the boundary and initial conditions

ϕ(η, 0) = ϕ0(η),

ϕ(x, ξ) = 0,

dkϕ(η, 0)

dtk
=
dkϕ0(η)

dtk
,

ϕ(y, ξ) = 0.

Where 0 < 2k < 1 and 1 < 2q < 2.
The general solution of equation (1.25) is given below

(1.26) ϕ(η, ξ) = ψ1(η
q + i

Γ(1 + q)

Γ(1 + k)
ξk) + ψ2(η

q − i
Γ(1 + q)

Γ(1 + k)
ξk),

where ψ1 and ψ2 are functions given by boundary and initial conditions.
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1.2.8. The Diffusion Fractional Equations. The diffusion is modeled in a specific
kind of porous medium in geometric media is an application of non-integer order
derivative. The modeled equation is connected to geometric dimension of the ma-
terial which must be porous type [14].

Consider

(1.27) D1/k−1ϕ(η) =Mψ(η),

where ϕ(η) is across geometric association and a greater or observable flow, M is a
constant number, k is geometric dimension and ψ(η) is known as driving force.

Another diffusion fractional equation is given in [29].
Consider

(1.28) D2/k1ϕ(η, ξ) =
1

ηk2−1

∂

∂η
(ηk2−1∂ϕ(η, ξ)

∂η
),

where k1 and k2 confide in the geometric dimension of media. For more details
see [8].

Another diffusion fractional differential equation of one-dimension is given below

(1.29) Dkϕ(η, ξ) =
d2ϕ(η, ξ)

dη2
, k ∈ R.

If in particular k = 1, then the equation (1.29) becomes diffusion classical wave
equation, if in particular k = 2, then the equation (1.29) becomes wave classical
equation. Lastly for 0 < k < 1 and for 0 < k < 2 the equation (1.29) will be called
diffusion ultra-slow process and intermediate ultra-slow processes, respectively, see
[37].

2. Materials and methods

In this section, we will present two methods to solve fractional order ordinary dif-
ferential equations by means of two techniques; the first techniques is semi-analytical
method which follows Laplace transforms whereas the second technique is a numer-
ical approach in which we present Euler’s method for one term and multi-term
fractional order ordinary differential equations and lastly we will present some im-
portant results of existence and uniqueness of fractional order ordinary differential
equations.

2.1. Methods to Solve Fractional Differential Equations.

2.1.1. Method 1: Semi-analytical. In this section, we will use Laplace transform to
solve fractional order ordinary differential equations with the fractional derivative
of Riemann-Liouville and Caputo type.

2.1.2. The Laplace Transform [21]. Let ϕ(η) be a function with η ∈ [0,∞) then the
Laplace transform of ϕ(η) is defined as

(2.1) L[ϕ(η)] = ϕ̂(s) =

∫ ∞

0
e−sηϕ(η)dη.
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The integral in (2.1) converges only when the function ϕ(η) is known to be of
exponential order k > 0 [21], i.e.

(2.2) lim
η→∞

e−kη|ϕ(η)| ≤ η′, ∀η > ξ; η′, ξ ∈ [0,∞).

After transforming our original problem from original variable η to a new variable
s, we must need to transform our problem from new variable s to old variable η, so
we will need the inverse of Laplace transform in this regard [22].

The inverse of Laplace transform is defined as:

(2.3) ϕ(η) = L−1[ϕ̂(s)] =
1

2πι
lim
ξ→∞

∫ ν−ιξ

ν−ιξ
esηϕ̂(s)ds, ν ∈ R.

The formula given in (2.3) used rarely while solving problems but in purposes of
theory, the researchers use this formula many times.

The Laplace transform of convolution of two functions:
The convolution of ϕ(η) and ψ(η) is denoted by ϕ(η) ∗ψ(η) [12] and is defined as

ϕ(η) ∗ ψ(η) =
∫ η

0
ϕ(η − ν)ψ(ν)dν =

∫ η

0
ϕ(ν)ψ(η − ν)dν

and when η < 0, then the convolution ϕ(η) ∗ ψ(η) = 0.
The Laplace transform of convolution ϕ(η) ∗ ψ(η) is

(2.4) L[ϕ(η) ∗ ψ(η)] = ϕ̂(s)ψ̂(s)

with ϕ̂(s) and ψ̂(s) exist.
The Laplace transform of a few functions is given below:
Let b ∈ R

L[ebη] = 1

s− b
,

L[cos(bη)] = s

s2 + b2
,

L[sin(bη)] = b

s2 + b2
,

L[cosh(bη)] = s

s2 − b2
,

L[sinh(bη)] = b

s2 − b2
,

L[αηk] = αΓ(k)

sk+1
,

L[ebtϕ(η)] = ϕ̂(s− b),

L[bϕ(η) + cψ(η)] = bϕ̂(η) + cψ̂(η).

For any positive integer σ > 0

L[ϕσ(η)] = sσϕ̂(η)− sσ−1ϕ(0)− sσ−2ϕ′(0)− . . .− ϕ(σ−1)(0),

L[ηki−1−1E
(i)
k,q(bη

k)] =
i!sk−1

(sk − b)i+1
.
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2.1.3. Laplace Transform of Riemann-Liouville Fractional Order Integral.

L[♯Ik[ϕ(η)]] = L[ 1

Γ(k)

∫ η

0
(η − ν)k−1ϕ(ν)dν].

Using the definition of convolution of two functions

L[ 1

Γ(k)
ηk−1 ∗ ϕ(η)] = L[ 1

Γ(k)
ηk−1]L[ϕ(η)],

we have

L[♯Ik[ϕ(η)]] = 1

sk
ϕ̂(s).

Note that ♯Ik[ϕ(η)] = D−k[ϕ(η)].

2.1.4. Laplace Transform of Riemann-Liouville Fractional Order Derivative. The
Riemann-Liouville fractional order derivative is:

♯Dk[ϕ(η)] =
1

Γ(θ − k)

dθ

dηθ

∫ η

0
(η − ν)θ−k−1ϕ(ν)dν,

(2.5) ♯Dk[ϕ(η)] = ψ(θ)(η),

(2.6) ♯Dk[ϕ(η)] =
dθ

dηθ
[ψ(η)].

Integrating both sides of (2.6) θ times we get

(2.7) ψ(η) = D−(θ−k)[ϕ(η)],

where D−(θ−k) in (2.7) is fold integration of order (k − θ).

(2.8) ψ(η) =
1

Γ(θ − k)

∫ η

0
(η − ν)θ−k−1ϕ(ν)dν.

Apply Laplace transform on both sides of (2.8)

ψ̂(s) = L[ 1

Γ(θ − k)

∫ η

0
(η − ν)θ−k−1ϕ(ν)dν],

(2.9) ψ̂(s) = s−(θ−k)ϕ̂(s).

Apply Laplace transform on both sides of (2.5)

(2.10)

L[♯Dk[ϕ(η)]] = L[ψθ(η)]

= sθϕ̂(η)− sθ−1ϕ(0)− sθ−2ϕ′(0)− . . .− ϕ(θ−1)(0)

= sθϕ̂(η)−
θ−1∑
i=0

siψ(θ−i−1)(0)

and we also note that if
ψ(η) = D−(θ−k)[ϕ(η)].

Differentiate both sides of above equation with respect to η upto (θ − i− 1) times,
we get

(2.11) ψθ−i−1(η) = ♯Dk−i−1[ϕ(η)]
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at η = 0 (2.11) becomes

(2.12) ψθ−i−1(0) = ♯Dk−i−1[ϕ(0)]

put (2.12) in (2.10), we get

(2.13) L[♯Dk[ϕ(η)]] = sθϕ̂(η)−
θ−1∑
i=0

si♯D(k−i−1)[ϕ(0)].

It is important to note that the formula of Laplace transform for integer order de-
rivative of a function is similar to that of the fractional order derivative in Riemann-
Liouville type.

2.1.5. Laplace Transform of Caputo Fractional Order Derivative. The mathemati-
cal definition of Caputo fractional order derivative is:

(2.14) ♯♯Dk[ϕ(η)] =
1

Γ(θ − k)

∫ η

0
(η − ν)θ−k−1 d

θ

dνθ
[ϕ(ν)]dν.

The alternate form of definition (2.14) is:

(2.15) ♯♯Dk[ϕ(η)] = D−(θ−k)Dθ[ϕ(η)], θ − 1 ≤ k < θ.

We can also say that the Caputo fractional order derivative is equivalent to (θ −
k)− th order fold integration of θ − th order differentiation of the function ϕ(η).

Apply Laplace transform on both sides of (2.15)

(2.16) L[♯♯Dk[ϕ(η)]] = L[D−(θ−k)Dθ[ϕ(η)]].

The right hand side of (2.16) is similar to Riemann-Liouville integral, so

(2.17) L[♯♯Dk[ϕ(η)]] = s−(θ−k)L[Dθ[ϕ(η)]].

Expanding the formula for Laplace transform of integer order differentiation we get

s−(θ−k)[sθϕ̂(s)−
θ−1∑
i=0

siϕ(θ−i−1)[ϕ(0)]]

= s−(θ−k)[sθϕ̂(s)− [s0ϕ(θ−1)(0) + s1ϕ(θ−2)(0) + s2ϕ(θ−3)(0) + . . .+ s(θ−1)ϕ(0)]]

= s−(θ−k)[sθϕ̂(s)−
θ−1∑
i=0

s(θ−i−1)ϕ(i)(0)]]

= s−θ+k+θϕ̂(s)−
θ−1∑
i=0

sθ−i−1−θ+kϕ(i)(0).

Hence, the required formula for Laplace transform of Caputo fractional order de-
rivative is:

(2.18) L[♯♯Dk[ϕ(η)]] = skϕ̂(s)−
θ−1∑
i=0

sk−i−1ϕ(i)(0).
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2.1.6. Initial Value Problem of Riemann-Liouville Type. Problem:

(2.19) ♯Dk[ϕ(η)]− λϕ(η) = bη, η > 0, θ − 1 < k < θ.

Along with the initial conditions

♯Dk−i−1[ϕ(η)]|η=0 = ci, i = 0, 1, 2, . . . , θ − 1.

Solution:
Take Laplace transform on both sides of (2.19)

L[♯Dk[ϕ(η)]− λϕ(η)] = L[bη],

skϕ̂(s)− λϕ̂(s) =
b

s2
+

θ−1∑
i=0

cis
i,

(sk − λ)ϕ̂(s) =
b

s2
+

θ−1∑
i=0

cis
i,

(2.20) ϕ̂(s) =
bs−2

(sk − λ)
+

θ−1∑
i=0

cis
i

(sk − λ)
.

Apply inverse of Laplace transform on both sides of (2.20), we get

L−1[ϕ̂(s)] = L−1[
bs−2

(sk − λ)
+

θ−1∑
i=0

cis
i

(sk − λ)
].

Hence, the required analytical solution is:

(2.21) ϕ(η) = bηk+1Ek,k+2(λη
k) +

θ−1∑
i=0

ciη
k−i−1Ek,k−i(λη

k).

2.1.7. Initial Value Problem of Caputo Type. Problem:

(2.22) ♯♯D[ϕ(η)]− λϕ(η) = bη, η > 0, θ − 1 < k < θ.

Along with the initial conditions

ϕ(i)(0) = ci, i = 0, 1, 2, . . . , θ − 1.

Solution:
Take Laplace transform on both sides of (2.22)

L[♯♯D[ϕ(η)]− λϕ(η)] = L[bη],

skϕ̂(s)−
θ−1∑
i=0

sk−i−1ϕ(i)(0)− λϕ̂(s) =
b

s2
,

(sk − λ)ϕ̂(s) =
b

s2
+

θ−1∑
i=0

sk−i−1ci,

(2.23) ϕ̂(s) =
bs−2

(sk − λ)
+

θ−1∑
i=0

sk−i−1ci
(sk − λ)

.
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Apply inverse of Laplace transform on both sides of (2.23), we get

L−1[ϕ̂(s)] = L−1[
bs−2

(sk − λ)
+

θ−1∑
i=0

sk−i−1ci
(sk − λ)

].

Hence, the required analytical solution is:

(2.24) ϕ(η) = bηk+1Ek,k+2(λη
k) +

θ−1∑
i=0

ciη
iEk,i+1(λη

k).

2.1.8. Method 2: Numerical. Numerical methods to solve differential equations are
basically of two categories.

(i) One-step methods
(ii) Multi-step methods

One-step methods are suitable only when single iteration is required to obtain a
numerical value of the dependent variable using the values from the previous itera-
tion. Whereas in the multi-step methods we use more than one previously obtained
iterations to obtain the solution. The better choice of numerical method for frac-
tional order differential equations is to use the multi-step methods. While using
multi-step methods in solving fractional order differential equations each iteration
involves all the previous iterations and values, so we can say that the solution pro-
cess may takes more time in computations. Roughly speaking, we can say that the
multi-step methods are quadrature type convolution formulas.

Let p = ⌈k⌉ and consider a fractional order differential equation with the deriva-
tive of Caputo type:

(2.25) ♯♯Dk[ϕ(η)] = ψ(η, ϕ(η))

with the initial conditions

ϕ(η0) = ϕ0, ϕ
′(η0) = ϕ

(1)
0 , ϕ′′(η0) = ϕ

(2)
0

...

ϕ(p−1)(η0) = ϕ
(p−1)
0 ,

where ψ(η, ϕ(η)) is continuous and ϕ0, ϕ
(1)
0 , ϕ

(2)
0 , . . . , ϕ

(p−1)
0 are derivatives at initial

value of the independent variable η.
Apply Riemann-Liouville integral on both sides of (2.47):

♯Ik[♯♯Dk[ϕ(η)]] = ♯Ik[ψ(η, ϕ(η))]

we get,

ϕ(η)− Tp−1[ϕ; η0](η) =
1

Γ(k)

∫ η

η0

(η − ν)k−1ψ(ν, ϕ(ν))dν,

(2.26) ϕ(η) = Tp−1[ϕ; η0](η) +
1

Γ(k)

∫ η

η0

(η − ν)k−1ψ(ν, ϕ(ν))dν,
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where Tp−1[ϕ; η0](η) is a polynomial called Taylor’s polynomial whose degree is p−1
which is for the function ϕ(η) is given below centered at η0 [10].

(2.27) Tp−1[ϕ; η0](η) =

p−1∑
i=0

(η − η0)
i

i!
ϕ(i)(η0).

The multi-step method for (2.26) is written as a convolution type formula:

(2.28) ϕn = ξn +

n∑
i=0

bn−iψi, ψi = ψ(ηi, ϕi),

where ξn and bn are the coefficients and ηn = η0+nh is a grid which is assigned with
a fixed step-size. The coefficients ξn and bn will be derived using two categories of
multi-step methods.

(i) Product-integration method
(ii) Fractional multi-step method of linear type

The Product-integration method and fractional multi-step method of linear type
are completely based on the integral in (2.47).

2.1.9. Product-Integration Methods. The Product-integration methods were origi-
nally introduced in 1954 [28]. The Product-integration methods are used to solve
weakly-singular Volterra integral equations of second kind and as in (2.26) we de-
rived a weakly-singular Volterra integral equations of second kind, so we can relate
Product-integration method to fractional order ordinary differential (2.47).

The Product-integration method for (2.26) is given by a grid ηn = η0+nh, h > 0
is a fixed step size.

(2.29) ϕ(ηn) = Tp−1[ϕ; η0](η) +
1

Γ(k)

n−1∑
i=0

∫ ηi+1

ηi

(ηn − ν)k−1ψ(ν, ϕ(ν))dν,

where we approximate ψ(ν, ϕ(ν)) in each [ηi, ηi+1], with the help of some polyno-
mials through interpolation.

The Forward Euler’s method for fractional order differential equations:

(2.30) ϕn = Tp−1[ϕ; η0](ηn) + hk
n−1∑
i=0

c
(k)
n−i−1ψ(ηi, ϕi).

The Backward Euler’s method for fractional order differential equations:

(2.31) ϕn = Tp−1[ϕ; η0](ηn) + hk
n∑

i=0

c
(k)
n−iψ(ηi, ϕi),

where

c(k)n =
(n+ 1)k − nk

Γ(k + 1)

and

ψ(ν, ϕ(ν)) = ψ(ηi+1, ϕi+1) +
ν − ηi+1

h
[ψ(ηi+1, ϕi+1)− ψ(ηi, ϕi)], ν ∈ [ηi, ηi+1].



14 R. T. AHMED AND A. SOHAIL

The order of convergence is h > 0,i.e.

|ϕ(ηn)− ϕn| = O(h)

with h→ 0.
Here note that ϕ(ηn) is analytical solution of fractional differential equation(2.47).

2.1.10. Fractional Multi-step Methods of Linear Type. As we know that the Riemann-
Liouville fractional integral is:

(2.32) ♯Ikη0 [ϕ(η)] =
1

Γ(k)

∫ η

η0

(η − ν)k−1ϕ(ν)dν.

The fractional multi-step form of (2.32) is given by Lubich [28].

(2.33) ♯
hI

k
η0 = hk

n∑
i=0

Θ
(k)
n−iϕ(ηi),

where Θ
(k)
n are obtained below

(2.34)
∞∑
i=0

Θ(k)
n µn = Θ(k)(µ),Θ(k)(µ) = (δ(µ))−k,

where

(2.35) δ(µ) =
ρ(1/µ)

σ(1/µ)
,

ρ(x) = ρ0x
i + ρ0x

i−1 + ρ1x
i−2 + . . .+ ρi,

σ(x) = σ0x
i + σ0x

i−1 + σ1x
i−2 + . . .+ σi,

and δ(µ) is a generating function for multi-step method of linear type which has
not any zeros in the dist |µ| ≤ 1 that is also closed.

The approximation in (2.33) is of order q > 0 and its convergence is followed by
(Theorem 2.1) in [28].

(2.36) |♯Ikη0 [ϕ(ηn)]−
♯
hI

k
η0 [ϕ(ηn)]| ≤ A(ηn − η0)

k−1−qhq
,

where A is a constant and is not depending on h > 0. Note that ϕ(η) is smooth
sufficiently. When ϕ(η) is non-smooth then the approximation form of (2.33) is:

(2.37) ♯
hI

k
η0 [ϕ(ηn)] = hk

v∑
i=0

Θn,iϕ(ηi) + hk
n∑

i=0

Θ
(k)
n−iϕ(ηi).

As a result for fractional differential equations, the fractional multi-step method of
linear type of (2.26) is:

(2.38) ϕn = Tp−1[ϕ; η0](ηn) + hk
s∑

i=0

Θn,iψ(ηi, ϕi) + hk
n∑

i=0

Θk
n−iψ(ηi, ϕi)

for more details see [9].
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2.1.11. Numerical Approach to Fractional Differential Equations With Many Terms.
The equation involving fractional derivatives in many terms is:

(2.39) λθD
kθ
η0 [ϕ(η)] + λθ−1D

kθ−1
η0 [ϕ(η)] + · · ·+ λ2D

k2
η0 [ϕ(η)] + λ1D

k1
η0 [ϕ(η)]

= ψ(η, ϕ(η))

in (2.39). λ1, λ2, . . . , λθ−1, λθ are real coefficients and kθ, kθ−1, . . . , k2, k1 are frac-
tional orders of derivatives either Riemann-Liouville or Caputo and are in descend-
ing order such that kθ > kθ−1 > . . . > k2 > k1 with the leading term λθ ̸= 0. Here
pj = ⌈kj⌉, j = 1, 2, . . . , θ.

The initial conditions to (2.39) are:

ϕ(η0) = ϕ0,

d

dη
ϕ(η0) = ϕ

(1)
0 ,

...

dpθ−1

dηpθ−1
ϕ(η0) = ϕ

pθ−1

0 .

(2.39) is known as multi-terms fractional order differential equation ([9, 28]).
The discrete form of (2.39) as a numerical approach is obtained by applying

Riemann-Liouville integral operator on both sides of (2.39).
We set

(2.40)

ϕ(η) = Tpθ−1
[ϕ; η0](η)−

θ−1∑
j=1

λj
λθ

♯I
kθ−kj
η0 [ϕ(η)− Tpj−1 [ϕ; η0](η)]

+
1

λθ

♯Ikθη0 [ψ(η, ϕ(η))].

Forward Euler’s method for multi-term fractional order differential equation:

ϕn = Tpθ−1
[ϕ; η0](η) +

θ−1∑
j=1

λj
λθ

pj−1∑
i=0

(η − η0)
i−kθ−kj

Γ(i+ kθ − kj + 1
ϕ(i)(η0)

(2.41) −
θ−1∑
j=1

λj
λθ
hkθ−kj

n−1∑
s=0

c
(kθ−kj)
n−s−1 ϕs +

1

λθ
hkθ

n−1∑
s=0

c
(kθ)
n−s−1ψ(ηs, ϕs).

Backward Euler’s method for multi-term fractional order differential equation:

ϕn = Tpθ−1
[ϕ; η0](η) +

θ−1∑
j=1

λj
λθ

pj−1∑
i=0

(η − η0)
i−kθ−kj

Γ(i+ kθ − kj + 1
ϕ(i)(η0)

(2.42) −
θ−1∑
j=1

λj
λθ
hkθ−kj

n∑
s=1

c
(kθ−kj)
n−s ϕs +

1

λθ
hkθ

n−1∑
s=1

c
(kθ)
n−s−1.



16 R. T. AHMED AND A. SOHAIL

Example 2.1. Consider a fractional order ordinary differential equation:

(2.43)

Dk
η0 [ϕ(η)] = −(ϕ(η))1.5 + (1.5η0.5k − η4)3 + 2.25Γ(k + 1)

− 3Γ(5 + 0.5k)

Γ(5− 0.5k)
+

40320η8−k

Γ(9− k)
.

Along with the initial condition ϕ(0) = 0. The analytical solution [9] to (2.43) is

(2.44) ϕ(η) = η8 − 3η4+0.5k +
9

4
ηk.

We apply forward and backward Euler’s method on (2.43) with a step size of h = 1
24

and k = 1
2 in the interval [0, 1].

Example 2.2. Consider a Multi-term Fractional Order Ordinary Differential Equa-
tion:

(2.45) ϕ′′′(η) +D2.5
0 ϕ(η) + ϕ′′(η) + 4ϕ′(η) +D0.5

0 ϕ(η) + 4ϕ(η) = 6cos(η).

Along with the initial conditions ϕ(0) = 1, ϕ′(0) = 1, ϕ′′(0) = −1.
The analytical solution to (2.45) is:

(2.46) ϕ(η) =
√
2sin(

π

4
+ η).

We apply forward and backward Euler’s method on (2.43) with a step size of h = 1
24

in the interval [0, 100].
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2.2. Important Results. In this section we will present existence and uniqueness
theorems for fractional order ordinary differential equations of Caputo Type [9].

Let p = ⌈k⌉ and consider a fractional order differential equation with the deriva-
tive of Caputo type:

(2.47) ♯♯Dk[ϕ(η)] = ψ(η, ϕ(η))

with the initial conditions

ϕ(η0) = ϕ0, ϕ
′(η0) = ϕ

(1)
0 , ϕ′′(η0) = ϕ

(2)
0 ,

...

ϕ(p−1)(η0) = ϕ
(p−1)
0 ,

where ψ(η, ϕ(η)) is continuous and ϕ0, ϕ
(1)
0 , ϕ

(2)
0 , . . . , ϕ

(p−1)
0 are derivatives at initial

value of the independent variable η.

Theorem 2.3 (Existence [9]). Let D = [0,M ] × [ϕ00 − q, ϕ00 + q];M, q > 0 also let

the function ψ : D → R is continuous. Define M∗ = min{M, ( qΓ(k+1)
||ϕ||∞ )

1
k }. There

must exist the function ϕ : [0,M∗] → R.

Theorem 2.4 (Uniquenes [9]). Let D = [0,M ]× [ϕ00 − q, ϕ00 + q];M, q > 0 also let
the function ψ : D → R is bounded on the set D and ψ satisfies the condition below:

For some ξ ∈ D
|ψ(η, ϕ)− ψ(η, ξ)| ≤W |ϕ− ξ|,

where W > 0 is a real constant.

3. Conclusions

In this present research article, we have examined Laplace Transform Method
as a Semi-Analytical Method and Numerical Method as Backward Euler’s Method
and solved fractional order ordinary differential equations. One can easily apply
these techniques to solve fractional order ordinary differential equations of Riemann-
Liouville and Caputo Type operators. For initial level of understanding of the
subject of fractional calculus, this research article is specially designed.
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