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extensions are collected in [14]. It should be mentioned that generic existence re-
sults in optimal control and the calculus of variations are discussed in [15] while
generic results in nonlinear analysis are presented in [3,8,11–13]. In particular, [15]
contains generic results on the existence of solutions for large classes of optimal
optimal control problems without convexity assumptions, generic existence results
for best approximation problems are presented in [1,3,11], generic existence of fixed
points for nonlinear operators is shown in [7, 8, 11] and the generic existence of a
unique zero of maximally monotone operators is shown in [13]. In the present paper
our goal is to obtain a generic existence of minimization problems with symmetry.
These results are important because has applications in crystallography [4]. The
first such result was obtained in [16].

In this paper we study four classes of symmetric optimization problems which
are identified with the corresponding spaces of objective functions, equipped with
appropriate complete metrics. Using the Baire category approach, for any of these
classes we show the existence of subset of the space of functions, which is a countable
intersection of open and everywhere dense sets, such that for every objective function
from this intersection the corresponding symmetric optimization problem possesses
a solution and is well-posed. These results are obtained as realizations of a general
variational principle which is established in this paper. This variational principle
extends the variational principle of [2].

2. A generic variational principle

We will obtain our well-posedness results as a realization of a variational principle
which is considered in this section. This variational principle is an extension of the
variational principle of [2].

We consider a complete metric space (X, ρ) which is called the domain space and
a complete metric space (A, d) which is called the data space. We always consider
the set X with the topology generated by the metric ρ. For the space A we consider
the topology generated by the metric d. This topology will be called the strong
topology. In addition to the strong topology we also consider a weaker topology
on A which is not necessarily Hausdorff. This topology will be called the weak
topology. (Note that these topologies can coincide.)

For each function h : Y → [−∞,∞], where Y is nonempty, set

inf(h) = inf{h(y) : y ∈ Y }

and

dom(h) = {y ∈ Y : h(y) < ∞}.
For each x ∈ X and each nonempty set D ⊂ X put

ρ(x,D) = inf{ρ(x, y) : y ∈ D}.

For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

If Z in a topological space and Y ⊂ Z, then Y is equipped with a relative
topology.
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We assume that with every a ∈ A a lower semicontinuous function fa on X is
associated with values in R̄ = [−∞,∞].

Assume that a mapping T : X → X is continuous and the mapping T 2 = T ◦ T
is an identity mapping in X:

(2.1) T 2(x) = x for all x ∈ X.

This implies that T (X) = X, if x1, x2 ∈ X and T (x1) = T (x2), then x1 = x2 and
that there exists T−1 = T .

Assume that AT ⊂ A is a closed set in the strong topology such that

(2.2) fa ◦ T = fa for all a ∈ AT .

The space AT ⊂ A is equipped with the relative weak and strong topologies. (Note
that these spaces can coincide.)

In our study we use the following basic hypothesis about the functions.
(H) For any a ∈ AT , any ϵ > 0 and any γ > 0 there exist a nonempty open set

W in A with the weak topology, x ∈ X, α ∈ R1 and η > 0 such that

W ∩ {b ∈ AT : d(a, b) < ϵ} ̸= ∅

and for any b ∈ W ,
(i) inf(fb) is finite;
(ii) if z ∈ X is such that fb(z) ≤ inf(fb) + η, then ρ(x, {z, T (z)}) ≤ γ and

|fb(z)− α| ≤ γ.
We show (see Theorem 2.1 below) that if (H) holds, then for a generic a ∈ A the

problem minimize fa(x) subject to x ∈ X, has a solution.
Given a ∈ AT we say that the problem of minimization of fa on X is well-posed

with respect to data in A (or just with respect to A) if the following assertions hold:
(1) inf(fa) is finite and there exists xa ∈ X such that

{x ∈ X : fa(x) = inf(fa)} = {xa, T (xa)}.

(2) For each ϵ > 0 there are a neighborhood V of a in A with the weak topology
and δ > 0 such that for each b ∈ V , inf(fb) is finite and if z ∈ X satisfies fb(z) ≤
inf(fb) + δ, then

|fb(z)− fa(xa)| ≤ ϵ

and

min{ρ(z, {xa, T (xa)}), ρ(T (z), {xa, T (xa)})} ≤ ϵ.

Theorem 2.1. Assume that (H) holds. Then there exists an everywhere dense (in
the strong topology) set B ⊂ AT which is a countable intersection of open (in the
weak topology) subsets of AT such that for any a ∈ B the minimization problem of
fa on X is well-posed with respect to A.

Following the tradition, we can summarize the theorem by saying that under the
assumption (H) the minimization problem for fa on (X, ρ) is generically well-posed
with respect to A or that the minimization problem for fa is well-posed with respect
to A for a generic a ∈ A.
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Proof. Let a ∈ AT . By (H) for any natural n = 1, 2, . . . there are a nonempty open
set U(a, n) in A with the weak topology, x(a, n) ∈ X, α(a, n) ∈ R1 and η(a, n) > 0
such that

(2.3) U(a, n) ∩ {b ∈ AT : d(a, b) < 1/n} ̸= ∅
and for any b ∈ U(a, n), inf(fb) is finite and if z ∈ X satisfies

fb(z) ≤ inf(fb) + η(a, n),

then
|fb(z)− α(a, n)| ≤ 1/n

and
ρ(x(a, n), {z, T (z)}) ≤ 1/n.

Define

(2.4) Bn = (∪{U(a,m) : a ∈ AT , m ≥ n}) ∩ AT

for n = 1, 2, . . . . Clearly for each integer n ≥ 1, the set Bn ⊂ AT is open in the
relative weak topology and in view of (2.3), it is everywhere dense in the relative
strong topology. Set

(2.5) B = ∩∞
n=1Bn.

Since for each integer n ≥ 1 the set Bn is also open in the relative strong topology
generated by the complete metric d we conclude that B is everywhere dense in the
relative strong topology.

Let

(2.6) b ∈ B.
Evidently inf(fb) is finite. By (2.4)-(2.6), there are a sequence {an}∞n=1 ⊂ AT and
a strictly increasing sequence of natural numbers {kn}∞n=1 such that

(2.7) b ∈ U(an, kn), n = 1, 2, . . . .

Assume that {zn}∞n=1 ⊂ X and

(2.8) lim
n→∞

fb(zn) = inf(fb).

Let m ≥ 1 be an integer. By (2.8), for all large enough n the inequality

(2.9) fb(zn) < inf(fb) + η(am, km)

is true and it follows from the definition of U(am, km), (2.3), (2.7) and (2.9) that

(2.10) |fb(zn)− α(am, km)| ≤ k−1
m

and

(2.11) ρ(x(am, km), {zn, T (zn)}) ≤ k−1
m

for all large enough n. Since m is an arbitrary natural number we conclude that
there exists a subsequence {zip}∞p=1 such that at least one of the sequences {zip}∞p=1

and {T (zip)}∞p=1 converge. Since the mapping T is continuous and T 2 is the identity
mapping we conclude that these both sequences converges. Denote

(2.12) xb = lim
p→∞

zip .



GENERIC WELL-POSEDNESS OF SYMMETRIC MINIMIZATION PROBLEMS 347

Then

T (xb) = lim
p→∞

T (zip).

As fb is lower semicontinuous, by (2.4)-(2.6) and (2.8),

(2.13) fb(xb) = fb(T (xb)) = inf(fb).

By (2.10) and (2.11) with zn = xb, n = 1, 2, . . . ,

(2.14) |fb(xb)− α(am, km)| ≤ k−1
m ,

(2.15) ρ(x(am, km), {xb, T (xb)}) ≤ k−1
m .

Assume that ξ ∈ X satisfies

(2.16) fb(ξ) = inf(fb).

By (2.10), (2.11) and (2.16) with zn = ξ, n = 1, 2, . . . ,

(2.17) ρ(x(am, km), {ξ, T (ξ)}) ≤ k−1
m .

Together with (2.15) and (2.17) these relations imply that

min{ρ(ξ, xb), ρ(ξ, T (xb)), ρ(T (ξ), xb), ρ(T (ξ), T (xb)} ≤ 2k−1
m .

Since m is any natural number we obtain that

min{ρ(ξ, xb), ρ(ξ, T (xb)), ρ(T (ξ), xb), ρ(T (ξ), T (xb))} = 0,

ξ ∈ {xb, T (xb)}
and

{x ∈ X : fb(x) = inf(fb)} = {xb, T (xb)}.
Let ϵ > 0. Choose a natural number m for which

(2.18) 4k−1
m < ϵ.

Let

(2.19) a ∈ U(am, km).

Clearly inf(fa) is finite. Let z ∈ X and

(2.20) fa(z) ≤ inf(fa) + η(am, km).

By the definition of U(am, km), (2.3), (2.19) and (2.20),

(2.21) |fa(z)− α(am, km)| ≤ k−1
m ,

(2.22) ρ(x(am, km), {z, T (z)}) ≤ k−1
m .

By (2.13)-(2.15), (2.18), (2.21) and (2.22),

| inf(fb)− fa(z)| ≤ 2k−1
m < ϵ,

min{ρ(z, xb), ρ(z, T (xb)), ρ(T (z), xb), ρ(T (z), T (xb))} ≤ ϵ.

Theorem 2.1 is proved. □



348 A. J. ZASLAVSKI

3. The first generic result

Assume that (X, ρ) is a complete metric space. Denote by Ml the set of all lower
semicontinuous and bounded from below functions f : X → R1. We equip the set
Ml with the uniformity determined by the following base

E(ϵ) = {(f, g) ∈ Ml ×Ml : |f(x)− g(x)| ≤ ϵ for all x ∈ X},
where ϵ > 0. It is known that this uniformity is metrizable (by a metric d) and
complete [14].

Denote by Mc the set of all continuous functions f ∈ Ml. It is not difficult to
see that Mc is a closed subset of Ml.

Consider a minimization problem

f(x) → min, x ∈ X,

where f ∈ Ml. Set
A = Ml

and fa = a for all a ∈ A. For the space A the strong and weak topologies coincide.
Assume that a mapping T : X → X is continuous and the mapping T 2 = T ◦ T

is an identity mapping in X:

T 2(x) = x for all x ∈ X.

In this section AT is either the set of all f ∈ Ml such that

f(T (x)) = f(x) for all x ∈ X

or the set of all f ∈ Mc satisfying the equation above.
Clearly, AT is a closed subset of A. It is equipped with the relative topology

induced by the metric d.
In [16] it was shown that there exists a set F ⊂ AT which is a countable inter-

section of open and everywhere dense sets in AT such that for each f ∈ F , the
minimization problem of f on X is well-posed with respect to A.

Here we deduce this result from Theorem 2.1. The following lemma was obtained
in [16].

Lemma 3.1. Assume that f ∈ AT , ϵ ∈ (0, 1), γ > 0,

δ ∈ (0, 8−1ϵγ),

x̄ ∈ X satisfies
f(x̄) ≤ inf(f) + δ,

f̄(x) = f(x) + γmin{1, ρ(x, x̄), ρ(T (x), x̄)}, x ∈ X

and that
U = {g ∈ Ml : (f̄ , g) ∈ E(δ)}.

Then f̄ ∈ AT and for each g ∈ U and each z ∈ X satisfying

g(z) ≤ inf(g) + δ

the following inequality holds:

min{ρ(z, x̄), ρ(T (z), x̄)} < ϵ.

We can easily proof the following auxiliary result.
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Lemma 3.2. Let f ∈ Ml and let ϵ be a positive number. Then there exists a
neighborhood U of f in Ml with the weak topology such that for each g ∈ U ,

| inf(g)− inf(f)| ≤ ϵ

and if x ∈ X satisfies g(x) ≤ inf(g) + ϵ, then

|g(x)− inf(f)| ≤ 2ϵ.

The following result holds.

Theorem 3.3. There exists an everywhere dense set B ⊂ AT which is a countable
intersection of open subsets of AT such that for any f ∈ B the minimization problem
of f on X is well-posed with respect to A.

By Theorem 2.1, in order to prove this result it is sufficient to show that (H)
holds. The hypothesis (H) follows from Lemmas 3.1 and 3.2.

4. The second and third generic result

Let (X, ρ) be a complete metric space. Fix θ ∈ X. Denote by M the set of all
bounded from below lower semicontinuous functions f : X → R1 ∪ {∞} such that

(4.1) dom(f) ̸= ∅ and f(x) → ∞ as ρ(x, θ) → ∞.

We equip the set M with strong and weak topologies.
For each function h : Y → R1 ∪ {∞}, where Y is nonempty, set

epi(h) = {(y, α) ∈ Y ×R1 : α ≥ h(y)}.
Assume that a mapping T : X → X is continuous and the mapping T 2 = T ◦ T

is an identity mapping in X:

(4.2) T 2(x) = x for all x ∈ X.

Set

(4.3) MT = {f ∈ M : f ◦ T = f}.
For the set M we consider the uniformity determined by the following base:

Es(n) = {(f, g) ∈ M×M :

(4.4) f(x) ≤ g(x) + n−1 and g(x) ≤ f(x) + n−1 for all x ∈ X},
where n is a natural number. Clearly this uniform space M is metrizable and
complete. Denote by τs the topology inM induced by this uniformity. The topology
τs is called the strong topology.

Now we equip the set M with a weak topology. We consider the complete metric
space X ×R1 with the metric ∆(·, ·) defined by

(4.5) ∆((x1, α1), (x2, α2)) = ρ(x1, x2) + |α1 − α2|, x1, x2 ∈ X ,α1, α2 ∈ R1.

For each lower semicontinuous bounded from below function f : X → R1 ∪ {∞}
with a nonempty epigraph define a function ∆f : X ×R1 → R1 by

(4.6) ∆f (x, α) = inf{∆((x, α), (y, β)) : (y, β) ∈ epi(f)}, (x, α) ∈ X ×R1.

For each natural number n denote by Ew(n) the set of all pairs (f, g) ∈ M × M
which have the following property:
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C(i) For each (x, α) ∈ X ×R1 satisfying ρ(x, θ) + |α| ≤ n,

(4.7) |∆f (x, α)−∆g(x, α)| ≤ n−1;

C(ii) For each (x, α) ∈ X ×R1 satisfying

(4.8) α ≤ n, min{∆f (x, α),∆g(x, α)} ≤ n

the inequality (4.7) is valid.
It was shown in Section 4.4 of [14] that for the set M there exists the uniformity

generated by the base Ew(n), n = 1, 2, . . . . This uniformity is metrizable (by a

metric ∆̂w) and it induces in M a topology τw which is weaker than τs. The
topology τw is called the weak topology.

For the set M we consider the metrizable uniformity determined by the following
base:

E(n) = {(f, g) ∈ M×M : (4.7) is valid for all (x, α) ∈ X ×R1

(4.9) satisfying ρ(x, θ) + |α| ≤ n}

where n = 1, 2, . . . . Denote by τ∗ the topology induced by this uniformity. The
topology τ∗ is called the epi-distance topology [14]. Clearly the topology τ∗ is weaker
than τw.

Let ϕ ∈ M. Denote by M(ϕ) the set of all f ∈ M satisfying f(x) ≥ ϕ(x) for all
x ∈ X. It is easy to verify that M(ϕ) is a closed subset of M with the topology
τw. We consider the topological subspace M(ϕ) ⊂ M with the relative weak and
strong topologies. Since the function ϕ satisfies (4.1) with f = ϕ for any natural
number n there exists a natural number m > n, depending on n and ϕ, such that
(4.8) implies

ρ(x, θ) + |α| ≤ m.

This implies that the topologies τw and τ∗ induce the same relative topology on
M(ϕ). Set

(4.10) MT (ϕ) = MT ∩M(ϕ).

Clearly, MT is a close set in M with the relative strong topology and MT (ϕ) is a
closed set in M(ϕ) with the relative strong topology. We prove the following two
results.

Theorem 4.1. Let A = M, fa = a, a ∈ A and AT = MT . Then there exists
an everywhere dense (in the strong topology) set B ⊂ AT which is a countable
intersection of open (in the weak topology) subsets of AT such that for any f ∈ B
the minimization problem of f on X is well-posed with respect to A.

Theorem 4.2. Let A = M(ϕ), AT = MT (ϕ) and fa = a, a ∈ M(ϕ). Then
there exists an everywhere dense (in the strong topology) set B ⊂ MT (ϕ) which is
a countable intersection of open (in the weak topology) subsets of MT (ϕ) such that
for any f ∈ B the minimization problem of f on X is well-posed with respect to
MT (ϕ).
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5. Proofs of Theorems 4.1 and 4.2

The next result follows from Lemmas 4.9 and 4.10 of [14].

Lemma 5.1. Let f ∈ M and let δ be a positive number. Then there exists a
neighborhood U of f in M with the weak topology such that for each g ∈ U

| inf{g(x) : x ∈ X} − inf{f(x) : x ∈ X}| ≤ δ.

Denote by ET the set of all f ∈ MT for which there exists xf ∈ X such that

(5.1) f(xf ) = inf{f(x) : x ∈ X}.

Lemma 5.2. Let

(5.2) f ∈ MT .

Then there exists a sequence fn ∈ ET , n = 1, 2 . . . such that fn(x) ≥ f(x) for all
x ∈ X and n = 1, 2, . . . and fn → f as n → ∞ in the strong topology.

Proof. For each natural number n there exists xn ∈ X such that

(5.3) f(xn) ≤ inf{f(x) : x ∈ X}+ 1/n.

For n = 1, 2, . . . define

(5.4) fn(x) = max{f(x), f(xn)} for all x ∈ X.

By (5.3) and (5.4), for n = 1, 2 . . . and all x ∈ X,

(5.5) fn(T (x)) = max{f(T (x)), f(xn)} = max{f(x), f(xn)} = fn(x).

By (5.1) and (5.3)-(5.5),

fn ∈ ET , n = 1, 2, . . . .

By (5.3) and (5.4),

lim
n→∞

fn = f

in the strong topology. Lemma 5.2 is proved. □

Lemma 5.3. Let f ∈ ET , xf ∈ X,

f(xf ) = inf{f(x) : x ∈ X},

(5.6) ϵ ∈ (0, 1), ϵ1 ∈ (0, ϵ), δ ∈ (0, 16−1ϵ21),

ρ(T (x), xf ) ≤ ϵ/8 for all x ∈ B(T (xf ), 2ϵ1),

(5.7) ρ(T (x), T (xf )) ≤ ϵ1 for all x ∈ B(xf , 6δϵ
−1).

Define a function f̄ by

(5.8) f̄(x) = f(x) + 2−1ϵmin{ρ(T (x), xf ), ρ(x, xf ), 1} for all x ∈ X.

Then there exists a neighborhood U of f̄ in M with the weak topology such that for
each g ∈ U and each x ∈ X satisfying g(x) ≤ inf(g) + δ,

|g(x)− f(xf )| ≤ ϵ,

min{ρ(x, xf ), ρ(T (x), xf )} ≤ ϵ.
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Proof. By (5.8),
f̄ ∈ ET .

Lemma 5.1 implies that there exists a neighborhood U0 of f̄ in M with the weak
topology such that

(5.9) | inf(g)− inf(f̄)| < δ/2 for all g ∈ U0.

Fix an integer

(5.10) n0 > | inf(f)|+ 4 + 4δ−1

and put

(5.11) U = U0 ∩ {g ∈ M : (f̄ , g) ∈ Ew(n0)}.
Let g ∈ U and let x ∈ X satisfy

(5.12) g(x) ≤ inf(g) + δ.

In view of (5.9), (5.11) and (5.12),

(5.13) g(x) ≤ inf(f̄) + 2δ.

It follows from C(ii), (5.10), (5.11) and (5.13) that there exist

(5.14) (y, α) ∈ epi(f̄)

such that

(5.15) ρ(y, x) ≤ 2n−1
0

and

(5.16) |α− (inf(f̄) + 2δ)| ≤ 2n−1
0 .

By (5.6), (5.8), (5.10), (5.14), (5.16) and the definition of f̄ ,

f(y) + 2−1ϵmin{ρ(y, xf ), ρ(T (y), xf ), 1} = f̄(y) ≤ α

≤ inf(f̄) + 2δ + 2n−1
0 ≤ inf(f̄) + 3δ

= f(xf ) + 3δ ≤ f(y) + δ.

Together with (5.7) this implies that

min{ρ(y, xf ), ρ(T (y), xf ), 1} ≤ 6δϵ−1

and

(5.17) min{ρ(y, xf ), ρ(T (y), xf )} ≤ 6δϵ−1.

By (5.9) and (5.13),

|g(x)− f(xf )| ≤ |g(x)− inf(g)|+ | inf(g)− inf(f̄)| ≤ 2δ < ϵ.

In view of (5.17), there are two cases:

(5.18) ρ(y, xf ) ≤ 6δϵ−1,

(5.19) ρ(T (y), xf )} ≤ 6δϵ−1.

If (5.18) is true, then together with (5.6), (5.10) and (5.15) this implies that

ρ(x, xf ) ≤ 2n−1
0 + 6δϵ−1 < ϵ.
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Assume that (5.19) holds. Then (5.7), (5.19) and the equality T 2(y) = y,

ρ(y, T (xf )) ≤ ϵ1.

Together with (5.10) and (5.15) this implies that

ρ(x, T (xf )) ≤ 2n−1
0 + ϵ1 ≤ 2ϵ1.

Together with (5.8) this implies that

ρ(T (x), xf ) ≤ ϵ/8.

Thus in both cases
min{ρ(x, xf ), ρ(T (x), xf )} ≤ ϵ.

Lemma 5.3 is proved. □
By Theorem 2.1, in order to prove Theorem 4.1 (Theorem 4.2 respectively) it is

sufficient to show that (H) holds. The hypothesis (H) follows from Lemmas 5.2 and
5.3.

6. The fourth result

Denote by Mb the set of all bounded from below lower semicontinuous functions
f : X → R1 ∪ {∞} which are not identically infinity. We equip the set Mb with a
weak and a strong topology.

For each natural number n denote by Gw(n) the set of all (f, g) ∈ Mb×Mb such
that

sup{∆f (x, α) : (x, α) ∈ epi(g)}, sup{∆g(x, α) : (x, α) ∈ epi(f)} ≤ n−1.

(Note that the equation above means that the Hausdorff distance between epigraphs
does not exceed 1/n.) For the set Mb we consider the complete metrizable unifor-
mity determined by the base Gw(n), n = 1, 2, . . . . We equip the space Mb with a
topology τw induced by this uniformity. The topology τw is called a weak topology.

Also for the set Mb we consider the complete metrizable uniformity determined
by the following base:

U(n) = {(f, g) ∈ Mb ×Mb :

f(x) ≤ g(x) + n−1 and g(x) ≤ f(x) + n−1, x ∈ X}.
The space Mb is endowed with the topology τs induced by this uniformity. The
topology τs is called a strong topology.

Set A = Mb and fa = a for each a ∈ A. Assume that a mapping T : X → X is
continuous and the mapping T 2 = T ◦ T is an identity mapping in X:

T 2(x) = x for all x ∈ X.

Set
AT = {f ∈ Mb : f ◦ T = f}.

Clearly, AT is a closed set in A with the strong topology. We prove the following
result.

Theorem 6.1. There exists an everywhere dense (in the strong topology) set B ⊂
AT which is a countable intersection of open (in the weak topology) subsets of AT

such that for any f ∈ B the minimization problem of f on X is well-posed with
respect to A.
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In order to prove Theorem 6.1 we need the following two lemmas. The first
lemma is proved in a straightforward manner.

Lemma 6.2. Assume that f ∈ Mb and that ϵ is a positive number. Then there
exists a neighborhood U of f in Mb with the weak topology such that

| inf(g)− inf(f)| ≤ ϵ for all g ∈ U.

Denote by E the set of all f ∈ AT such that there exists xf ∈ X satisfying

f(xf ) = inf{f(x) : x ∈ X}.
Analogously to Lemma 5.2 we can show that E is everywhere dense in AT with the
strong topology.

Lemma 6.3. Let f ∈ ET , xf ∈ X,

(6.1) f(xf ) = inf{f(x) : x ∈ X},

(6.2) ϵ ∈ (0, 1), ϵ1 ∈ (0, ϵ), δ ∈ (0, 16−1ϵ21),

(6.3) ρ(T (x), xf ) ≤ ϵ/8 for all x ∈ B(T (xf ), 2ϵ1),

(6.4) ρ(T (x), T (xf )) ≤ ϵ1 for all x ∈ B(xf , 6δϵ
−1).

Define a function f̄ by

(6.5) f̄(x) = f(x) + 2−1ϵmin{ρ(T (x), xf ), ρ(x, xf ), 1} for all x ∈ X.

Then there exists a neighborhood U of f̄ in A with the weak topology such that for
each g ∈ U and each x ∈ X satisfying g(x) ≤ inf(g) + δ,

|g(x)− f(xf )| ≤ ϵ

min{ρ(x, xf ), ρ(T (x), xf )} ≤ ϵ.

Proof. Clearly,

f̄ ∈ AT .

Lemma 6.2 implies that there exists a neighborhood U of f̄ in Mb with the weak
topology such that for each g ∈ U ,

(6.6) ∆g(x, α) ≤ 16−1δ, (x, α) ∈ epi(f̄),

(6.7) ∆f̄ (x, α) ≤ 16−1δ, (x, α) ∈ epi(g),

(6.8) | inf(g)− inf(f̄)| ≤ δ/16.

Let g ∈ U and let x ∈ X satisfy

(6.9) g(x) ≤ inf(g) + δ.

In view of (6.8) and (6.9),

(6.10) |g(x)− inf(f̄)| ≤ 2δ.

It follows from (6.8) and (6.10) that there exist

(6.11) (y, α) ∈ epi(f̄)
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such that

(6.12) ρ(y, x) ≤ 8−1δ

and

(6.13) |α− (inf(f̄) + 2δ)| ≤ 8−1δ.

By (6.1), (6.5), (6.11) and (6.13),

f(y) + 2−1ϵmin{ρ(y, xf ), ρ(T (y), xf ), 1} = f̄(y) ≤ α

≤ inf(f̄) + 2δ + 8−1δ ≤ f(xf ) + 3δ ≤ f(y) + δ

and

(6.14) min{ρ(y, xf ), ρ(T (y), xf )} ≤ 6δϵ−1.

By (6.1), (6.2), (6.5) and (6.10),

|g(x)− f(xf )| ≤ |g(x)− inf(f̄)| ≤ 2δ < ϵ.

In view of (6.14), there are two cases:

(6.15) ρ(y, xf ) ≤ 6δϵ−1,

(6.16) ρ(T (y), xf ) ≤ 6δϵ−1.

If (6.15) is true, then together with (6.2) and (6.12) this implies that

ρ(x, xf ) ≤ 6δϵ−1 + 8−1δ < ϵ.

Assume that (6.16) holds. Then by (6.4) and (6.16),

ρ(y, T (xf )) = ρ(T 2(y), T (xf )) ≤ ϵ1.

Together with (6.2) and (6.12) this implies that

ρ(x, T (xf )) ≤ ϵ1 + 8−1δ ≤ 2ϵ1.

Together with (6.3) this implies that

ρ(T (x), xf ) ≤ ϵ/8.

Thus in both cases

min{ρ(x, xf ), ρ(T (x), xf )} ≤ ϵ.

Lemma 6.3 is proved. □

By Theorem 2.1, in order to prove Theorem 6.1 it is sufficient to show that (H)
holds. The hypotheses (H) follows from Lemma 6.3.
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