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SOLITON WAVE SOLUTIONS OF THE OSKOLKOV EQUATION
ARISING IN INCOMPRESSIBLE VISCO-ELASTIC
KELVIN-VOIGT FLUID

MD. NUR ALAM, MD. SABUR UDDIN, AND CEMIL TUNC

ABSTRACT. A nonlinear model that defines the dynamics of an incompressible
viscoelastic Kelvin-Voigt fluid is observed in the instant investigation. The pro-
posed object is performed by manipulating computational results, and we de-
liberate especially kink wave and interaction between lump wave, rough wave
and periodic wave solutions of the model applying the -expansion method. This
analysis has manipulated this process to seek novel soliton wave results of the Os-
kolkov equation. The dynamics of obtained wave solutions are analyzed and illus-
trated in figures by selecting appropriate parameters. With 2D, 3D and contour
graphical representation, mathematical effects explicitly show the recommended
algorithm’s complete responsibility and high play in physics, mathematics and
engineering.

1. INTRODUCTION

Recently, the nonlinear dynamics have been continuously improved for various
innovative support, and outstanding development has been manufactured in the
contribution of the soliton solutions for nonlinear evolution equations (NLEEs),
which have been necessary inspection for researchers. Accordingly, the examina-
tions of the soliton effects for NLEEs have vast importance in examining nonlinear
natural impacts. The NLEEs have a meaningful impact on various sectors, for
example, fluid mechanics, nonlinear optics, signal processing, plasma physics, op-
tical fiber, water wave mechanics, and so numerous. Due to the reconstructed
features in multiple applications, the soliton solutions to NLEEs have attracted
various investigations’ offerings and play a vital function in investigating nonlinear
physical issues. Researchers have designed numerous ways in their various studies,
which as the novel (G'/G)-expansion method [3,4], simple equation method [25],
the modified (G'/G)-expansion method [5,6,8,12], the power index method [27],
Legendre-Galerkin spectral method [22], Sine-Gordon expansion method [26], ex-
tended Jacobian elliptic function expansion method [1], the Jacobi elliptic ansatz
method [14], Natural transform method [18], Kudryashov method [15], Jacobi ellip-
tic function method [17], Exp-function method [16], Fokas method [29], Generalized
Exp-Function method [20], Residual power series method [21], transformed ratio-
nal function method [24], Cole-Hopf transformation [23], the variation of (G'/G)-
expansion method [7] and so many, see ,for example [2,9-11,13,19,28] and the biogra-
phy therein. The goal of this letter is to provide the (®, ¥)-expansion method [7] to
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find new soliton wave solutions for the (1+ 1)-dimensional Oskolkov equation [2,13].
We are considering the (1+1)-dimensional Oskolkov equation:

(11) hy — ohyat — pahgsy + AR, = 0,

where h is a function of x and ¢ and o, py are constants. Equation (1) pre-
sented the dynamics of an incompressible visco-elastic Kelvin-Voigt fluid and fluid
dynamics. Various kinds of Oskolkov equation are determined through numerous
techniques [9,19] to build a closed-form wave solution. The modified simple equation
approach [19] is executed to discover the closed-form wave answer from Oskolkov
equation. The (G’/G)-expansion approach [2] is implemented to determine the
exact wave answer from Oskolkov equation.

2. GLIMPSE OF THE (¥, V)-EXPANSION METHOD

We are considering:

(21) P(h7 h$7hzl‘7ht7ﬁtt7hmt7"') :07

where P is a polynomial in A and its derivatives.
Step 1: Use the traveling variable:

(2.2) h=nh(z,t)=hT),T = ps(z— Vi),

where p3 and V' are constants to be determined later. Using (3) into (2), we get:

(2.3) R(h, psh/, p21", —psVH , p2V20" —p3V2H",...) = 0.

Step 2: Calculate N through rule of the homogeneous balance in equation (4).
Step 3: Considering the solving form:

M M
(2.4) h=> SU +> TU'a,
i=0 i=1
where ¥ = (%) and ¢ = (%) And 6 = ©(") and Q2 = Q(I') represent the
solution of the coupled Riccati equations

o(T) = — o (D),
Q) ={1-QI)}2

These coupled Riccati equations give us four types of hyperbolic function solutions
including sech, tanh, csch and coth such as

o(T) = £sech(T), Q(T") = tanh(T),

(") = £esch(T), Q) = coth(T).
Step 4: A polynomial in ¥ or ® is accomplished plugging equation (5) into equa-
tion (4). Determining the coefficients of the equivalent power of ¥ or ® produces a

system of algebraic equations, which can be determined to construct the values of
S; or T; using MAPLE. Turning the over measured values of S; or T; in equation
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(5), the general solution of the studied equation completes the calculations of the
result of the proposed model.

3. MATHEMATICAL ANALYSIS

We are considering the Oskolkov equation:

(3.1) he — Ohiggt — Pohiag + iy = 0.
Using h = hi(z,t) = (") and I" = psx — pat, then (6) becomes:
(3.2) 2p2pap1 i — 2papah — 2pah + p3h? = 0.

Now implementing the method of homogeneous balance between A” and A2 in
(7), then we find:

KI) = SoU° + S1U! + S 02 + 1000 + T T d
(3.3) T ,
= (So—T3) + o (S1+T1)Q+ (S2 + T)Q°.

Collecting the coefficient of ¥ and ® and solving the resultant system, then we find:

Cluster I:
-1 —pa 6
3 =4/ — =—= S == T,
D3 \/ 2p; Da 10p; 0 5P3P2+ 2

12

6
S1 = — P3P, Sy = =bsp2 — T, T =0.

Substituting the above values of (8), we get:

() = gpgpg{l — 2tanh(T) + tanh*(T)}.

hio(T) = §p3p2{1 — 2coth(T') + coth?(T)}.

5
Cluster II:
1 P2 18
p3 \/ 2p;’ P4 10p;’ 0 5 p3p2 + 12,
12 6
S = = P3D2; Sy = —zPsp2 — T, T =0.

Similarly, we get:

ig(T) = gpgpg{:s — %tanh(T) — tanh?(T)}.

hy(T) = §p3p2{3 — 2coth(T) — coth?(I')}.

Cluster III:

—1 D2 6
==+ YR = Th_ > So=—- T: ’
p3 \/ 2p, D4 10p1 0 5]03172 + 12
12 6
S1 = —p3p2, So=——p3p2—"Tp, 11 =0.

) 5
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Similarly, we get:

hs(T) = —gpgpz{l + 2tanh(T) + tanh?(T)}.

he(T') = —§p3p2{1 + 2coth(T') + coth*(T)}.

5
Cluster IV:
1 —p2 18
== ’ = ) So=—— T: ’
D3 \/ 24p; P4 10p; 0 5 p3p2 + 13
12 6
S1 = = P3D2; Sy = =Psp2 — Ty, 11 =0.

Similarly, we get:

he(T') = gpgpg{—?) — 2tanh(T') + tanh*(T)}.

ig(T) = gpgpg{—:a — 2coth(T) + coth(T)}.

4. NUMERICAL SIMULATIONS

In this part, we found some new soliton wave solutions that represented as hy-
perbolic function solutions through the (®, ¥)-expansion method. After applying
the (@, ¥)-expansion method, we got six new soliton wave answers: Representation
kink-type shape and interaction between lump shape and rough wave shapes. Us-
ing the (®, ¥)-expansion method to the Oskolkov equation has not been published
earlier to our knowledge’s skilled. We will provide a few graphical depictions of the
nonlinear model’s above-defined new soliton wave answers arising in incompressible
visco-elastic Kelvin-Voigt fluid received employing the (@, ¥)-expansion method.
Figures 1 to 4 illustrate the graphical depictions of some selected computational
results of the problem received utilizing the studied method. They are pictured
below. In Figure 1, we show the kink-type wave shape of the solution h; using the
following parameter values A =3 , u =1, p; = 0.5 and po = 1 . In particular,
Figure 1 shows the three-dimensional shape and contour shape of the solution A;.
Using the same parameter values as shown three-dimensional shape and the con-
tour shape of the solution Ao, hs and A4 represented by the lump shape, rough wave
shape and interaction between lump shape and rough wave shapes are plotted in
Figures 2, 3 and 4.

5. CONCLUSION

This study successfully performed the (®, ¥)-expansion method on the Oskolkov
equation that defines the dynamics of an incompressible visco-elastic Kelvin-Voigt
fluid. Utilizing the (®, ¥)-expansion method, we make some new soliton wave so-
lutions such as hyperbolic function solutions which represent as kink-type shape,
the interaction between lump shape and rough wave shapes. The applied method’s
play reveals that this method’s effectiveness and attraction and its power to perform
other nonlinear models arising physics, mathematics and engineering and deserves
future research.
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FIGURE 1. The graphical representation of the solution f;: (a) Real
three dimensional shape, (b) Imaginary three dimensional shape, (c)

Real contour plot, (d) Imaginary contour plot, (e) Real two dimen-
sional plot and (f) Imaginary two dimensional plot.

FIGURE 2. The graphical representation of the solution %y: (a) Real
three dimensional shape, (b) Imaginary three dimensional shape, (c)
Real contour plot, (d) Imaginary contour plot, (e) Real two dimen-
sional plot and (f) Imaginary two dimensional plot.
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FIGURE 3. The graphical representation of the solution fz: (a)
Three dimensional shape, (b) contour plot and (¢) Two dimensional
plot.

C.

FIGURE 4. The graphical representation of the solution fs: (a)
Three dimensional shape, (b) contour plot and (¢) Two dimensional
plot.
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