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optimization problem into single objective without constraints. Thereafter, the
exponential penalty function will be applied to transform the last formulation of
the problem into a single objective optimization without constraints problem which
is a modification of the MOMA-Plus method and we will obtain a variant of MOMA-
Plus. We will demonstrate the theoretical foundation of this MOMA-Plus modified
version and thereafter apply it to solve six test problems taken in Zitzler [6].

To better present our work, Section 2 will be used as preliminary. Section 3 will
include the main findings of this work and Section 4 will deal with the conclusion.

2. Preliminary

2.1. Definitions.
A multiobjective optimization problem can be formulated as follows :

(2.1)
min f(x) = (f1(x), f2(x), · · · , fp(x))

s.t :

{
g(x) ≤ 0
x ∈ Rn

where f = {f1, f2, · · · , fp} is the vector whose components are the objective func-
tions; g = {g1, g2, · · · , gm} is also a vector whose components are the constraints
for the optimization of f . In order to solve this problem, it is important for us to
know the decision space and the objective space which are given by :

(2.2) χ = {x ∈ Rn, g(x) ≤ 0} and Y = f(χ).

Definition 2.1. For x∗ ∈ χ, x∗ is a weakly Pareto optimal for the problem (2.1)
if and only if there is no other point x ∈ χ such as : fj(x) < fj(x

∗), ∀ j = 1, p.

Definition 2.2. For x∗ ∈ χ, x∗ is a Pareto optimal for the problem (2.1) if and
only if there is no other point x ∈ χ such as : fj(x) ≤ fj(x

∗), ∀ j = 1, p and at
least one j ∈ {1, 2, · · · , p}, fj(x) < fj(x

∗).

Definition 2.3. For z∗ ∈ Y , z∗ is called ideal point if and only if the components
of z∗ are obtained by the following formula : z∗k = minx∈χ fk(x), k = 1, p.

Definition 2.4. For a objective function f = (f1, f2, · · · , fp) of a considered opti-
mization problem, the Tchebychev weighted distance is formulated by :

(2.3) Ψ(f(x), λ, z∗) = max
j

{
λj |fj(x)− z∗j |

}
, j = 1, 2, · · · , p

where λ = (λ1, λ2, · · · , λp) such as λj > 0 and
∑p

j=1 λj = 1.

Definition 2.5. For a function with several variables, the Alienor transformation
allowing to transform it in single variable is formulated as following [3] :

(2.4) xi = hi(θ) =
1

2

[
(bi − ai) cos(ωiθ + ϕi) + ai + bi

]
, with i = 1, · · · , n.

where ∀i = 1, n, ωi and ϕi are sequences which are slowly increasing and θ ∈

[0; θmax], with θmax =
(b− a)θ1 + (b+ a)

2
and θ1 =

2π − ϕ1

ω1
.

Note that a = mini=1,n ai and b = maxi=1,n bi with xi ∈ [ai, bi], i = 1, n.
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Theorem 2.6. (See in [3]). All point in Rn can be approached at least by one point
defined by Alienor transformation xi = h(θ).

Proof. The proof can be seen in [3] at page 19. □

Many other Alienor transformation can be found in the literature [1, 4].

Definition 2.7 (See in [10]). A penalty function is a function which enables the
transformation of the constrained optimization problem into unconstrained opti-
mization problem. A better example is the exponential penalty function which will
be used in this work :

(2.5) Pn(x) =
1

ϱn

m∑
i=1

ϑ[ϱngi(x)]

where ϑ(t) = exp(t− 1) and ϱn is the penalty coefficient satisfying lim
n→+∞

ϱn = +∞.

2.2. MOMA-Plus method description.
MOMA-Plus method is a method developed by Somé K. [19,20] for the resolution of
multiobjective optimization problem. It consists in transforming a given multiobjec-
tive optimization problem into the single objective optimization and using Alienor
transformation to reduce the number of variable before looking for the solutions.
These main steps are :

aggregation : they use an aggregative function defined in the Definition 2.4
to transform the initial problem into a single objective optimization problem
with constraints;

penalization : it is at this stage that the obtained problem from step 1 is
transformed into single objective optimization problem without constraints
by using the penalty function presented in Definition 2.7;

domain reduction : MOMA-Plus authors use the Alienor transformation
(see Definition 2.5 ) to transform the previous problem form several variables
into single variable;

resolution : for the resolution of the obtained problem which is a single ob-
jective and a single variable the authors use the Nelder-Mead simplex algo-
rithm [15];

solution initialization : the obtained solution is one dimension solution and
the initialization of this solution in the dimension of the initial problem needs
to re-use the previous Alienor transformation given by the relation (2.4).

3. Main results

The new method proposed in this work corresponds to the modified version of
MOMA-Plus in which the Lagrange penalty function is replaced by a penalty ex-
ponential function. The theoretical and numerical results will be presented in this
section.

3.1. Theoretical results.
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3.1.1. MOMA-Plus Modified version.
Each step of our method will be presented in this paragraph.

STEP I : Objective functions aggregation
The use of the aggregation function defined in Definition 2.4 gives the fol-
lowing problem :

(3.1)
min Ψ(f(x), λ, z∗)

s.t :

{
g(x) ≤ 0
x ∈ Rn.

Theorem 3.1. All optimal solution of the problem (3.1) is the Pareto op-
timal solution to the problem (2.1) and conversely.

Proof. Let x∗ be a Pareto optimal solution to the problem (2.1) and note
that I = {1, 2, · · · , p} and z∗ = (z∗1 , z

∗
2 , · · · , z∗p) the ideal point. Then, there

is no solution x ∈ χ such as fj(x) ≤ fj(x
∗), ∀ j ∈ I and at least one k ̸=

j, fk(x) < fk(x
∗).

=⇒ ∄x such as : fj(x)− z∗j ≤ fj(x
∗)− z∗j , ∀ j ∈ I and at

least one k ̸= jand fk(x)− z∗k < fk(x
∗)− z∗k .

=⇒ ∄x such as : |fj(x)− z∗j | ≤ |fj(x∗)− z∗j |, ∀ j ∈ I and at

least one k ̸= j and |fk(x)− z∗k| < |fk(x∗)− z∗k|.
=⇒ ∄x such as : max

j∈I
{|fj(x)− z∗j |} ≤ max

j∈I
{|fj(x∗)− z∗j |} and at

least one k ̸= j and

max
k
{|fk(x)− z∗k|} < max

k
{|fk(x∗)− z∗k|}.

=⇒ ∄x such as : Ψ(f(x), λ, z∗) < Ψ(f(x∗), λ, z∗).

This implies that x∗ is the optimal solution to the problem (3.1).

Conversely, let x∗ be an optimal solution to the problem (3.1). Then
∀x ∈ χ , Ψ(f(x∗), λ, z∗) < Ψ(f(x), λ, z∗). Assuming that x∗ is not a Pareto
optimal solution to the problem (2.1). Then ∃y ∈ χ, ∀j ∈ I , fj(y) ≤ fj(x

∗)
and at least one k ∈ I, fk(y) < fk(x

∗).

=⇒ ∃y ∈ χ, ∀j ∈ I : fj(y)− z∗j ≤ fj(x
∗)− z∗j and at least one

k ̸= j, fk(y)− z∗k < fk(x
∗)− z∗k

=⇒ ∃y ∈ χ, ∀j ∈ I : λj |fj(y)− z∗j | ≤ λj |fj(x∗)− z∗j | and at least

one k ̸= j, λj |fj(y)− z∗j | < λj |fj(x∗)− z∗j |
=⇒ ∃y ∈ χ, ∀j ∈ I : max

j∈J
{λj |fj(y)− z∗j |} ≤ max

j∈J
{λj |fj(x∗)− z∗j |}.

=⇒ ∃y ∈ χ, ∀j ∈ I : Ψ(f(y), λ, z∗) ≤ Ψ(f(x∗), λ, z∗) which is

absurd.

Therefore x∗ is a Pareto optimal solution to the problem (2.1). □
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STEP II : Penalization of constraints
For the conversion of the problem (3.1) into a single objective optimiza-
tion problem without constraints, we use the exponential penalty function
defined in the relation (2.5). We obtain the following formulation :

(3.2) minx∈χ Γ (x) = Ψ(f, λ, z∗) +
1

ϱn

m∑
i=1

ϑ[ϱngi(x)].

First of all, let us enumerate the important properties about this exponential
penalty function :

Lemma 3.2 (See in [10]). Let χ be the set of eligible solutions of the problem
(2.1). So :

(i) if x ∈ χ, then lim
ϱn→+∞

1

ϱn

m∑
i=1

ϑ[ϱngi(x)] = 0;

(ii) if x /∈ χ, then lim
ϱn→+∞

1

ϱn

m∑
i=1

ϑ[ϱngi(x)] = +∞.

Definition 3.3 (See in [10]). Let us define Sn ⊂ Rk and
(i) lim

n→+∞
Sn = {x ∈ Rk : x ∈ Sn for infinitely many n ∈ N∗, };

(ii) lim
n→+∞

Sn = {x ∈ Rk : x ∈ Sn for all but finitely many n ∈ N∗}.

We note χ∗ the set of the weakly Pareto optimal solutions to the problem
(2.1).

Lemma 3.4 (See in [10]). Let be ϱn > 0 and lim
ϱn→+∞

ϱn = +∞. If x∗ ∈

lim
n→+∞

χ∗
n then x∗ ∈ χ.

Proof. See in [10], Lemma 2, page 669. □

Let us designate by χ∗
n\χ∗ = {x : x ∈ χ∗

n, but x /∈ χ∗}. Let Y ∗
n = {x∗}

be the optimal solution of the problem (3.2).

Theorem 3.5. lim
n→+∞

(Y ∗
n \χ∗) = ∅.

Proof. Assuming that lim
n→+∞

(Y ∗
n \χ∗) ̸= ∅. Then there exists a subset {nk, k =

1, 2, · · · } such as x′ ∈ lim
nk→+∞

(Y ∗
nk
\χ∗). Thus, ∃ n0 > 0 such as for nk ≥ n0

we have x′ ∈ Y ∗
nk
\χ∗. As x′ ∈ Y ∗

n then Γ (x′) < Γ (y), ∀y ∈ χ.
If x′ ∈ χ, as x′ /∈ χ∗, so there ∃y ∈ χ such as fj(y) < fj(x

′), ∀j ∈ I.

=⇒ ∀j ∈ I : fj(y)− z∗j < fj(x
′)− z∗j ,

=⇒ ∀j ∈ I : |fj(y)− z∗j | < |fj(x′)− z∗j |,
=⇒ ∀j ∈ I : λj |fj(y)− z∗j | < λj |fj(x′)− z∗j |,
=⇒ ∀j ∈ I : Ψ(f(y), λ, z∗) < Ψ(f(x′), λ, z∗).
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Moreover, as x′ ∈ χ and also y ∈ χ, according to the Lemma 3.2 we have
these two equations :

lim
nk→+∞

(
1

ϱnk

m∑
i=1

ϑ(ϱngi(x
′))) = 0

lim
nk→+∞

(
1

ϱnk

m∑
i=1

ϑ(ϱnk
gi(y))) = 0.

So ∃ n0 ∈ N∗, nk > n0,

Ψ(f(y), λ, z∗) +
1

ϱnk

m∑
i=1

ϑ(ϱnk
gi(y)) < Ψ(f(x′), λ, z∗) +

1

ϱnk

m∑
i=1

ϑ(ϱnk
gi(x

′)).

That implies that Γ (y) < Γ (x′) which is absurd.

If x′ /∈ χ, then there exists y ∈ χ such as fj(y) < fj(x
′), ∀j ∈ I. We obtain

the same result which is Ψ(f(y), λ, z∗) < Ψ(f(x′), λ, z∗). But as x′ /∈ χ and
y ∈ χ, according to the Lemma 3.2, we have these two equations :

lim
nk→+∞

(
1

ϱnk

m∑
i=1

ϑ(ϱngi(x
′))) = +∞

lim
nk→+∞

(
1

ϱnk

m∑
i=1

ϑ(ϱnk
gi(y))) = 0.

So there exists n0 ∈ N∗, nk ≥ n0 :

Ψ(f(y), λ, z∗) +
1

ϱnk

m∑
i=1

ϑ(ϱnk
gi(y)) < Ψ(f(x′), λ, z∗) +

1

ϱnk

m∑
i=1

ϑ(ϱnk
gi(x

′)).

Thereafter Γ (y) < Γ (x′), which is absurd because x′ ∈ Y ∗
n , hence

lim
n→+∞

(Y ∗
n \χ∗) = ∅. □

Theorem 3.6. lim
n→+∞

(Y ∗
n \χ∗) = ∅.

Proof. Assuming that lim
n→+∞

(Y ∗
n \χ∗) ̸= ∅.

Then ∃x′ ∈ lim
n→+∞

(Y ∗
n \χ∗) and there exists n0 such as for n ≥ n0, x

′ ∈ Y ∗
n \χ∗

which leads to x′ ∈ Y ∗
n and x′ /∈ χ∗ from n0. So

(3.3) ∀y ∈ χ, Γ (x′) < Γ (y).

If x′ ∈ χ, as x′ /∈ χ∗ there exists y ∈ χ such as fj(y) < fj(x
′). Based on the

previous Proof the inequality Ψ(f(y), λ, z∗) < Ψ(f(x′), λ, z∗) is verified. As
x′ ∈ χ according to the Lemma 3.2,

lim
n→+∞

1

ϱn

m∑
i=1

ϑ(ϱngi(x
′)) = 0 and lim

n→+∞

1

ϱn

m∑
i=1

ϑ(ϱngi(y)) = 0.

So ∃n0 > 0, n ≥ n0 :

Ψ(f(y, λ, z∗))+
1

ϱn

m∑
i=1

ϑ(ϱngi(y)) < Ψ(f(x′), λ, z∗)+
1

ϱn

m∑
i=1

ϑ(ϱngi(x
′)). It is

equivalent to Γ (y) < Γ (x′). This inequality is a contradiction according to
the relation (3.3) because x′ is an optimal solution to the problem (3.2).

If x′ /∈ χ, ∃y ∈ χ, fj(y) < fj(x
′), ∀j ∈ I. The same reasoning gives

Ψ(f(y), λ, z∗) < Ψ(f(x′), λ, z∗). As x′ /∈ χ, according to the Lemma 3.2,
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lim
n→+∞

1

ϱn

m∑
i=1

ϑ(ϱngi(x
′)) = +∞ and lim

n→+∞

1

ϱn

m∑
i=1

ϑ(ϱngi(y)) = 0. So ∃n0 >

0, n > n0,
1

ϱn

m∑
i=1

ϑ(ϱngi(y)) <
1

ϱn

m∑
i=1

ϑ(ϱngi(x
′)). Hence Ψ(f(y), λ, z∗) +

1

ϱn

m∑
i=1

ϑ(ϱngi(y)) < Ψ(f(x′), λ, z∗) +
1

ϱn

m∑
i=1

ϑ(ϱngi(x
′)). So Γ (y) < Γ (x′) which

is absurd because x′ is an optimal solution of the problem (3.2), hence
lim

n→+∞
(Y ∗

n \χ∗) = ∅. □

STEP III : Decision space reduction
Alienor transformation presented by relation (2.4) is used here to transform
several variables problems into a single variable problem as follows :

(3.4)

{
min Γ (θ)

θ ∈ [0; θmax]

with Γ (h(θ)) = (Γ ◦ h)(θ) where h(θ) =
(
h1(θ), h2(θ), · · · , hn(θ)

)
.

Theorem 3.7 (See in [3]). All minimum value of the problem (3.2) can be
approached by the minimum value of the problem (3.4).

Proof. The proof can be found in [3]. □

STEP IV : Resolution in reduced space
As the problem (3.4) is a single objective with one variable then Nelder-
Mead algorithm [15] has been used to solve it. This resolution is done after
the discretization of research domain [0; θmax] as follows (See in [18]) : where

Figure 1. Nested domains

x1 = 0 and xn+1 = θmax.
STEP V : Solution configuration

After obtaining the optimal solution of the problem (3.4), we will re-use the
Alienor transformation defined above to build a Pareto optimal solution of
the initial problem (2.1).

3.1.2. Algorithm of MOMA-Plus modified version.
These are the main steps towards the algorithm of our new method :

(1) Choose λ;
(2) For j from 1 to p do

Ψ(x)←− max
[
λj |fj(x)− z∗j |

]
(”aggregation”);

End for
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(3) P (x)←− ϑ[ϱng1(x)];
For i from 2 to m do

P (x)←− P (x) + ϑ[ϱngi(x)];
End for
Γ (x)←− Ψ(x) + P (x); (”penalization”)

(4) For i from 1 to n to
xi = hi(θ); (”Alienor transformation”)

End for
F (θ)←− Γ (h1(θ), h2(θ), · · · , hn(θ));

(5) θ ←− Apply Nelder-Mead algorithm to F(θ); (”resolution”)
(6) For i from 1 to n,

xi = hi(θ); (”solution initialization”)
End for

3.2. Numerical results.

3.2.1. Problems test presentation.
All multiobjective problems dealt with in this work are from the Zitzler [6] test
problems which are presented in the following table :

Remark 3.8. For the problems whose constraints have the form xi ∈ [ai, bi], we
will transform them into two constraints namely xi − bi ≤ 0 and ai − xi ≤ 0, ∀i.

3.2.2. Graphic representation of Pareto optimal solutions.

3.2.3. Performance analysis.
A performance study of the obtained solutions is done on the convergence to the
Pareto front and the diversification on the Pareto front. There are many formulas
in the literature to access the performance of algorithms but we use those proposed
by Deb et al [6]. It is γ for the convergence and ∆ for the diversification :

(3.5) γ =

√
N∑
i=1

d2i

N
and ∆ =

df + dl +
N−1∑
i=1
|di − d|

df + dl + (N − 1)d

where N is the number of the solutions given by the MOMA-Plus modified version;
df and dl are respectively the euclidean distances between upper extreme solutions

and lower extreme solutions given by MOMA-Plus modified version; di and d are
respectively the euclidean distances between two consecutive obtained solutions and
the arithmetic average of di. The following table presents the value of convergence
and diversification :

For a comparative study of our results, the following table shows the performance
index for the same test problem provided by initial version of MOMA-Plus [18] :

According to the table 2 and 3, MOMA-Plus modified version is better than the
initial version of MOMA-Plus about the convergence of the obtained solutions in all
test problems. However, we have the opposite result for the diversification criterion.
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Table 1. Multiobjective test problems

Indexes Mathematical formulation n Bounds

T1


min f1(x1, x2) = x1

min f2(x1, x2) =
1 + x2

x1

0.1 ⩽ x1 ⩽ 1

0 ⩽ x2 ⩽ 5

2 x1, x2 ∈ [0; 1]

T2


min f1(x) = x2

min f2(x) = (x− 2)2

−5 ⩽ x ⩽ 5

1 x ∈ [0; 4]

T3



min f1(x) = x1

min f2(x) = g
(
1−

√
f1(x)

g

)
g(x) = 1 +

9

n− 1
×

n∑
i=2

xi

x = (x1, x2, · · · , xn) ∈ [0.1]n

30 xi ∈ [0; 1]

T4



min f1(x) = x1

min f2(x) = g(x)× (1− (
f1
g
)2)

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

x = (x1, x2, · · · , xn) ∈ [0.1]n

30 xi ∈ [0; 1]

T5



min f1(x) = x1

min f2(x) = g(x)× h(x)

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

h(x) = 1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πf1(x))

x = (x1, x2, · · · , xn) ∈ [0.1]n

30 xi ∈ [0; 1]

T6



min f1(x) = x1

min f2(x) = g(x)×
√

1− f1
g

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi

x = (x1, x2, · · · , xn) ∈ [0.1]n

30 xi ∈ [0; 1]

Table 2. MOMA-Plus modified version performances

MOMA-Plus modified T1 T2 T3 T4 T5 T6

γ 0.0077 0.0011 0.0044 0.0018 0.0029 0.0018
∆ 0.9819 0.9843 0.9823 0.9821 0.9823 0.9819

Table 3. MOMA-Plus method performances

MOMA-Plus T1 T2 T3 T4 T5 T6

γ 0.0691 0.0042 0.0046 0.0137 0.0599 0.1154
∆ 1.1833 0.0309 0.9820 0.3483 0.9835 0.9818
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4. Conclusion

Testing the MOMA-Plus modified version on six test problems has indeed been
a success. This enables us to obtain solutions with better convergence and diver-
sification. Moreover, our work mainly consisted of an analytical approach at each
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stage of the MOMA-Plus modified version. Thus, the numerical results have lead
us to conclude that MOMA-Plus modified version is the best alternative for solving
multiobjective optimization problem when the convergence is the main criterion.
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