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to detect error in digital communications, to implement multilayer perception in
neutral network, cryptography, etc.. Several inclusion problems involving XOR-
operation are introduced and studied by Li and his co-author [15–19], Ahmad et
al [3, 4, 15] and others. The above mentioned facts motivated us to extend the
problem studied by Ahmad and Yao [1] with XOR-operation in q-uniformly smooth
Banach spaces. That is, a system of generalized resolvent equations involving XOR-
operation in q-uniformly smooth Banach spaces is considered and studied.

2. Preliminaries

Let E be a real Banach space with its norm ∥ ·∥, E∗ be the topological dual of E,
⟨·, ·⟩ be the duality pairing between E and E∗, d be the metric induced by the norm
∥ · ∥, 2E (respectively CB(E)) be the family of non-empty (respectively, nonempty
closed and bounded) subsets of E, and D(·.·) be the Hausdorff metric on CB(E)
defined by

D(P,Q) = max{Sup
x∈P

d(x,Q), Sup
y∈Q

d(P, y)},

where

d(x,Q) = Inf
y∈Q

d(x, y) and d(P, y) = Inf
x∈P

d(x, y).

The following concepts are required for the presentation of this paper.

Definition 2.1. The generalized duality mapping Jq : E → 2E
∗
is defined by

Jq(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥q and ∥f∥ = ∥x∥q−1}, for all x ∈ E,

where q > 1 is a constant. It is well known that

Jq(x) = ∥x∥q−2J(x),

for all x ∈ E. If E is a Hilbert space, then J is the identity mapping. We mention
some properties of generalized duality mapping Jq below:

(i) Jq(x) = ∥x∥q−2J2(x), for all x ∈ E, x ̸= 0,
(ii) Jq(tx) = tq−1Jq(x), for all x ∈ E and t ∈ [0,∞),
(iii) Jq(x) = −Jq(x), for all x ∈ E.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(t) = Sup

{
∥x+ y∥+ ∥x− y∥

2
− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ t

}
.

A Banach space E is called uniformly smooth if

lim
t→0

ρE(t)

t
= 0,

and is called q-uniformly smooth, if there exist a constant C > 0 such that

ρE(t) ≤ Ctq, q > 1.

Lemma 2.2 ( [25]). Let E be a real uniformly smooth Banach space. Then, E is
q-uniformly smooth if and only if there exists Cq > 0 such that for all x, y ∈ E,

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ Cq∥y∥q.



XOR-OPERATION IN q-BANACH SPACE 311

Throughout the paper, we take E to be real ordered Banach space, unless other-
wise specified.

Definition 2.3. A nonempty closed convex subset P of E is said to be cone, if

(i) for any x ∈ P and λ > 0, then λx ∈ P ,
(ii) for any x ∈ P and −x ∈ P , then x = 0.

Definition 2.4. Let P be a cone. For arbitrary elements x, y ∈ E, x ≤ y holds if
and only if x− y ∈ P . Then, the relation “ ≤ ” in E is called partial order relation.

The following concepts and results can be found in [9, 15–19].

Definition 2.5. For arbitrary elements x, y ∈ E, if x ≤ y(or y ≤ x) holds, then x
and y are said to be comparable to each other (denoted by x ∝ y).

Definition 2.6. For arbitrary elements x, y ∈ E, lub{x, y} and glb{x, y} means
the least upper bound and the greatest lower bound for the set {x, y}. Suppose
lub{x, y} and glb{x, y} exist, then some binary operations are defined as follows:

(i) x ∨ y = lub{x, y},
(ii) x ∧ y = glb{x, y},
(iii) x⊕ y = (x− y) ∨ (y − x),
(iv) x⊙ y = (x− y) ∧ (y − x).

The operators ∧,∨,⊕ and ⊙ are called OR, AND, XOR and XNOR operations,
respectively.

Proposition 2.7. Let ⊕ be an XOR-operation and ⊙ be an XNOR-operation. Then
the following assertions hold:

(i) x⊙ x = 0, x⊙ y = y ⊙ x = −(x⊕ y) = −(y ⊕ x),
(ii) if x ∝ 0, −x⊕ 0 ≤ x ≤ x⊕ 0,
(iii) (λx)⊕ (λy) = |λ|(x⊕ y),
(iv) 0 ≤ x⊕ y, if x ∝ y,
(v) if x ∝ y, then x⊕ y = 0, if and only if x = y.

Proposition 2.8. Let P be a cone in E, then for each x, y ∈ E, the following
relations hold:

(i) ∥0⊕ 0∥ = ∥0∥ = 0,
(ii) ∥x ∨ y∥ ≤ ∥x∥ ∨ ∥y∥ ≤ ∥x∥+ ∥y∥,
(iii) ∥x⊕ y∥ ≤ ∥x− y∥,
(iv) if x ∝ y, then ∥x⊕ y∥ = ∥x− y∥.

Definition 2.9. Let M : E → 2E be a set-valued mapping and M(x) be a closed
subset in E. Then

(i) The set-valued mapping M is said to be a comparison mapping, if for any
vx ∈ M(x), x ∝ vx, and if x ∝ y, then for any vx ∈ M(x) and any vy ∈
M(y), vx ∝ vy, for all x, y ∈ E,

(ii) The set-valued comparison mapping M is said to be α-non-ordinary differ-
ence mapping if for each x, y ∈ E, vx ∈ M(x) and vy ∈ M(y), there exist a
constant α > 0 such that (vx ⊕ vy)⊕ α(x⊕ y) = 0.
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(iii) The set-valued comparison mapping M is said to be ρ-order monotone map-
ping, if there exists a constant ρ > 0 such that

ρ(vx − vy) ≥ (x− y), for all x, y ∈ E, vx ∈ M(x) and vy ∈ M(y).

(iv) The set-valued comparison mapping M is said to be an (α, ρ)-NODM map-
ping, if M is an α-non-ordinary difference and ρ-order monotone mapping,
and

(I + ρM)(E) = E, for all α, ρ > 0.

Lemma 2.10 ([15]). If M is an α-non-ordinary difference mapping, then an inverse
mapping Jρ

M = (I+ρM)−1 : E → 2E of (I+ρM) is a single-valued mapping, where
I is the identity mapping, α > 0 and ρ > 0 are constants.

Definition 2.11. Let E be an real ordered Banach space. Let P ⊂ E be a cone and
M be an α-non-ordinary difference mapping. The resolvent operator Jρ

M : E → E
is defined as

Jρ
M (x) = (I + ρM)−1(x), for all x ∈ E,where ρ > 0 is a constant.

Theorem 2.12 ( [15]). Let the set-valued comparison mapping M be (α, ρ)-NODM
mapping, then

(i) The resolvent operator Jρ
M : E → E is a comparison mapping,

(ii) The resolvent operator Jρ
M : E → E is Lipschitz-type continuous, i.e

Jρ
M (x)⊕ Jρ

M (y) ≤ 1

(αρ− 1)
(x⊕ y), where α >

1

ρ
.

3. Formulation of the problem and iterative algorithm

Let E1 and E2 be two closed subspaces of an ordered real q-uniformly smooth
Banach space E such that they preserve partial ordering “ ≤ ” of the norm ∥ · ∥ of
E, S : E1 ×E2 → E1, T : E1 ×E2 → E2, p, f : E1 → E1 and g,Q : E2 → E2 be the
single-valued mappings. Let A : E1 → CB(E1), B : E2 → CB(E2), M : E1 → 2E1

and N : E2 → 2E2 be the set-valued mappings such that f(E1) ∩ D(M) ̸= 0 and
g(E2) ∩ D(N) ̸= 0, where D(M) means domain of M . We consider the following
problem:

Find (x, y) ∈ E1 × E2, u ∈ A(x), v ∈ B(y), z
′ ∈ E1, z

′′ ∈ E2 such that

S(p(x), v)⊕ ρ−1Rρ
M (z

′
) = 0, ρ > 0,

T (u,Q(y))⊕ γ−1Rγ
N (z

′′
) = 0, γ > 0,(3.1)

where Rρ
M = (I ⊕ Jρ

M ), Rγ
N = (I ⊕ Jγ

N ) and Jρ
M , Jγ

N are the resolvent operators
associated with M and N , respectively, ρ > 0 and γ > 0 are constants.

The corresponding system of generalized variational inclusions with XOR-operations
for (3.1) is the following:

Find (x, y) ∈ E1 × E2, u ∈ A(x), v ∈ B(y) such that

0 ∈ S(p(x), v)⊕M(f(x)),

0 ∈ T (u,Q(y))⊕N(g(y)).(3.2)

If we relax the condition of ordered q-uniformly smooth on E1 and E2, we take
E1 and E2 to be uniformly smooth Banach spaces and if we replace ⊕ by +, then
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problem (3.1) reduces to the problem studied by Ahmad and Yao [1]. If we take E1

and E2 to be Hilbert spaces and replacing ⊕ by +, then problem (3.2) reduces to
the problem studied by Lan et al. [14].

The following Lemma is a fixed point formulation of problem (3.2).

Lemma 3.1. The set of elements (x, y) ∈ E1 × E2, u ∈ A(x), v ∈ B(y) constitute
a solution of system of generalized variational inclusions involving XOR-operation
(3.2) if and only if the following equations are satisfied:

f(x) = Jρ
M (f(x)⊕ ρS(p(x), v)), ρ > 0,

g(y) = Jγ
N (g(y)⊕ γT (u,Q(y)), γ > 0.

where ρ > 0, γ > 0 are constants and Jρ
M , Jγ

N are the resolvent operators associated
with M and N, respectively.

Proof. The proof is a direct consequence of the definition of resolvent operators
Jρ
Mand Jγ

N and hence omitted. □

4. Iterative algorithms
We first establish an equivalence relation between system of generalized resol-

vent equations involving XOR-operation (3.1) and system of generalized variational
inclusions involving XOR-operation (3.2). On the basis of this equivalence, we sug-
gest some iterative algorithms for solving system of generalized resolvent equations
involving XOR-operation (3.1).

Proposition 4.1. The system of generalized variational inclusions involving XOR-
operation (3.2) has a solution (x, y, u, v), where (x, y) ∈ E1×E2,u ∈ A(x), v ∈ B(y),
if and only if the system of generalized resolvent equations involving XOR-operation
(3.1) has a solution (z

′
, z

′′
, x, y, u, v), where (x, y), (z

′
, z

′′
) ∈ E1 × E2, u ∈ A(x), v ∈

B(y) and

f(x) = Jρ
M (z

′
),(4.1)

g(y) = Jγ
N (z

′′
),(4.2)

where

z
′
= f(x)⊕ ρS(p(x), v) and z

′′
= g(y)⊕ γT (u,Q(y)).

Assume that S(p(x), v) ∝ Rρ
M (z

′
) and T (u,Q(y)) ∝ Rγ

N (z
′′
).

Proof. Let (x, y, u, v) be a solution of system of generalized variational inclusions
involving XOR-operation (3.2). Then by Lemma 3.1, the following equations are
satisfied:

f(x) = Jρ
M (f(x)⊕ ρS(p(x), v)),

g(y) = Jγ
N (g(y)⊕ γT (u,Q(y))).

Let

z
′
= f(x)⊕ ρS(p(x), v) and z

′′
= g(y)⊕ γT (u,Q(y)),
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then we have

f(x) = Jρ
M (z

′
),

g(y) = Jγ
N (z

′′
).

Thus

(4.3) z
′
= Jρ

M (z
′
)⊕ ρS(p(x), v),

and

(4.4) z
′′
= Jγ

N (z
′′
)⊕ γT (u,Q(y)).

It follows from (4.3) and (4.4) that

z
′ ⊕ Jρ

M (z
′
) = Jρ

M (z
′
)⊕ Jρ

M (z
′
)⊕ ρS(p(x), u),

i.e (I + Jρ
M )(z

′
) = ρS(p(x), v),

and z
′′ ⊕ Jγ

N (z
′′
) = Jγ

N (z
′′
)⊕ Jγ

N (z
′′
)⊕ γT (u,Q(y)),

i.e (I + Jγ
N )(z

′′
) = γT (u,Q(y)).

As Rρ
M (z

′
) = (I ⊕ Jρ

M )(z
′
) and Rγ

N (z
′′
) = (I ⊕ Jγ

N )(z
′′
), we have

Rρ
M (z

′
) = ρS(p(x), v),

Rγ
N (z

′′
) = γT (u,Q(y)).

Since S(p(x), v) ∝ Rρ
M (z

′
) and T (u,Q(y)) ∝ Rγ

N (z
′′
), using (v) of Proposition 2.7,

we have

S(p(x), v)⊕ ρ−1Rρ
M (z

′′
) = 0,

T (u,Q(y))⊕ γ−1Rγ
N (z

′′
) = 0.

i.e
(z

′
, z

′′
, x, y, u, v) is a solution of system of generalized resolvent equations involv-

ing XOR-operation (3.1).

Conversely, let (z
′
, z

′′
, x, y, u, v) be a solution of system of generalized resolvent

equations involving XOR-operation (3.1) and using the above mentioned facts, we
have

(4.5) ρS(p(x), v) = Rρ
M (z

′
),

(4.6) γT (u,Q(y)) = Rγ
N (z

′′
).

Now,

ρS(p(x), v) = Rρ
M (z

′
)

= (I ⊕ Jρ
M )(z

′
)

= z
′ ⊕ Jρ

M (z
′
)

= f(x)⊕ ρS(p(x), v)⊕ Jρ
M (f(x)⊕ ρS(p(x), v)),



XOR-OPERATION IN q-BANACH SPACE 315

that is,

f(x) = Jρ
M (f(x)⊕ ρS(p(x), v)).

Similarly, it follows from (4.6) that

g(y) = Jγ
N (g(y)⊕ γT (u,Q(y)).

Applying Lemma 3.1, we conclude that (x, y, u, v) is a solution of system of gener-
alized variational inclusions involving XOR-operation (3.2). □

Now we present an alternative proof of Proposition 4.1.
Alternative Proof.

Proof. Let z
′
= f(x)⊕ ρS(p(x), v) and z

′′
= g(y)⊕ γT (u,Q(y)).

Using Lemma 3.1, we can write

z
′

= Jρ
M (z

′
)⊕ ρS(p(x), v),

and z
′′

= Jγ
N (z

′′
)⊕ T (u,Q(y)),

which implies that

S(p(x), v)⊕Rρ
M (z

′
) = 0,

and T (u,Q(y))⊕Rγ
N (z

′′
) = 0.

which is the required system of generalized resolvent equations involving XOR-
operation (3.1). □

Now, we define some iterative algorithms for solving system of generalized resol-
vent equations involving XOR-operation (3.1).

Algorithm 4.1. For given (x0, y0) ∈ E1 × E2, u0 ∈ A(x0), v0 ∈ B(y0), z
′
0 ∈

E1, and z
′′
0 ∈ E2, compute the sequences {xn}, {yn}, {un}, {vn}, {z

′
n} and {z′′

n}
by the following scheme:

f(xn) = Jρ
M (z

′
n),(4.7)

g(yn) = Jγ
N (z

′′
n),(4.8)

(4.9) un ∈ A(xn) : ∥un+1 ⊕ un∥ ≤ ∥un+1 − un∥ ≤ D(A(xn+1), A(xn)),

(4.10) vn ∈ B(yn) : ∥vn+1 ⊕ vn∥ ≤ ∥vn+1 − vn∥ ≤ D(B(yn+1), B(yn)),

z
′
n+1 = f(xn)⊕ ρS(p(xn), vn),(4.11)

z
′′
n+1 = g(yn)⊕ γT (un, Q(yn)),(4.12)

where n = 0, 1, 2, ..., ρ > 0 and γ > 0 are constants.
The system of generalized resolvent equations involving XOR-operation (3.1) can

also be written as

z
′

= f(x)⊕ S(p(x), v) + (I − ρ−1)Rρ
M (z

′
),

z
′′

= g(y)⊕ T (u,Q(y)) + (I − γ−1)Rγ
N (z

′′
).

Based on above formulation, we suggest the following iterative Algorithm.
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Algorithm 4.2. For given (x0, y0) ∈ E1 × E2, u0 ∈ A(x0), v0 ∈ B(y0), z
′
0 ∈ E1

and z
′′
0 ∈ E2, compute the sequences {xn}, {yn}, {un}, {vn}, {z

′
n} and {z′′

n} by the
following scheme:

f(xn) = Jρ
M (z

′
n),

g(yn) = Jγ
N (z

′′
n),

un ∈ A(xn) : ∥un+1 ⊕ un∥ ≤ ∥un+1 − un∥ ≤ D(A(xn+1), A(xn)),

vn ∈ B(yn) : ∥vn+1 ⊕ vn∥ ≤ ∥vn+1 − vn∥ ≤ D(B(yn+1), B(yn)),

z
′
n+1 = f(xn)⊕ S(p(xn), vn) + (I − ρ−1)Rρ

M (z
′
n),(4.13)

z
′′
n+1 = g(yn)⊕ T (un, Q(yn)) + (I − γ−1)Rγ

N (z
′′
n),(4.14)

where n = 0, 1, 2, ..., ρ > 0 and γ > 0 are constants.
For positive stepsize δ

′
and δ

′′
, the system of generalized resolvent equations

involving XOR-operation (3.1) can also be expressed as:

f(x, z
′
) = f(x, z

′
)⊕ δ

′[{z′ ⊕ Jρ
M (z

′
)} ⊕ ρS(p(x), v)

]
,

g(y, z
′′
) = g(y, z

′′
)⊕ δ

′′[{z′′ ⊕ Jγ
N (z

′′
)} ⊕ γT (u,Q(y))

]
.

This fixed point formulation enables us to propose the following iterative Algorithm.

Algorithm 4.3. For given (x0, y0) ∈ E1 × E2, u0 ∈ A(x0), v0 ∈ B(y0), z
′
0 ∈ E1

and z
′′
0 ∈ E2, compute the sequence {xn}, {yn}, {un}, {vn}, {z

′
n} and {z′′

n} by the
following iterative schemes:

un ∈ A(xn) : ∥un+1 ⊕ un∥ ≤ ∥un+1 − un∥ ≤ D(A(xn+1), A(xn)),

vn ∈ B(yn) : ∥vn+1 ⊕ vn∥ ≤ ∥vn+1 − vn∥ ≤ D(B(yn+1), B(yn)),

(4.15) f(xn+1, z
′
n+1) = f(xn, z

′
n)⊕ δ

′[{z′
n ⊕ Jρ

M (z
′
n)} ⊕ ρS(p(xn), vn)

]
,

(4.16) g(yn+1, zn+1
′′) = g(yn, z

′′
n)⊕ δ

′′[{z′′
n ⊕ Jγ

N (z
′′
)} ⊕ γT (un, Q(yn))

]
,

where n = 0, 1, 2..., ρ > 0 and γ > 0 are constants.

It is to be noted that for δ
′
= δ

′′
= 1, f(xn, z

′
n) = f(xn), g(yn, z

′′
n) = g(yn),

Algorithm 4.3 reduces to the following algorithm which is applicable to solve system
of generalized variational inclusions involving XOR-operation (3.2).

Algorithm 4.4. For any given (x0, y0) ∈ E1 × E2, u0 ∈ A(x0) and v0 ∈ B(y0),
compute the sequences {xn}, {yn}, {un} and {vn} by the following iterative schemes:

f(xn+1) = Jρ
M (f(xn)⊕ ρS(p(xn), vn)),

g(yn+1) = Jγ
N (g(yn)⊕ γT (u,Q(yn)),

un ∈ A(xn) : ∥un+1 ⊕ un∥ ≤ ∥un+1 − un∥ ≤ D(A(xn+1), A(xn)),

vn ∈ B(yn) : ∥vn+1 ⊕ vn∥ ≤ ∥vn+1 − vn∥ ≤ D(B(yn+1), B(yn)).

where n = 0, 1, 2..., ρ > 0 and γ > 0 are constants.
We prove the following existence and convergence result for the system of gener-

alized resolvent equations involving XOR-operation (3.1).
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Theorem 4.2. Let E1 and E2 be two closed subspaces of an ordered real q-uniformly
smooth Banach space E and P ⊂ E be a cone. Let A : E1 → CB(E1) and B :
E2 → CB(E2) be D-Lipschitz continuous mappings with constants λDA

and λDB
,

respectively. Let the set-valued mapping M : E1 → 2E1 be α-non-ordinary difference
and ρ-ordered monotone mapping; the set-valued mapping N : E2 → 2E2 be α

′
-non-

ordinary and ρ
′
-ordered monotone mapping. Let f : E1 → E1, g : E2 → E2 be

Lipschitz continuous mappings with constants λf and λg, respectively; p : E1 →
E1, Q : E2 → E2 be Lipschitz continuous mappings with constants λp and λQ,
respectively. Let S : E1 × E2 → E1, T : E1 × E2 → E2 be Lipschitz continuous
mappings in both the arguments with constants λS1, λS2 and λT1, λT2, respectively.

Suppose that z
′
n ∝ z

′′
n+1, z

′′
n ∝ z

′′
n+1, S(p(xn), vn) ∝ Rρ

M (z
′
n), T (un, Q(yn)) ∝ Rγ

N (z
′′
n),

for n = 0, 1, 2... and if there exist constants γ > 0; α, α
′
> 0; ρ > 0 and ρ

′
> 0 such

that

0 <
(θ1 + θ2 + θ6)θ7

1− θ1
< 1, 0 <

(θ3 + θ4 + θ5)θ8
1− θ4

< 1,(4.17)

where θ1= q

√
1 + qλf + Cqλ

q
f , θ2=

q
√
1 + ρqλS1λp+ q

√
CqρλS1λp, θ3= q

√
CqρλS2λDB

,

θ4 = q
√
1 + qλg + Cqλ

q
g, θ5 = q

√
1 + qγλT2λQ + q

√
Cq, θ6 = q

√
CqγλT1λDA

, θ7 =
1

(αρ−1) and θ8 = 1
(α′ρ′−1)

, then there exists (x, y) ∈ E1 × E2, z
′ ∈ E1, z

′′ ∈ E2, u ∈
A(x) and v ∈ B(y) satisfying the system of generalized resolvent equations involving

XOR-operation (3.1). Moreover, the iterative sequences {xn}, {yn}, {z
′
n}, {z

′′
n}, {un}

and {vn} generated by Algorithm 4.1 converge strongly to x, y, z
′
, z

′′
, u and v, re-

spectively.

Proof. From Algorithm 4.1, we have

∥z′
n+1 ⊕ z

′
n∥ = ∥[f(xn) + ρS(p(xn), vn)]⊕ [f(xn−1) + ρS(p(xn−1), vn−1)]∥

= ∥[f(xn)⊕ f(xn−1)]⊕ ρ[S(p(xn), vn)⊕ S(p(xn−1), vn−1)]∥
≤ ∥(xn − xn−1) + (f(xn)⊕ f(xn−1))∥(4.18)

+∥(xn−1 − xn) + ρ[S(p(xn), vn)⊕ S(p(xn−1), vn−1)]∥.

Using Lipschitz continuity of f with constant λf , (iii) of Proposition 2.8 and Lemma
2.2, we have

∥(xn − xn−1) + (f(xn)⊕ f(xn−1))∥q

≤ ∥xn − xn−1∥q + q⟨f(xn)⊕ f(xn−1), Jq(xn − xn−1)⟩
+ Cq∥f(xn)⊕ f(xn−1)∥q

≤ ∥xn − xn−1∥q + q∥f(xn)⊕ f(xn−1)∥∥xn − xn−1∥q−1

+ Cq∥f(xn)⊕ f(xn−1)∥q

≤ ∥xn − xn−1∥q + q∥f(xn)− f(xn−1)∥∥xn − xn−1∥q−1

+ Cq∥f(xn)− f(xn−1)∥q

≤ ∥xn − xn−1∥q + qλf∥xn − xn−1∥q + Cqλ
q
f∥xn − xn−1∥

≤ (1 + qλf + Cqλ
q
f )∥xn − xn−1∥q,
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which implies that

∥(xn − xn−1) + (f(xn)⊕ f(xn−1))∥ ≤ q

√
(1 + qλf + Cqλ

q
f )∥xn − xn−1∥

= θ1∥xn − xn−1∥,(4.19)

where θ1 = q

√
1 + qλf + Cqλ

q
f .

As S is Lipschitz continuous in both arguments with constants λS1 and λS2 , re-
spectively, p is Lipschitz continuous with constant λp, B is D-Lipschitz
continuous, using (iii) of Proposition 2.8 and Algorithm 4.1 we obtain
∥S(p(xn), vn)⊕ S(p(xn−1), vn−1)∥

≤ ∥S(p(xn), vn)− S(p(xn−1), vn−1)∥
= ∥S(p(xn), vn) + S(p(xn−1), vn)

−S(p(xn−1), vn)− S(p(xn−1), vn−1)∥
= ∥S(p(xn), vn)− S(p(xn−1), vn)

+S(p(xn−1), vn)− S(p(xn−1), vn−1)∥
≤ ∥S(p(xn), vn)− S(p(xn−1), vn)∥

+∥S(p(xn−1), vn)− S(p(xn−1), vn−1)∥
≤ λS1λp∥xn − xn−1∥+ λS2∥vn − vn−1∥
≤ λS1λp∥xn − xn−1∥+ λS2D(B(yn), B(yn−1))

≤ λS1λp∥xn − xn−1∥+ λS2λDB
∥yn − yn−1∥.(4.20)

Using (4.20), Lemma 2.2, we obtain
∥(xn−1 − xn) + ρ[S(p(xn), vn)⊕ S(p(xn−1), vn−1)]∥q

≤ ∥xn − xn−1∥q + ρq⟨S(p(xn), vn)⊕ S(p(xn−1), vn−1), Jq(xn−1 − xn)⟩
+Cqρ

q∥S(p(xn), vn)⊕ S(p(xn−1), vn−1)∥q

≤ ∥xn − xn−1∥q + ρq∥S(p(xn), vn)⊕ S(p(xn−1), vn−1)∥∥xn − xn−1∥q−1

+Cqρ
q∥S(p(xn), vn)⊕ S(p(xn−1), vn−1)∥q

≤ ∥xn − xn−1∥q + ρq[λS1λp∥xn − xn−1∥
+λS2λDB

∥yn − yn−1∥](∥xn − xn−1∥q−1) + Cqρ
q[λS1λp∥xn − xn−1∥

+λS2λDB
∥yn − yn−1∥]q

= (1 + ρqλS1λp)∥xn − xn−1∥q + ρqλS2λDB
∥yn − yn−1∥∥xn − xn−1∥q−1

+Cqρ
q(λS1λp∥xn − xn−1∥+ λS2λDB

∥yn − yn−1∥)q

= ( q
√

1 + ρqλS1λp∥xn − xn−1∥)q + ρqλS2λDB
∥yn − yn−1∥∥xn − xn−1∥q−1

+( q
√

CqρλS1λp∥xn − xn−1∥+ q
√

CqρλS2λDB
∥yn − yn−1∥)q

≤
[
( q
√
1 + ρqλS1λp +

q
√
CqρλS1λp)∥xn − xn−1∥+ q

√
CqρλS2λDB

∥yn − yn−1∥
]q

(4.21) =
[
θ2∥xn − xn−1∥+ θ3∥yn − yn−1∥

]q
,

where θ2 = ( q
√
1 + ρqλS1λp + q

√
CqρλS1λp) and θ3 = q

√
CqρλS2λDB

.
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Thus from (4.21), it follows that
∥(xn−1 − xn) + ρ[S(p(xn), vn)⊕ S(p(xn−1), vn−1)]∥

(4.22) ≤ θ2∥xn − xn−1∥+ θ3∥yn − yn−1∥.

Combining (4.19) and (4.22), (4.18) becomes

(4.23) ∥z′
n+1 ⊕ zn

′∥ ≤ (θ1 + θ2)∥xn − xn−1∥+ θ3∥yn − yn−1∥.

Since z
′
n ∝ z

′
n+1, we have

(4.24) ∥z′
n+1 ⊕ z

′
n∥ = ∥z′

n+1 − z
′
n∥ ≤ (θ1 + θ2)∥xn − xn−1∥+ θ3∥yn − yn−1∥.

Again using Algorithm 4.1, we have

∥z′′
n+1 ⊕ z

′′
n∥ = ∥[g(yn) + γT (un, Q(yn))]⊕ [g(yn−1) + γT (un−1, Q(yn−1))]∥

= ∥[g(yn)⊕ g(yn−1)]⊕ γ[T (un, Q(yn)⊕ T (un−1, Q(yn−1))]∥
≤ ∥(yn − yn−1) + (g(yn)⊕ g(yn−1))∥(4.25)

+∥(yn − yn−1) + γ[T (un, Q(yn))⊕ T (un−1, Q(yn−1))]∥.

Using the Lipschitz continuity of g with constant λg and using the same arguments
as for (4.19), we have

∥(yn − yn−1) + (g(yn)⊕ g(yn−1))∥ = q

√
1 + qλg + Cqλ

q
g∥yn − yn−1∥

= θ4∥yn − yn−1∥.(4.26)

where θ4 =
q
√

1 + qλg + Cqλ
q
g.

As T is Lipschitz continuous in both arguments with constants λT1 and λT2 , respec-
tively, Q is Lipschitz continuous with constant λQ, A is D-Lipschitz continuous and
using the same arguments as for (4.22), we have
∥(yn − yn−1) + γ[T (un, Q(yn))⊕ T (un−1, Q(yn−1))]∥

(4.27) ≤ θ5∥yn − yn−1∥+ θ6∥xn − xn−1∥,

where θ5 = q
√

1 + qγλT2λQ + q
√

Cq and θ6 = q
√
CqγλT1λDA

.
Thus,

(4.28) ∥z′′
n+1 ⊕ z

′′
n∥ ≤ (θ4 + θ5)∥yn − yn−1∥+ θ6∥xn − xn−1∥.

Since z
′′
n ∝ z

′′
n+1, we have

(4.29) ∥z′′
n+1 ⊕ z

′′
n∥ = ∥z′′

n+1 − z
′′
n∥ ≤ (θ4 + θ5)∥yn − yn−1∥+ θ6∥xn − xn−1∥.

Combining (4.24) and (4.29), we have

∥z′
n+1 ⊕ z

′
n∥+ ∥z′′

n+1 ⊕ z
′′
n∥ = ∥z′

n+1 − z
′
n∥+ ∥z′′

n+1 − z
′′
n∥

≤ (θ1 + θ2)∥xn − xn−1∥+ θ3∥yn − yn−1∥
+(θ4 + θ5)∥yn − yn−1∥+ θ6∥xn − xn−1∥

= (θ1 + θ2 + θ6)∥xn − xn−1∥(4.30)

+(θ3 + θ4 + θ5)∥yn − yn−1∥.
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Using (4.19) and Lipschitz-type continuity of the resolvent operator Jρ
M , we have

∥xn − xn−1∥ = ∥xn − xn−1 + ((f(xn)⊕ f(xn−1))− (Jρ
M (zn

′)⊕ Jρ
M (z

′
n−1)))∥

≤ ∥(xn − xn−1) + (f(xn)⊕ f(xn−1)∥+ ∥Jρ
M (z

′
n)⊕ Jρ

M (z
′
n−1)∥

≤ θ1∥xn − xn−1∥+
1

(αρ− 1)
∥z′

n − z
′
n−1∥

≤ θ1∥xn − xn−1∥+ θ7∥z
′
n − z

′
n−1∥,

which implies that

(4.31) ∥xn − xn−1∥ ≤ θ7
1− θ1

∥z′
n − z

′
n−1∥, where θ7 =

1

(αρ− 1)
, α >

1

ρ
.

Using (4.26) and Lipschitz-type continuity of the resolvent operator Jγ
N , we have

∥yn − yn−1∥ = ∥(yn − yn−1) + ((g(yn)⊕ g(yn−1))− (Jγ
N (zn

′′)⊕ Jγ
N (z

′′
n−1)))∥

≤ ∥(yn − yn−1) + (g(yn)⊕ g(yn−1))∥+ ∥Jγ
N (zn

′′)⊕ Jγ
N (z

′′
n−1)∥

= θ4∥yn − yn−1∥+
1

(α′ρ′ − 1)
∥z′′

n − z
′′
n−1∥

≤ θ4∥yn − yn−1∥+ θ8∥z
′′
n − z

′′
n−1∥,

which implies that

(4.32) ∥yn − yn−1∥ ≤ θ8
1− θ4

∥z′′
n − z

′′
n−1∥, where θ8 =

1

(α′ρ′ − 1)
, α

′
>

1

ρ′ .

Combining (4.31), (4.32) with (4.30), we have

∥z′
n+1 − z

′
n∥+ ∥z′′

n+1 − z
′′
n∥ ≤ (θ1 + θ2 + θ6)θ7

1− θ1
∥z′

n − z
′
n−1∥

+
(θ3 + θ4 + θ5)θ8

1− θ4
∥z′′

n − z
′′
n−1∥,

≤ ζ(θ)[∥z′
n − z

′
n−1∥+ ∥z′′

n − z
′′
n−1∥],(4.33)

where

(4.34) ζ(θ) = max

{
(θ1 + θ2 + θ6)θ7

1− θ1
,
(θ3 + θ4 + θ5)θ8

1− θ4

}
.

By (4.17), we know that 0 < ζ(θ) < 1, and so (4.33) implies that {z′
n} and {z′′

n} are

both cauchy sequences. Thus, there exists z
′ ∈ E1 and z

′′ ∈ E2 such that z
′
n → z

′

and z
′′
n → z

′′
as n → ∞. From (4.31) and (4.32), it follows that {xn} and {yn} are

also cauchy sequences in E1 and E2, respectively, that is, there exist x ∈ E1, y ∈ E2

such that xn → x and yn → y as n → ∞. □
From Algorithm 4.1 and D-Lipschitz continuity of A and B, we have

∥un+1 ⊕ un∥ ≤ ∥un+1 − un∥ ≤ D(A(xn+1), A(xn)) ≤ λDA
∥xn+1 − xn∥,

∥vn+1 ⊕ vn∥ ≤ ∥vn+1 − vn∥ ≤ D(B(xn+1), B(yn)) ≤ λDB
∥yn+1 − yn∥.

and hence, {un} and {vn} are also Cauchy sequences, let un → u and vn → v,
respectively. By using the techniques of Ahmad and Yao [1], it is easy to show that
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u ∈ A(x), v ∈ B(y). By continuity of f, g, p,Q,A,B, s, T, Jρ
M , Jγ

N and Algorithm
4.1, we have

z
′

= f(x)⊕ ρS(p(x), v) = Jρ
M (z

′
)⊕ ρS(p(x), v) ∈ E1,

z
′′

= g(y)⊕ γT (u,Q(y)) = Jγ
N (z

′′
)⊕ γT (u,Q(y)) ∈ E2.

By Proposition 4.1, the required result follows.

5. Conclusion

This paper is devoted to the study of a system of generalized resolvent equa-
tions involving XOR-operation in q-uniformly smooth Banach spaces with its corre-
sponding system of generalized variational inclusions involving XOR-operation. It
is shown that both the problems are equivalent and a fixed point formulation is also
established. Some iterative algorithms are suggested and finally an existence and
convergence result is proved.

We remark that our results are useful for other researchers of related domain and
further can be extended in different directions.
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