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SYSTEM OF GENERALIZED RESOLVENT EQUATIONS
INVOLVING XOR-OPERATION IN ¢-UNIFORMLY SMOOTH
BANACH SPACES

ZAHOOR AHMAD RATHER, ANSHU DAGUR, AND RAIS AHMAD

ABSTRACT. In this paper, we study a system of generalized resolvent equations
involving XOR-operation in g-uniformly smooth Banach spaces. We have shown
the equivalence of system of generalized resolvent equations involving XOR-
operation with a system of generalized variational inclusions involving XOR-
operation. Some iterative algorithms are proposed to approximate the solution
for system of generalized resolvent equations involving XOR-operation.The con-
vergence criteria is also discussed.

1. INTRODUCTION

It is worth to mention that variational inequalities and their generalizations are
extended in various directions after their existence since early sixties. Variational
inclusions are powerful tools to solve many problems of real life, for example, to
solve problems related to mechanics, optimization and control, elasticity, basic and
applied sciences etc., see for example [?,6,10,12,13,20,21,23] and references therein.
System of variational inequalities are considered and studied by Pang [22], Cohen
and Chaplais [8], Bianchi [7], etc..Pang have shown that the traffic equilibrium
problem, the Nash equilibrium, and the general equilibrium programing problem
can be modelled as a system of variational inequalities over product of sets. Agar-
wal et al. [2] studied the sensitivity analysis of solutions for a system of generalized
nonlinear mixed quasi-variational inclusions, Pang and Zhu [24] studied a system
of mixed quasi-variational inclusions with (H,n)-monotone operators and Lan et
al. [14] studied a system of nonlinear A-monotone multivalued variational inclu-
sions. Ahmad and Yao [1] studied a system of generalized resolvent equations with
corresponding system of variational inclusions in real Banach spaces.

XOR is a binary operation, it stands for “exclusive or”, that is to say the resulting
bit evaluates to one if only exactly one of the bits is a set. This operation is
commutative, associative and self-inverse. It is also same as addition modulo 2
in Boolean algebra. XOR(A,B) represents the logical exclusive disjunction and
XOR(A,B) is true when either A or B are true.If both A and B are true or false,
XOR(A,B) is false. As an application of XOR-terminology, we mention an example:
Consider a light bulb to two 3-ways switches. The light goes on if only one switch is
in the “up” position and the other switch is in the “down” position. If both are in
the “up” position or both are in the “down” position, the light is off. The lights state
(on,off) is the XOR of the state of the two switches. One can find its applications
in many branchs of science, for example, to generate random pseudo numbers,
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to detect error in digital communications, to implement multilayer perception in
neutral network, cryptography, etc.. Several inclusion problems involving XOR-
operation are introduced and studied by Li and his co-author [15-19], Ahmad et
al [3,4,15] and others. The above mentioned facts motivated us to extend the
problem studied by Ahmad and Yao [1] with XOR~operation in g-uniformly smooth
Banach spaces. That is, a system of generalized resolvent equations involving XOR-
operation in g-uniformly smooth Banach spaces is considered and studied.

2. PRELIMINARIES

Let E be a real Banach space with its norm ||- ||, E* be the topological dual of E,
(-,-) be the duality pairing between E and E*, d be the metric induced by the norm
| - ||, 2% (respectively CB(E)) be the family of non-empty (respectively, nonempty
closed and bounded) subsets of E, and D(-.-) be the Hausdorff metric on CB(E)
defined by

D(P, Q) = maz{Supd(z,Q), Supd(P,y)},
zeP yeQR

where

d(z,Q) = Infd(z,y) and d(P,y) = Infd(z,y).
yeR zeP

The following concepts are required for the presentation of this paper.
Definition 2.1. The generalized duality mapping J, : £ — 2F" is defined by
Jo(x) = {f € E": (z, f) = ||z[|* and ||f|| = [|«]|*""}, for all z € E,
where ¢ > 1 is a constant. It is well known that
Jy(x) =[] 772 (x),

for all x € E. If E is a Hilbert space, then J is the identity mapping. We mention
some properties of generalized duality mapping J,; below:
(i) Jolw) = l2|4=2a(a), for all @ € E,a £0,
(i1) Jy(tz) =971 J,(z), for all z € E and t € [0, 00),
(131) Jy(x) = —Jy(x), for all x € E.
The modulus of smoothness of E' is the function pg : [0,00) — [0, 00) defined by

rt+y|+||lr—y
pitt) = Sup { LRI gy <1 gyl < o
A Banach space E is called uniformly smooth if
t
im P2 _ g,
t—0 t

and is called g-uniformly smooth, if there exist a constant C' > 0 such that
pe(t) < Ctl g > 1.

Lemma 2.2 ([25]). Let E be a real uniformly smooth Banach space. Then, E is
q-uniformly smooth if and only if there exists Cy > 0 such that for all x,y € F,

Iz +yll* < llzl|” + q{y, Jo(x)) + Cllyll“.
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Throughout the paper, we take E to be real ordered Banach space, unless other-
wise specified.

Definition 2.3. A nonempty closed convex subset P of E is said to be cone, if

(i) for any z € P and A > 0, then \z € P,
(79) for any x € P and —x € P, then z = 0.

Definition 2.4. Let P be a cone. For arbitrary elements =,y € E,z < y holds if
and only if x —y € P. Then, the relation “ <” in F is called partial order relation.

The following concepts and results can be found in [9,15-19].

Definition 2.5. For arbitrary elements z,y € E, if x < y(or y < z) holds, then z
and y are said to be comparable to each other (denoted by = o y).

Definition 2.6. For arbitrary elements z,y € E, lub{z,y} and glb{z,y} means
the least upper bound and the greatest lower bound for the set {z,y}. Suppose
lub{x,y} and glb{z,y} exist, then some binary operations are defined as follows:

(1) xVy = lub{z,y},
(i1) x Ny = glb{z, y},
(7it) z@y=(x—y)V(y — z),
(iv) 2Oy =(x—y)A(y—z).
The operators A,V,® and ® are called OR, AND, XOR and XNOR operations,
respectively.

Proposition 2.7. Let @ be an XOR-operation and ® be an XNOR-operation. Then
the following assertions hold:

() zor=01r0y=yor=—(ray) =—(yo),
i) ifrx0, —2®0<z<z40,
i) (Ax) @ (Ay) = [A(z @ y),
w) 0<zdy,if rxy,
(v) if  xy, then x Dy =0, if and only if v = y.
Proposition 2.8. Let P be a cone in E, then for each x,y € E, the following
relations hold:

i) 0@ 0]l = 0] =0,
(@) Nz vyl <=l Vllyll < llzll + [yl
(i) |z @yl < [lz —yl,
(i) if x ocy, then |lz & y| = |z —y.

Definition 2.9. Let M : E — 2¥ be a set-valued mapping and M (x) be a closed
subset in E. Then

(i) The set-valued mapping M is said to be a comparison mapping, if for any
vy € M(x),z v, and if  « y, then for any v, € M(z) and any v, €
M (y), vy x vy, for all z,y € E,

(74) The set-valued comparison mapping M is said to be a-non-ordinary differ-
ence mapping if for each z,y € F,v, € M(z) and v, € M(y), there exist a
constant « > 0 such that (v, ® vy) ® a(z B y) = 0.
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(7i7) The set-valued comparison mapping M is said to be p-order monotone map-
ping, if there exists a constant p > 0 such that
p(vy —vy) > (x —y), for all z,y € E,v, € M(z) and vy € M(y).

(iv) The set-valued comparison mapping M is said to be an (a, p)-NODM map-
ping, if M is an a-non-ordinary difference and p-order monotone mapping,
and

(I +pM)(E)=E, for all a,p > 0.

Lemma 2.10 ([15]). If M is an a-non-ordinary difference mapping, then an inverse

mapping Jy, = (I+pM)~1: E — 2 of (I+pM) is a single-valued mapping, where
1 is the identity mapping, a > 0 and p > 0 are constants.
Definition 2.11. Let F be an real ordered Banach space. Let P C E be a cone and

M be an a-non-ordinary difference mapping. The resolvent operator J4, : E — E
is defined as

b (@) = (I +pM)~Y(z), for all x € E,where p >0 is a constant.
Theorem 2.12 ([15]). Let the set-valued comparison mapping M be («, p)-NODM
mapping, then

(i) The resolvent operator Jy,; : E — E is a comparison mapping,
(ii) The resolvent operator Jy, : E — E is Lipschitz-type continuous, i.e

J][\)/[(a;) D J]l\)J(y) < m

3. FORMULATION OF THE PROBLEM AND ITERATIVE ALGORITHM

1
(x ®y), where a > —.
p

Let F1 and E» be two closed subspaces of an ordered real g-uniformly smooth
Banach space E such that they preserve partial ordering “ < ” of the norm || - || of
E,S:ElXE2—>E1,T2E1XEQ—)EQ,p,fIEl—)El andg,Q:E2—>E2 be the
single-valued mappings. Let A : By — CB(E}), B : By — CB(FE»), M : By — 21
and N : By — 2F2 be the set-valued mappings such that f(F;) N D(M) # 0 and
g(E2) N D(N) # 0, where D(M) means domain of M. We consider the following
problem:

Find (z,y) € Ey x Ey,u € A(x),v € B(y),z € E1,2" € Ey such that

S(p(x),v) & p 'Ry () =0, p>0,

(3.1) T(u,Qy)) ® 7~ R} (

where R, = (I ® J%;), R}; = (I ® J};) and JY,, J}; are the resolvent operators
associated with M and N, respectively, p > 0 and « > 0 are constants.

The corresponding system of generalized variational inclusions with XOR-operations
for (3.1) is the following:

Find (z,y) € Ey x Ea, u € A(z), v € B(y) such that

0€ S(p(x),v)d M(f(z)),

(3.2) 0€T(u,Qy)) ®N(g(y))-

If we relax the condition of ordered g-uniformly smooth on F; and FEs, we take
F1 and Es to be uniformly smooth Banach spaces and if we replace ® by +, then

z//) =0, v>0,
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problem (3.1) reduces to the problem studied by Ahmad and Yao [1]. If we take E;
and Es to be Hilbert spaces and replacing @ by +, then problem (3.2) reduces to
the problem studied by Lan et al. [14].

The following Lemma is a fixed point formulation of problem (3.2).

Lemma 3.1. The set of elements (x,y) € E1 X Ea, u € A(x), v € B(y) constitute
a solution of system of generalized variational inclusions involving XOR-operation
(3.2) if and only if the following equations are satisfied:

fx) = Jy(f(z) ® pS(p(x),v)), p>0,
9(y) = Jh(g(y) ®vT(u, Q(y)), v > 0.

where p > 0,7 > 0 are constants and J,, J}; are the resolvent operators associated
with M and N, respectively.

Proof. The proof is a direct consequence of the definition of resolvent operators
J ]’\’/[and JX, and hence omitted. ]

4. ITERATIVE ALGORITHMS
We first establish an equivalence relation between system of generalized resol-
vent equations involving XOR-operation (3.1) and system of generalized variational
inclusions involving XOR-operation (3.2). On the basis of this equivalence, we sug-
gest some iterative algorithms for solving system of generalized resolvent equations
involving XOR-operation (3.1).

Proposition 4.1. The system of generalized variational inclusions involving XOR-
operation (3.2) has a solution (x,y,u,v), where (x,y) € F1 X Ey,u € A(x),v € B(y),
if and only if the system of generalized resolvent equations involving XOR-operation
(3.1) has a solution (z,,z”,:z:,y,u,v), where (z,y), (Z/,Z”) € By X Ey,u € A(x),v €
B(y) and

(4.1) f(x) = Jy(2),
(4.2) 9(y) = T (2"),
where

2 = f(x) ® pS(p(z),v) and 2" = g(y) & T (u, Q(y)).

!

Assume that S(p(x),v) o< R (2') and T'(u, Q(y)) x Ry (2").

Proof. Let (z,y,u,v) be a solution of system of generalized variational inclusions
involving XOR-operation (3.2). Then by Lemma 3.1, the following equations are
satisfied:

f) = J3(f(z)® pS(p(x),v)),
9(y) = Th(ay) T (u, Q(y))).
Let

2 = f(x) @ pS(p(a),v) and 2 = g(y) ® v (u, Q(y)),
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then we have

fla)=J5 (%),
gly) = J4(2).
Thus
(4.3) 2 = J]’\}(zl) @ pS(p(z),v),
and
(4.4) 2= T @ T, Qy)).

It follows from (4.3) and (4.4) that

dedyz) = JhE) e I @ pS(p(),u),
ie (I+J5)(z) = pS(p(x),v),
and 2" @ JL(Z") = JLE) @ JLE) @ T (u,Qy)),
eI+ = 9T(u, Q).
As RR(2) = (T® J5)(2) and RY (") = (I ® J3)(2"), we have

/

Rf(2) = pS(p(z),v),
RY(Z") =T (4, Q(y)).
Since S(p(x),v) o< R4,(2") and T'(u, Q(y)) o R} ("), using (v) of Proposition 2.7,

we have

"

S(p(x),v) ® p~ ' RY,(2")
T(u, Q(y)) &y R (2")

0,
0
i.e

(z/, z”, x,y,u,v) is a solution of system of generalized resolvent equations involv-
ing XOR-operation (3.1).

Conversely, let (z', z//, x,y,u,v) be a solution of system of generalized resolvent

equations involving XOR-operation (3.1) and using the above mentioned facts, we
have

/

(4.5) pS(p(z),v) = Ry (2),
(4.6) VT (u,Q(y)) = R} (2").
Now,

’

pS(p(z),v) = Ry (2)
= (IaJ5)()
= 2 @ J5(2)
f(x) @ pS(p(x),v) ® Jy,(f(x) © pS(p(x),v)),
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that is,
f@) = Ty (f () & pS(p(x),v)).
Similarly, it follows from (4.6) that

9(y) = I} (9(y) @ T (u, Q(y))-

Applying Lemma 3.1, we conclude that (x,y,u,v) is a solution of system of gener-
alized variational inclusions involving XOR-operation (3.2). O

Now we present an alternative proof of Proposition 4.1.
Alternative Proof.

Proof. Let 2" = f(x) & pS(p(x),v) and 2" = g(y) & vT(u, Q(y)).
Using Lemma 3.1, we can write

¢ o= I e pS(p(x),v),
and 2 = JX,(ZH) & T(u,Q(y)),
which implies that
S(p(x),v) ® Ry (z) = 0,
and T(u, Q(y)) ® R} (z") = 0.
which is the required system of generalized resolvent equations involving XOR-
operation (3.1). O

Now, we define some iterative algorithms for solving system of generalized resol-
vent equations involving XOR-operation (3.1).

Algorithm 4.1. For given (z9,50) € Ei x Ey,ug € A(xg),v0 € B(yo), 2y €
Ei, and z, € Es, compute the sequences {z,}, {¥n}, {tn}, {vn},{z,} and {2}
by the following scheme:

(4.7) flan) = J5(z).

(4.8) 9ym) = Ty (),

(4.9) Up € A(zn) : |[unt1 @ un|l < lunt1 — unll < D(A(Tn11), A(zn)),

(4.10) Vn € B(yn) : |vns1 @ vnll < [Jvng1 — vl £ D(B(Yny1), B(yn)),
(4.11) Zn = f(an) @ pS(p(an), vn),
(4.12) 2o = 9(yn) VT (Un, Qyn)),

where n =0,1,2,..., p >0 and v > 0 are constants.
The system of generalized resolvent equations involving XOR-operation (3.1) can
also be written as

2= (@)@ S(px),v) + (I - p YRS, (),

"

2= gy @ T(w,Qy)) + (I -y )RR ().

Based on above formulation, we suggest the following iterative Algorithm.
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Algorithm 4.2. For given (zo,%) € F1 x Ea,up € A(zo),v0 € B(w), 2 € Ei
and z, € Ey, compute the sequences {x,}, {yn}, {tn}, {vn}, {2,} and {2, } by the
following scheme:

- J]f\)J(zn)v

)
) = Jh(z),
Un € A(@n) : [[tns1 B unll < unsr — unll < D(A(zn41), A(zn)),
vp € B(yn) : |ont1 @ vnll < long1 — vnll < D(B(Yn+1), B(yn)),
(4.13) Zr = fl@n) ® S(P(xn),va) + (I — p YR (2,),
(4.14) Znit = 9(n) @ T(un, Qyn)) + (I =7 )RR (),
where n =0,1,2,..., p> 0 and v > 0 are constants.

For positive stepsize 6 and &, the system of generalized resolvent equations
involving XOR~operation (3.1) can also be expressed as:

fla,?) = fla,2)@d [{Z & J5(2)} @ pS(p(z),v)],
g(y,2") = gy, 2 )ed [{Z eI} ®T(u, Q)]

This fixed point formulation enables us to propose the following iterative Algorithm.

f(zn
9(yn

Algorithm 4.3. For given (z¢,y0) € E1 X Ea,up € A(xg),v0 € B(yo),zé c B

and z, € FEs, compute the sequence {z,}, {yn}, {tun}, {vn}, {z,} and {2} by the
following iterative schemes:

un € A(@n) : [Jtns1 B unll < unsr — unll < D(A(zn41), Azn)),
Up € B(yn) : ||'Un+1 S 'UnH < an+1 - Un” < D(B(ynJrl)aB(yn))a

(4.15) F@ni1s 2ng1) = f(@n, 2,) © 6 [{2, @ T4y (2,)} @ pS(p(2n), vn)],

(416)  glynr1sz0m") = 9(yn2) @0 [{z, © T3 (")} © T (un, Qlya))]
where n =0,1,2...;, p > 0 and v > 0 are constants.

It is to be noted that for & = & = 1, f(zn,2,) = f(Zn),9Wn,2z1) = g(yn),
Algorithm 4.3 reduces to the following algorithm which is applicable to solve system
of generalized variational inclusions involving XOR-operation (3.2).

Algorithm 4.4. For any given (z9,y0) € E1 X Ea,ug € A(xg) and vy € B(yo),
compute the sequences {zp}, {yn}, {un} and {v,} by the following iterative schemes:
f(@ng1) = J]?/[(f(xn) © pS(p(xn),vn)),
9yn+1) = T (9(yn) ©T(u, Q(yn)),
Un € A@n)  [[tns1 B unll < unsr — unll < D(A(zn41), A(zn)),
Un € B(yn) : [lont1 @ vnll < |long1 — vnll £ D(B(Yn+1), B(yn))-

where n =0,1,2..., p > 0 and v > 0 are constants.
We prove the following existence and convergence result for the system of gener-
alized resolvent equations involving XOR-operation (3.1).



XOR-OPERATION IN ¢-BANACH SPACE 317

Theorem 4.2. Let E1 and E5 be two closed subspaces of an ordered real g-uniformly
smooth Banach space E and P C E be a cone. Let A : Ey — CB(E;) and B :
E; — CB(Ey) be D-Lipschitz continuous mappings with constants Ap, and Apg,
respectively. Let the set-valued mapping M : E1 — 2F1 be ai-non-ordinary difference
and p-ordered monotone mapping; the set-valued mapping N : Ey — 22 be ' -non-
ordinary and p/-ordered monotone mapping. Let f : By — FE1, g : Eo — FEy be
Lipschitz continuous mappings with constants Ay and Xy, respectively; p : E1 —
Ei, Q : Ea — E3 be Lipschitz continuous mappings with constants A\, and Ag,
respectively. Let S : E1 X Ey — FEq1, T : E1 X Es — FEy be Lipschitz continuous
mappings in both the arguments with constants As,, As, and Ar,, Ar,, respectively.
Suppose that z, o Z;;+1, Z, Z;+1, S(p(wn),vn) o< R (20), T (tn, Q(yn)) o< Ry (21),
forn=0,1,2... and if there exist constants v > 0; «, o > 0; p >0 and ,0/ > 0 such
that

0
( 1+92+96)‘97 <1, 0< (93+94+95)08
1-60; 1-0,

where 0 = \/ L+ gAp + CoA%, 0= /T + pahs, \p+ 8/ CapAs, Ap, 0=/ TypAsy Ay,
= {1+q)\+C >\37 05 = Y1+ gy Ao + Y/ Cy, 06 = {/CyyAAp,, 07 =

W and 0y = m, then there exists (x,y) € Fy x Ea,2 € E1,2 € Fy,u €

A(x) and v € B(y) satisfying the system of generalized resolvent equations involving
XOR-operation (3.1). Moreover, the iterative sequences {xy Y, {yn}, {2}, {20}, {tin}
and {v,} generated by Algorithm 4.1 converge strongly to x,y, 22" wand v, re-
spectively.

(4.17) 0< <1,

Proof. From Algorithm 4.1, we have

ons1 @zl = N1f @) + pS(P(xn),va)] @ [ (xn1) + pS(p(2n-1) va1)]
= |[[f(@n) © f(zn-1)] @ p[S(p(2n), vn) ® S(p(2n-1), vn-1)]l
(4.18) < l(@n = 2n1) + (f(2n) @ f(2n-1))]l
Hl(zn—1 = zn) + p[S(p(2n), vn) © S(p(2n-1), va-1)]l

Using Lipschitz continuity of f with constant A¢, (ii7) of Proposition 2.8 and Lemma
2.2, we have

[(@n = @n-1) + (f (@n) & fzn-1))[*

<@ — zn_1l|? + ¢{f(@n) & f(Tn-1), Jo(Tn — Tn_1))
+ Coll f (@n) & f(zn-1)|*

<@y — zn_1l|? + gl f(2n) & f(Tn—1)||l2n — xn—IHqil
+ Call f (@n) & f(zn-1)|

<@y — zp_1ll? + gl f(@n) — f(@n—1)||l2n — xn—luqil
+ Call f (@n) = fzn-1)|

< lwn — zp-1l|? + gAfllzn — za-a |7+ Cy A% Hmn Tn-1|

< (1+ @A + CAD) 2 — 2n
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which implies that

[ = #n1) + (F@n) @ FlanD)| < /(04 aAs + CADllrn — 2na]
(4.19) = Oiflen —

where 0, = {1/1 +qXp + Cq)\(}.

As S is Lipschitz continuous in both arguments with constants Ag, and Ag,, re-
spectively, p is Lipschitz continuous with constant A,, B is D-Lipschitz
continuous, using (i) of Proposition 2.8 and Algorithm 4.1 we obtain

1S (p(zn), vn) & S(p(Tn-1), vn-1)|
< |IS(p(zn),vn) — S(P(Tn-1), va-1)|l
= [IS(p(zn),vn) + S(p(xn-1),vn)
=S(p(xn-1),vn) — S(p(¥n-1), vn—1)||
= [IS(p(zn),vn) — S(p(xn-1),vn)
+S(P(Tn-1),vn) — S(P(Tn-1), vn—1)|

n),

(%
v

< S(p(@n), vn) = S(P(zn-1), vn)ll
+S(P(zn-1),vn) = S(p(Tn-1), vn-1)|l
< A Mpllzn = o1l + Asy lvn — vaa |
< >‘51)‘P||xn — Zn—1|| + As, D(B(yn), B(yn—1))
(4:20) < Ao dplln — Zntll + A Ayl — tl

Using (4.20), Lemma 2.2, we obtain
[(zn—1 — zn) + p[S(p(zn), vn) & S(p(Tn-1), vn-1)]||?
< lzn = za-a |9+ pg{S(p(zn), va) © S(p(Tn-1), vn-1), Jg(Tn-1 — x))
+Cep?|1S(p(2n), vi) & S(P(Tn-1), vn-1)|?
<l =z |9+ pall S (p(2n), va) @ S(p(n—1), va—1) |20 — 201"
+Cep?[|S(p(xn), vn) & S(p(xn—1), vn-1)]*
|20 — 217 + pg[As; Apllzn — zn—1|
+A5 A0 [[Yn — Yn—1[l](lzn — mn—lnqil) + Cap[As, Apllzn — x|
FA55 A0 [[Yn — Yn—1l[]?
= (L+pars, Mp)llzn — wa-1]|? + paAsy Ay — yn-1llllzn — 2017
FCqp (As; Apllzn — Tn—1ll + As, ADg [0 — yn—1l])*?
= (V1 +pars, Mpllwn — 2p-1)? + paAs, Apg [Yn — yn—1lll|zn — T |77
H(/Caprsi Apllzn — zn1ll + ¢/ CapAs; Dy lyn — yn1l))?

q
< [( \/q 1+ pq)‘51)‘p + \/q qu/\Slkp)Hxn - 9Cn—1H + \/q qu/\Sz)‘DBHyn - yn—IH

(4.21) = [62llzn — znall + O3llyn — yn-1ll]?,

where 0 = ({/1 4 pghs, A\p + ¢/ CqpAs, Ap) and 03 = /CypAs,Ap,.

IN
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Thus from (4.21), it follows that
[(#n—1 = 2n) + p[S(P(2n), vn) & S(P(2n-1), vn-1)]

(422) < ‘92||$n - Svnle + 03||yn - yn71||~

Combining (4.19) and (4.22), (4.18) becomes

(4.23) l2n1 @ 20l < (01 + 0) |20 — 21l + O3]y — Yo .

Since z,, o Z;H, we have

(4.24)  lzp1 @ 2l = llznga — 20ll < 01+ O2)llzn — 2ol + O3llyn — Yo -
Again using Algorithm 4.1, we have

2y @ zoll = N9(yn) + YT (tny Q(yn)] @ [9(yn—1) + VT (tn-1, Q(yn—1))]]|
= g(yn) © 9(¥n-1)] ® YT (tn, Q(Yn) ® T(tn-1, Q(Yn-1))]]
(4.25) < | Wn = Yn=1) + (9(yn) & g(yn—1))l

1 n = yn—1) + [T (un, Q(yn)) © T(un-1, Q(yn—1))]l|

Using the Lipschitz continuity of g with constant A\, and using the same arguments
as for (4.19), we have

1(Yn = yn—1) + (9(yn) ® g(yn-1))ll = {/1 + A + CoAgllyn — ynll

(4.26) O4llyn — yn—1]|-

where 0y = /14 g\, + C AL

As T is Lipschitz continuous in both arguments with constants Ay, and Ap,, respec-
tively, Q is Lipschitz continuous with constant A\g, A is D-Lipschitz continuous and
using the same arguments as for (4.22), we have

[(n = yn—1) + [T (tn, Q(yn)) & T (un—1, Q(Yn—1))]l

(4'27) < 05||yn - yn71|| + 96H-Tn - xnflnv

where 05 = /1 + q’Y/\Tz)‘Q + Cq and 0 = ¥ Cq'}’)\Tl /\DA.

Thus,

(4.28) 2n1 ® 20l < (04 + 05)[yn — Yn1l + O6llwn — zn1 |-

S, " " h
ince z,, X z,,1, we have

(429)  llzps1 @ 20l = [l2ng1 = 2l < (04 + 05)llyn — yn—1ll + O6llzn — nal].
Combining (4.24) and (4.29), we have

12nt1 @ Zoll + 12041 © 20ll = N2ns1 = 2ol + [12ng1 — 20

< (0 +02)||lwn — -1l + 05y — yn—1|
(01 + 05)1yn. — Yn—1ll + 6l xn — zn1|
((91 + 09 + 96)”5571 — JUn—lH
+(03 + 04+ 05)[|yn — yn—1]|-

(4.30)
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Using (4.19) and Lipschitz-type continuity of the resolvent operator .J¢,, we have

|20 = zpall = o = 201+ ((f(@n) @ fl@n-1) = (5 (z0)) © Th(z0-0))l
(@n = 2a—1) + (f(@0) ® fl@n-1)l| + [175(z0) © Ty (00

IN

/

1 /
O1l|lzn — xp-1|l + m”zn |

IN

IN

01|z — zno1 ]l + 07]12n — 2,

which implies that

0 . 1 1

(4.31) |xn — Tn_1]] < 0 Iz, — zp_1ll, where 67 = m,a > >
Using (4.26) and Lipschitz-type continuity of the resolvent operator .J3;, we have
1Y = yn—1ll = [1(¥n = yn-1) + ((9(yn) ® g(yn-1)) — (SR (zn") & T (2-1)))

< Nyn = vn-1) + (9n) @ 9@n-1) | + 173 (20") @ T (1)

1 1" 1"
= Oallyn — yn-1ll + m“»’«‘n — Zp 1l

" 1"
04||yn - yn71|| + 08”271 - zn—l”a

IN

which implies that

08 1" " 1 ’ 1

4.32 n— Yn—1|| £ ——||z,, — z,_1 ||, where 0y = ———,a > —.
O P e N N e
Combining (4.31), (4.32) with (4.30), we have

’ ’ " " (91 + 65 + 06)97 ’ ’

1241 = 2Znll + lznga — 2all < - 12 — zpll
1—06
03+ 04+ 05)0s,, 1
St B By,
(4.33) < <Oz = 2ol + 120 = 20l
where
01+ 0>+ 65)07 (03 + 04+ 05)0
(4.34) ¢(0) = max (01 + 62+ 6)7’(3‘1‘ 4+ 05)08 '
1—-06, 1—0,

By (4.17), we know that 0 < ¢(#) < 1, and so (4.33) implies that {z,,} and {z } are
both cauchy sequences. Thus, there exists 2 € By and 2" € By such that z; - 2
and z, — 2z as n — oo. From (4.31) and (4.32), it follows that {z,} and {y,} are
also cauchy sequences in F7 and Ejs, respectively, that is, there exist x € E1, y € E»
such that z,, - = and y,, = y as n — oo. O

From Algorithm 4.1 and D-Lipschitz continuity of A and B, we have
[unt1 @ unll < |untr — unll < D(A(zn11), A(2n)) < ApyllTnsr — znll,
[vnt1 B vnll < flongr — onll < D(B(@nt1), B(yn)) < Apgl|yn+1 — ynll-

and hence, {u,} and {v,} are also Cauchy sequences, let u,, — u and v, — v,
respectively. By using the techniques of Ahmad and Yao [1], it is easy to show that
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u € A(z),v € B(y). By continuity of f,g,p,Q, A, B,s,T,Jy,, J and Algorithm

4.1,

we have
Y= flx)@pS(p(x),v) = J5(2) ® pS(p(x),v) € En,
Y= gy) @T(w,Qy)) = J3 () &7 (u, Q(y)) € Ea.

By Proposition 4.1, the required result follows.

5. CONCLUSION

This paper is devoted to the study of a system of generalized resolvent equa-
tions involving XOR-operation in ¢g-uniformly smooth Banach spaces with its corre-
sponding system of generalized variational inclusions involving XOR-operation. It
is shown that both the problems are equivalent and a fixed point formulation is also
established. Some iterative algorithms are suggested and finally an existence and
convergence result is proved.

We remark that our results are useful for other researchers of related domain and
further can be extended in different directions.
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