SYSTEM OF GENERALIZED RESOLVENT EQUATIONS INVOLVING XOR-OPERATION IN q-UNIFORMLY SMOOTH BANACH SPACES

ZAHOOR AHMAD RATHER, ANSHU DAGUR, AND RAIS AHMAD

Abstract

In this paper, we study a system of generalized resolvent equations involving XOR-operation in q-uniformly smooth Banach spaces. We have shown the equivalence of system of generalized resolvent equations involving XORoperation with a system of generalized variational inclusions involving XORoperation. Some iterative algorithms are proposed to approximate the solution for system of generalized resolvent equations involving XOR-operation. The convergence criteria is also discussed.

1. Introduction

It is worth to mention that variational inequalities and their generalizations are extended in various directions after their existence since early sixties. Variational inclusions are powerful tools to solve many problems of real life, for example, to solve problems related to mechanics, optimization and control, elasticity, basic and applied sciences etc., see for example $[?, 6,10,12,13,20,21,23]$ and references therein. System of variational inequalities are considered and studied by Pang [22], Cohen and Chaplais [8], Bianchi [7], etc..Pang have shown that the traffic equilibrium problem, the Nash equilibrium, and the general equilibrium programing problem can be modelled as a system of variational inequalities over product of sets. Agarwal et al. [2] studied the sensitivity analysis of solutions for a system of generalized nonlinear mixed quasi-variational inclusions, Pang and Zhu [24] studied a system of mixed quasi-variational inclusions with (H, η)-monotone operators and Lan et al. [14] studied a system of nonlinear A-monotone multivalued variational inclusions. Ahmad and Yao [1] studied a system of generalized resolvent equations with corresponding system of variational inclusions in real Banach spaces.
XOR is a binary operation, it stands for "exclusive or", that is to say the resulting bit evaluates to one if only exactly one of the bits is a set. This operation is commutative, associative and self-inverse. It is also same as addition modulo 2 in Boolean algebra. $\operatorname{XOR}(\mathrm{A}, \mathrm{B})$ represents the logical exclusive disjunction and $\operatorname{XOR}(\mathrm{A}, \mathrm{B})$ is true when either A or B are true.If both A and B are true or false, $\operatorname{XOR}(A, B)$ is false. As an application of XOR-terminology, we mention an example: Consider a light bulb to two 3 -ways switches. The light goes on if only one switch is in the "up" position and the other switch is in the "down" position. If both are in the "up" position or both are in the "down" position, the light is off. The lights state (on,off) is the XOR of the state of the two switches. One can find its applications in many branchs of science, for example, to generate random pseudo numbers,

Key words and phrases. System, resolvent, inclusion, solution, operation.
to detect error in digital communications, to implement multilayer perception in neutral network, cryptography, etc.. Several inclusion problems involving XORoperation are introduced and studied by Li and his co-author [15-19], Ahmad et al $[3,4,15]$ and others. The above mentioned facts motivated us to extend the problem studied by Ahmad and Yao [1] with XOR-operation in q-uniformly smooth Banach spaces. That is, a system of generalized resolvent equations involving XORoperation in q-uniformly smooth Banach spaces is considered and studied.

2. Preliminaries

Let E be a real Banach space with its norm $\|\cdot\|, E^{*}$ be the topological dual of E, $\langle\cdot, \cdot\rangle$ be the duality pairing between E and E^{*}, d be the metric induced by the norm $\|\cdot\|, 2^{E}$ (respectively $\mathrm{CB}(\mathrm{E})$) be the family of non-empty (respectively, nonempty closed and bounded) subsets of E, and $D(\because \cdot)$ be the Hausdorff metric on $\mathrm{CB}(\mathrm{E})$ defined by

$$
D(P, Q)=\underset{x \in P}{\max \left\{\operatorname{Supd}_{x}(x, Q), \underset{y \in Q}{\operatorname{Supd}}(P, y)\right\}, ~}
$$

where

$$
d(x, Q)=\operatorname{Inf}_{y \in Q} d(x, y) \text { and } d(P, y)=\operatorname{Inf}_{x \in P} d(x, y) .
$$

The following concepts are required for the presentation of this paper.
Definition 2.1. The generalized duality mapping $J_{q}: E \rightarrow 2^{E^{*}}$ is defined by

$$
J_{q}(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{q} \text { and }\|f\|=\|x\|^{q-1}\right\}, \text { for all } x \in E \text {, }
$$

where $q>1$ is a constant. It is well known that

$$
J_{q}(x)=\|x\|^{q-2} J(x),
$$

for all $x \in E$. If E is a Hilbert space, then J is the identity mapping. We mention some properties of generalized duality mapping J_{q} below:
(i) $J_{q}(x)=\|x\|^{q-2} J_{2}(x)$, for all $x \in E, x \neq 0$,
(ii) $J_{q}(t x)=t^{q-1} J_{q}(x)$, for all $x \in E$ and $t \in[0, \infty)$,
(iii) $J_{q}(x)=-J_{q}(x)$, for all $x \in E$.

The modulus of smoothness of E is the function $\rho_{E}:[0, \infty) \rightarrow[0, \infty)$ defined by

$$
\rho_{E}(t)=\operatorname{Sup}\left\{\frac{\|x+y\|+\|x-y\|}{2}-1:\|x\| \leq 1,\|y\| \leq t\right\} .
$$

A Banach space E is called uniformly smooth if

$$
\lim _{t \rightarrow 0} \frac{\rho_{E}(t)}{t}=0
$$

and is called q-uniformly smooth, if there exist a constant $C>0$ such that

$$
\rho_{E}(t) \leq C t^{q}, q>1 .
$$

Lemma 2.2 ([25]). Let E be a real uniformly smooth Banach space. Then, E is q-uniformly smooth if and only if there exists $C_{q}>0$ such that for all $x, y \in E$,

$$
\|x+y\|^{q} \leq\|x\|^{q}+q\left\langle y, J_{q}(x)\right\rangle+C_{q}\|y\|^{q} .
$$

Throughout the paper, we take E to be real ordered Banach space, unless otherwise specified.

Definition 2.3. A nonempty closed convex subset P of E is said to be cone, if
(i) for any $x \in P$ and $\lambda>0$, then $\lambda x \in P$,
(ii) for any $x \in P$ and $-x \in P$, then $x=0$.

Definition 2.4. Let P be a cone. For arbitrary elements $x, y \in E, x \leq y$ holds if and only if $x-y \in P$. Then, the relation " $\leq "$ in E is called partial order relation.

The following concepts and results can be found in [9,15-19].
Definition 2.5. For arbitrary elements $x, y \in E$, if $x \leq y($ or $y \leq x)$ holds, then x and y are said to be comparable to each other (denoted by $x \propto y$).

Definition 2.6. For arbitrary elements $x, y \in E, \operatorname{lub}\{x, y\}$ and $g l b\{x, y\}$ means the least upper bound and the greatest lower bound for the set $\{x, y\}$. Suppose $\operatorname{lub}\{x, y\}$ and $g l b\{x, y\}$ exist, then some binary operations are defined as follows:
(i) $x \vee y=l u b\{x, y\}$,
(ii) $x \wedge y=\operatorname{glb}\{x, y\}$,
(iii) $x \oplus y=(x-y) \vee(y-x)$,
(iv) $x \odot y=(x-y) \wedge(y-x)$.

The operators \wedge, \vee, \oplus and \odot are called OR, AND, XOR and XNOR operations, respectively.

Proposition 2.7. Let \oplus be an $X O R$-operation and \odot be an XNOR-operation. Then the following assertions hold:
(i) $x \odot x=0, x \odot y=y \odot x=-(x \oplus y)=-(y \oplus x)$,
(ii) if $x \propto 0,-x \oplus 0 \leq x \leq x \oplus 0$,
(iii) $(\lambda x) \oplus(\lambda y)=|\lambda|(x \oplus y)$,
(iv) $0 \leq x \oplus y$, if $x \propto y$,
(v) if $x \propto y$, then $x \oplus y=0$, if and only if $x=y$.

Proposition 2.8. Let P be a cone in E, then for each $x, y \in E$, the following relations hold:
(i) $\|0 \oplus 0\|=\|0\|=0$,
(ii) $\|x \vee y\| \leq\|x\| \vee\|y\| \leq\|x\|+\|y\|$,
(iii) $\|x \oplus y\| \leq\|x-y\|$,
(iv) if $x \propto y$, then $\|x \oplus y\|=\|x-y\|$.

Definition 2.9. Let $M: E \rightarrow 2^{E}$ be a set-valued mapping and $M(x)$ be a closed subset in E. Then
(i) The set-valued mapping M is said to be a comparison mapping, if for any $v_{x} \in M(x), x \propto v_{x}$, and if $x \propto y$, then for any $v_{x} \in M(x)$ and any $v_{y} \in$ $M(y), v_{x} \propto v_{y}$, for all $x, y \in E$,
(ii) The set-valued comparison mapping M is said to be α-non-ordinary difference mapping if for each $x, y \in E, v_{x} \in M(x)$ and $v_{y} \in M(y)$, there exist a constant $\alpha>0$ such that $\left(v_{x} \oplus v_{y}\right) \oplus \alpha(x \oplus y)=0$.
(iii) The set-valued comparison mapping M is said to be ρ-order monotone mapping, if there exists a constant $\rho>0$ such that

$$
\rho\left(v_{x}-v_{y}\right) \geq(x-y), \text { for all } x, y \in E, v_{x} \in M(x) \text { and } v_{y} \in M(y)
$$

(iv) The set-valued comparison mapping M is said to be an (α, ρ)-NODM mapping, if M is an α-non-ordinary difference and ρ-order monotone mapping, and

$$
(I+\rho M)(E)=E, \text { for all } \alpha, \rho>0
$$

Lemma 2.10 ([15]). If M is an α-non-ordinary difference mapping, then an inverse mapping $J_{M}^{\rho}=(I+\rho M)^{-1}: E \rightarrow 2^{E}$ of $(I+\rho M)$ is a single-valued mapping, where I is the identity mapping, $\alpha>0$ and $\rho>0$ are constants.

Definition 2.11. Let E be an real ordered Banach space. Let $P \subset E$ be a cone and M be an α-non-ordinary difference mapping. The resolvent operator $J_{M}^{\rho}: E \rightarrow E$ is defined as

$$
J_{M}^{\rho}(x)=(I+\rho M)^{-1}(x), \text { for all } x \in E, \text { where } \rho>0 \text { is a constant } .
$$

Theorem 2.12 ([15]). Let the set-valued comparison mapping M be $(\alpha, \rho)-N O D M$ mapping, then
(i) The resolvent operator $J_{M}^{\rho}: E \rightarrow E$ is a comparison mapping,
(ii) The resolvent operator $J_{M}^{\rho}: E \rightarrow E$ is Lipschitz-type continuous, i.e

$$
J_{M}^{\rho}(x) \oplus J_{M}^{\rho}(y) \leq \frac{1}{(\alpha \rho-1)}(x \oplus y), \text { where } \alpha>\frac{1}{\rho}
$$

3. Formulation of the problem and iterative algorithm

Let E_{1} and E_{2} be two closed subspaces of an ordered real q-uniformly smooth Banach space E such that they preserve partial ordering " \leq " of the norm $\|\cdot\|$ of $E, S: E_{1} \times E_{2} \rightarrow E_{1}, T: E_{1} \times E_{2} \rightarrow E_{2}, p, f: E_{1} \rightarrow E_{1}$ and $g, Q: E_{2} \rightarrow E_{2}$ be the single-valued mappings. Let $A: E_{1} \rightarrow C B\left(E_{1}\right), B: E_{2} \rightarrow C B\left(E_{2}\right), M: E_{1} \rightarrow 2^{E_{1}}$ and $N: E_{2} \rightarrow 2^{E_{2}}$ be the set-valued mappings such that $f\left(E_{1}\right) \cap D(M) \neq 0$ and $g\left(E_{2}\right) \cap D(N) \neq 0$, where $D(M)$ means domain of M. We consider the following problem:

Find $(x, y) \in E_{1} \times E_{2}, u \in A(x), v \in B(y), z^{\prime} \in E_{1}, z^{\prime \prime} \in E_{2}$ such that

$$
\begin{aligned}
S(p(x), v) \oplus \rho^{-1} R_{M}^{\rho}\left(z^{\prime}\right) & =0, \rho>0 \\
T(u, Q(y)) \oplus \gamma^{-1} R_{N}^{\gamma}\left(z^{\prime \prime}\right) & =0, \gamma>0
\end{aligned}
$$

where $R_{M}^{\rho}=\left(I \oplus J_{M}^{\rho}\right), R_{N}^{\gamma}=\left(I \oplus J_{N}^{\gamma}\right)$ and $J_{M}^{\rho}, J_{N}^{\gamma}$ are the resolvent operators associated with M and N, respectively, $\rho>0$ and $\gamma>0$ are constants.

The corresponding system of generalized variational inclusions with XOR-operations for (3.1) is the following:

Find $(x, y) \in E_{1} \times E_{2}, u \in A(x), v \in B(y)$ such that

$$
\begin{align*}
& 0 \in S(p(x), v) \oplus M(f(x)) \\
& 0 \in T(u, Q(y)) \oplus N(g(y)) \tag{3.2}
\end{align*}
$$

If we relax the condition of ordered q-uniformly smooth on E_{1} and E_{2}, we take E_{1} and E_{2} to be uniformly smooth Banach spaces and if we replace \oplus by + , then
problem (3.1) reduces to the problem studied by Ahmad and Yao [1]. If we take E_{1} and E_{2} to be Hilbert spaces and replacing \oplus by + , then problem (3.2) reduces to the problem studied by Lan et al. [14].

The following Lemma is a fixed point formulation of problem (3.2).
Lemma 3.1. The set of elements $(x, y) \in E_{1} \times E_{2}, u \in A(x), v \in B(y)$ constitute a solution of system of generalized variational inclusions involving XOR-operation (3.2) if and only if the following equations are satisfied:

$$
\begin{aligned}
f(x) & =J_{M}^{\rho}(f(x) \oplus \rho S(p(x), v)), \rho>0 \\
g(y) & =J_{N}^{\gamma}(g(y) \oplus \gamma T(u, Q(y)), \gamma>0
\end{aligned}
$$

where $\rho>0, \gamma>0$ are constants and J_{M}^{ρ}, J_{N}^{γ} are the resolvent operators associated with M and N, respectively.

Proof. The proof is a direct consequence of the definition of resolvent operators J_{M}^{ρ} and J_{N}^{γ} and hence omitted.

4. ITERATIVE ALGORITHMS

We first establish an equivalence relation between system of generalized resolvent equations involving XOR-operation (3.1) and system of generalized variational inclusions involving XOR-operation (3.2). On the basis of this equivalence, we suggest some iterative algorithms for solving system of generalized resolvent equations involving XOR-operation (3.1).

Proposition 4.1. The system of generalized variational inclusions involving XORoperation (3.2) has a solution (x, y, u, v), where $(x, y) \in E_{1} \times E_{2}, u \in A(x), v \in B(y)$, if and only if the system of generalized resolvent equations involving XOR-operation (3.1) has a solution $\left(z^{\prime}, z^{\prime \prime}, x, y, u, v\right)$, where $(x, y),\left(z^{\prime}, z^{\prime \prime}\right) \in E_{1} \times E_{2}, u \in A(x), v \in$ $B(y)$ and

$$
\begin{align*}
f(x) & =J_{M}^{\rho}\left(z^{\prime}\right) \tag{4.1}\\
g(y) & =J_{N}^{\gamma}\left(z^{\prime \prime}\right) \tag{4.2}
\end{align*}
$$

where

$$
z^{\prime}=f(x) \oplus \rho S(p(x), v) \text { and } z^{\prime \prime}=g(y) \oplus \gamma T(u, Q(y))
$$

Assume that $S(p(x), v) \propto R_{M}^{\rho}\left(z^{\prime}\right)$ and $T(u, Q(y)) \propto R_{N}^{\gamma}\left(z^{\prime \prime}\right)$.
Proof. Let (x, y, u, v) be a solution of system of generalized variational inclusions involving XOR-operation (3.2). Then by Lemma 3.1, the following equations are satisfied:

$$
\begin{aligned}
f(x) & =J_{M}^{\rho}(f(x) \oplus \rho S(p(x), v)) \\
g(y) & =J_{N}^{\gamma}(g(y) \oplus \gamma T(u, Q(y)))
\end{aligned}
$$

Let

$$
z^{\prime}=f(x) \oplus \rho S(p(x), v) \text { and } z^{\prime \prime}=g(y) \oplus \gamma T(u, Q(y))
$$

then we have

$$
\begin{gathered}
f(x)=J_{M}^{\rho}\left(z^{\prime}\right) \\
g(y)=J_{N}^{\gamma}\left(z^{\prime \prime}\right)
\end{gathered}
$$

Thus

$$
\begin{equation*}
z^{\prime}=J_{M}^{\rho}\left(z^{\prime}\right) \oplus \rho S(p(x), v) \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime \prime}=J_{N}^{\gamma}\left(z^{\prime \prime}\right) \oplus \gamma T(u, Q(y)) \tag{4.4}
\end{equation*}
$$

It follows from (4.3) and (4.4) that

$$
\begin{aligned}
z^{\prime} \oplus J_{M}^{\rho}\left(z^{\prime}\right) & =J_{M}^{\rho}\left(z^{\prime}\right) \oplus J_{M}^{\rho}\left(z^{\prime}\right) \oplus \rho S(p(x), u), \\
\text { i.e }\left(I+J_{M}^{\rho}\right)\left(z^{\prime}\right) & =\rho S(p(x), v) \\
\text { and } z^{\prime \prime} \oplus J_{N}^{\gamma}\left(z^{\prime \prime}\right) & =J_{N}^{\gamma}\left(z^{\prime \prime}\right) \oplus J_{N}^{\gamma}\left(z^{\prime \prime}\right) \oplus \gamma T(u, Q(y)), \\
\text { i.e }\left(I+J_{N}^{\gamma}\right)\left(z^{\prime \prime}\right) & =\gamma T(u, Q(y)) \text {. }
\end{aligned}
$$

As $R_{M}^{\rho}\left(z^{\prime}\right)=\left(I \oplus J_{M}^{\rho}\right)\left(z^{\prime}\right)$ and $R_{N}^{\gamma}\left(z^{\prime \prime}\right)=\left(I \oplus J_{N}^{\gamma}\right)\left(z^{\prime \prime}\right)$, we have

$$
\begin{gathered}
R_{M}^{\rho}\left(z^{\prime}\right)=\rho S(p(x), v) \\
R_{N}^{\gamma}\left(z^{\prime \prime}\right)=\gamma T(u, Q(y)) .
\end{gathered}
$$

Since $S(p(x), v) \propto R_{M}^{\rho}\left(z^{\prime}\right)$ and $T(u, Q(y)) \propto R_{N}^{\gamma}\left(z^{\prime \prime}\right)$, using (v) of Proposition 2.7, we have

$$
\begin{aligned}
& S(p(x), v) \oplus \rho^{-1} R_{M}^{\rho}\left(z^{\prime \prime}\right)=0 \\
& T(u, Q(y)) \oplus \gamma^{-1} R_{N}^{\gamma}\left(z^{\prime \prime}\right)=0 .
\end{aligned}
$$

i.e
$\left(z^{\prime}, z^{\prime \prime}, x, y, u, v\right)$ is a solution of system of generalized resolvent equations involving XOR-operation (3.1).

Conversely, let $\left(z^{\prime}, z^{\prime \prime}, x, y, u, v\right)$ be a solution of system of generalized resolvent equations involving XOR-operation (3.1) and using the above mentioned facts, we have

$$
\begin{gather*}
\rho S(p(x), v)=R_{M}^{\rho}\left(z^{\prime}\right) \tag{4.5}\\
\gamma T(u, Q(y))=R_{N}^{\gamma}\left(z^{\prime \prime}\right) . \tag{4.6}
\end{gather*}
$$

Now,

$$
\begin{aligned}
\rho S(p(x), v) & =R_{M}^{\rho}\left(z^{\prime}\right) \\
& =\left(I \oplus J_{M}^{\rho}\right)\left(z^{\prime}\right) \\
& =z^{\prime} \oplus J_{M}^{\rho}\left(z^{\prime}\right) \\
& =f(x) \oplus \rho S(p(x), v) \oplus J_{M}^{\rho}(f(x) \oplus \rho S(p(x), v)),
\end{aligned}
$$

that is,

$$
f(x)=J_{M}^{\rho}(f(x) \oplus \rho S(p(x), v))
$$

Similarly, it follows from (4.6) that

$$
g(y)=J_{N}^{\gamma}(g(y) \oplus \gamma T(u, Q(y))
$$

Applying Lemma 3.1, we conclude that (x, y, u, v) is a solution of system of generalized variational inclusions involving XOR-operation (3.2).

Now we present an alternative proof of Proposition 4.1.
Alternative Proof.
Proof. Let $z^{\prime}=f(x) \oplus \rho S(p(x), v)$ and $z^{\prime \prime}=g(y) \oplus \gamma T(u, Q(y))$.
Using Lemma 3.1, we can write

$$
\begin{aligned}
z^{\prime} & =J_{M}^{\rho}\left(z^{\prime}\right) \oplus \rho S(p(x), v) \\
\text { and } z^{\prime \prime} & =J_{N}^{\gamma}\left(z^{\prime \prime}\right) \oplus T(u, Q(y)),
\end{aligned}
$$

which implies that

$$
\begin{aligned}
S(p(x), v) \oplus R_{M}^{\rho}\left(z^{\prime}\right) & =0 \\
\text { and } T(u, Q(y)) \oplus R_{N}^{\gamma}\left(z^{\prime \prime}\right) & =0
\end{aligned}
$$

which is the required system of generalized resolvent equations involving XORoperation (3.1).

Now, we define some iterative algorithms for solving system of generalized resolvent equations involving XOR-operation (3.1).

Algorithm 4.1. For given $\left(x_{0}, y_{0}\right) \in E_{1} \times E_{2}, u_{0} \in A\left(x_{0}\right), v_{0} \in B\left(y_{0}\right), z_{0}^{\prime} \in$ E_{1}, and $z_{0}^{\prime \prime} \in E_{2}$, compute the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{z_{n}^{\prime}\right\}$ and $\left\{z_{n}^{\prime \prime}\right\}$ by the following scheme:

$$
\begin{gather*}
f\left(x_{n}\right)=J_{M}^{\rho}\left(z_{n}^{\prime}\right) \tag{4.7}\\
g\left(y_{n}\right)=J_{N}^{\gamma}\left(z_{n}^{\prime \prime}\right) \tag{4.8}\\
u_{n} \in A\left(x_{n}\right):\left\|u_{n+1} \oplus u_{n}\right\| \leq\left\|u_{n+1}-u_{n}\right\| \leq D\left(A\left(x_{n+1}\right), A\left(x_{n}\right)\right), \tag{4.9}\\
v_{n} \in B\left(y_{n}\right):\left\|v_{n+1} \oplus v_{n}\right\| \leq\left\|v_{n+1}-v_{n}\right\| \leq D\left(B\left(y_{n+1}\right), B\left(y_{n}\right)\right), \tag{4.10}\\
z_{n+1}^{\prime}=f\left(x_{n}\right) \oplus \rho S\left(p\left(x_{n}\right), v_{n}\right) \tag{4.11}\\
z_{n+1}^{\prime \prime}=g\left(y_{n}\right) \oplus \gamma T\left(u_{n}, Q\left(y_{n}\right)\right) \tag{4.12}
\end{gather*}
$$

where $n=0,1,2, \ldots, \rho>0$ and $\gamma>0$ are constants.
The system of generalized resolvent equations involving XOR-operation (3.1) can also be written as

$$
\begin{aligned}
z^{\prime} & =f(x) \oplus S(p(x), v)+\left(I-\rho^{-1}\right) R_{M}^{\rho}\left(z^{\prime}\right) \\
z^{\prime \prime} & =g(y) \oplus T(u, Q(y))+\left(I-\gamma^{-1}\right) R_{N}^{\gamma}\left(z^{\prime \prime}\right)
\end{aligned}
$$

Based on above formulation, we suggest the following iterative Algorithm.

Algorithm 4.2. For given $\left(x_{0}, y_{0}\right) \in E_{1} \times E_{2}, u_{0} \in A\left(x_{0}\right), v_{0} \in B\left(y_{0}\right), z_{0}^{\prime} \in E_{1}$ and $z_{0}^{\prime \prime} \in E_{2}$, compute the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{z_{n}^{\prime}\right\}$ and $\left\{z_{n}^{\prime \prime}\right\}$ by the following scheme:

$$
\begin{gather*}
f\left(x_{n}\right)=J_{M}^{\rho}\left(z_{n}^{\prime}\right), \\
g\left(y_{n}\right)=J_{N}^{\gamma}\left(z_{n}^{\prime \prime}\right), \\
u_{n} \in A\left(x_{n}\right):\left\|u_{n+1} \oplus u_{n}\right\| \leq\left\|u_{n+1}-u_{n}\right\| \leq D\left(A\left(x_{n+1}\right), A\left(x_{n}\right)\right), \\
v_{n} \in B\left(y_{n}\right):\left\|v_{n+1} \oplus v_{n}\right\| \leq\left\|v_{n+1}-v_{n}\right\| \leq D\left(B\left(y_{n+1}\right), B\left(y_{n}\right)\right), \\
z_{n+1}^{\prime}=f\left(x_{n}\right) \oplus S\left(p\left(x_{n}\right), v_{n}\right)+\left(I-\rho^{-1}\right) R_{M}^{\rho}\left(z_{n}^{\prime}\right), \tag{4.13}\\
z_{n+1}^{\prime \prime}=g\left(y_{n}\right) \oplus T\left(u_{n}, Q\left(y_{n}\right)\right)+\left(I-\gamma^{-1}\right) R_{N}^{\gamma}\left(z_{n}^{\prime \prime}\right),
\end{gather*}
$$

where $n=0,1,2, \ldots, \rho>0$ and $\gamma>0$ are constants.
For positive stepsize δ^{\prime} and $\delta^{\prime \prime}$, the system of generalized resolvent equations involving XOR-operation (3.1) can also be expressed as:

$$
\begin{aligned}
f\left(x, z^{\prime}\right) & =f\left(x, z^{\prime}\right) \oplus \delta^{\prime}\left[\left\{z^{\prime} \oplus J_{M}^{\rho}\left(z^{\prime}\right)\right\} \oplus \rho S(p(x), v)\right] \\
g\left(y, z^{\prime \prime}\right) & =g\left(y, z^{\prime \prime}\right) \oplus \delta^{\prime \prime}\left[\left\{z^{\prime \prime} \oplus J_{N}^{\gamma}\left(z^{\prime \prime}\right)\right\} \oplus \gamma T(u, Q(y))\right] .
\end{aligned}
$$

This fixed point formulation enables us to propose the following iterative Algorithm.
Algorithm 4.3. For given $\left(x_{0}, y_{0}\right) \in E_{1} \times E_{2}, u_{0} \in A\left(x_{0}\right), v_{0} \in B\left(y_{0}\right), z_{0}^{\prime} \in E_{1}$ and $z_{0}^{\prime \prime} \in E_{2}$, compute the sequence $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{z_{n}^{\prime}\right\}$ and $\left\{z_{n}^{\prime \prime}\right\}$ by the following iterative schemes:

$$
\begin{array}{r}
u_{n} \in A\left(x_{n}\right):\left\|u_{n+1} \oplus u_{n}\right\| \leq\left\|u_{n+1}-u_{n}\right\| \leq D\left(A\left(x_{n+1}\right), A\left(x_{n}\right)\right), \\
v_{n} \in B\left(y_{n}\right):\left\|v_{n+1} \oplus v_{n}\right\| \leq\left\|v_{n+1}-v_{n}\right\| \leq D\left(B\left(y_{n+1}\right), B\left(y_{n}\right)\right), \\
f\left(x_{n+1}, z_{n+1}^{\prime}\right)=f\left(x_{n}, z_{n}^{\prime}\right) \oplus \delta^{\prime}\left[\left\{z_{n}^{\prime} \oplus J_{M}^{\rho}\left(z_{n}^{\prime}\right)\right\} \oplus \rho S\left(p\left(x_{n}\right), v_{n}\right)\right], \\
g\left(y_{n+1}, z_{n+1}^{\prime \prime}\right)=g\left(y_{n}, z_{n}^{\prime \prime}\right) \oplus \delta^{\prime \prime}\left[\left\{z_{n}^{\prime \prime} \oplus J_{N}^{\gamma}\left(z^{\prime \prime}\right)\right\} \oplus \gamma T\left(u_{n}, Q\left(y_{n}\right)\right)\right], \tag{4.16}
\end{array}
$$

where $n=0,1,2 \ldots, \rho>0$ and $\gamma>0$ are constants.
It is to be noted that for $\delta^{\prime}=\delta^{\prime \prime}=1, f\left(x_{n}, z_{n}^{\prime}\right)=f\left(x_{n}\right), g\left(y_{n}, z_{n}^{\prime \prime}\right)=g\left(y_{n}\right)$, Algorithm 4.3 reduces to the following algorithm which is applicable to solve system of generalized variational inclusions involving XOR-operation (3.2).
Algorithm 4.4. For any given $\left(x_{0}, y_{0}\right) \in E_{1} \times E_{2}, u_{0} \in A\left(x_{0}\right)$ and $v_{0} \in B\left(y_{0}\right)$, compute the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ by the following iterative schemes:

$$
\begin{aligned}
f\left(x_{n+1}\right) & =J_{M}^{\rho}\left(f\left(x_{n}\right) \oplus \rho S\left(p\left(x_{n}\right), v_{n}\right)\right), \\
g\left(y_{n+1}\right) & =J_{N}^{\gamma}\left(g\left(y_{n}\right) \oplus \gamma T\left(u, Q\left(y_{n}\right)\right),\right. \\
u_{n} \in A\left(x_{n}\right):\left\|u_{n+1} \oplus u_{n}\right\| & \leq\left\|u_{n+1}-u_{n}\right\| \leq D\left(A\left(x_{n+1}\right), A\left(x_{n}\right)\right), \\
v_{n} \in B\left(y_{n}\right):\left\|v_{n+1} \oplus v_{n}\right\| & \leq\left\|v_{n+1}-v_{n}\right\| \leq D\left(B\left(y_{n+1}\right), B\left(y_{n}\right)\right) .
\end{aligned}
$$

where $n=0,1,2 \ldots, \rho>0$ and $\gamma>0$ are constants.
We prove the following existence and convergence result for the system of generalized resolvent equations involving XOR-operation (3.1).

Theorem 4.2. Let E_{1} and E_{2} be two closed subspaces of an ordered real q-uniformly smooth Banach space E and $P \subset E$ be a cone. Let $A: E_{1} \rightarrow C B\left(E_{1}\right)$ and $B:$ $E_{2} \rightarrow C B\left(E_{2}\right)$ be D-Lipschitz continuous mappings with constants $\lambda_{D_{A}}$ and $\lambda_{D_{B}}$, respectively. Let the set-valued mapping $M: E_{1} \rightarrow 2^{E_{1}}$ be α-non-ordinary difference and ρ-ordered monotone mapping; the set-valued mapping $N: E_{2} \rightarrow 2^{E_{2}}$ be α^{\prime}-nonordinary and ρ^{\prime}-ordered monotone mapping. Let $f: E_{1} \rightarrow E_{1}, g: E_{2} \rightarrow E_{2}$ be Lipschitz continuous mappings with constants λ_{f} and λ_{g}, respectively; $p: E_{1} \rightarrow$ $E_{1}, Q: E_{2} \rightarrow E_{2}$ be Lipschitz continuous mappings with constants λ_{p} and λ_{Q}, respectively. Let $S: E_{1} \times E_{2} \rightarrow E_{1}, T: E_{1} \times E_{2} \rightarrow E_{2}$ be Lipschitz continuous mappings in both the arguments with constants $\lambda_{S_{1}}, \lambda_{S_{2}}$ and $\lambda_{T_{1}}, \lambda_{T_{2}}$, respectively. Suppose that $z_{n}^{\prime} \propto z_{n+1}^{\prime \prime}, z_{n}^{\prime \prime} \propto z_{n+1}^{\prime \prime}, S\left(p\left(x_{n}\right), v_{n}\right) \propto R_{M}^{\rho}\left(z_{n}^{\prime}\right), T\left(u_{n}, Q\left(y_{n}\right)\right) \propto R_{N}^{\gamma}\left(z_{n}^{\prime \prime}\right)$, for $n=0,1,2 \ldots$ and if there exist constants $\gamma>0 ; \alpha, \alpha^{\prime}>0 ; \rho>0$ and $\rho^{\prime}>0$ such that

$$
\begin{equation*}
0<\frac{\left(\theta_{1}+\theta_{2}+\theta_{6}\right) \theta_{7}}{1-\theta_{1}}<1,0<\frac{\left(\theta_{3}+\theta_{4}+\theta_{5}\right) \theta_{8}}{1-\theta_{4}}<1 \tag{4.17}
\end{equation*}
$$

where $\theta_{1}=\sqrt[q]{1+q \lambda_{f}+C_{q} \lambda_{f}^{q}}, \theta_{2}=\sqrt[q]{1+\rho q \lambda_{S_{1}} \lambda_{p}}+\sqrt[q]{C_{q}} \rho \lambda_{S_{1}} \lambda_{p}, \theta_{3}=\sqrt[q]{C_{q}} \rho \lambda_{S_{2}} \lambda_{D_{B}}$, $\theta_{4}=\sqrt[q]{1+q \lambda_{g}+C_{q} \lambda_{g}^{q}}, \quad \theta_{5}=\sqrt[q]{1+q \gamma \lambda_{T_{2}} \lambda_{Q}}+\sqrt[q]{C_{q}}, \quad \theta_{6}=\sqrt[q]{C_{q}} \gamma \lambda_{T_{1}} \lambda_{D_{A}}, \quad \theta_{7}=$ $\frac{1}{(\alpha \rho-1)}$ and $\theta_{8}=\frac{1}{\left(\alpha^{\prime} \rho^{\prime}-1\right)}$, then there exists $(x, y) \in E_{1} \times E_{2}, z^{\prime} \in E_{1}, z^{\prime \prime} \in E_{2}, u \in$ $A(x)$ and $v \in B(y)$ satisfying the system of generalized resolvent equations involving XOR-operation (3.1). Moreover, the iterative sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}^{\prime}\right\},\left\{z_{n}^{\prime \prime}\right\},\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ generated by Algorithm 4.1 converge strongly to $x, y, z^{\prime}, z^{\prime \prime}, u$ and v, respectively.

Proof. From Algorithm 4.1, we have

$$
\begin{aligned}
\left\|z_{n+1}^{\prime} \oplus z_{n}^{\prime}\right\|= & \left\|\left[f\left(x_{n}\right)+\rho S\left(p\left(x_{n}\right), v_{n}\right)\right] \oplus\left[f\left(x_{n-1}\right)+\rho S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right]\right\| \\
= & \left\|\left[f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right] \oplus \rho\left[S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right]\right\| \\
\leq & \left\|\left(x_{n}-x_{n-1}\right)+\left(f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right)\right\| \\
& +\left\|\left(x_{n-1}-x_{n}\right)+\rho\left[S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right]\right\| .
\end{aligned}
$$

Using Lipschitz continuity of f with constant $\lambda_{f},(i i i)$ of Proposition 2.8 and Lemma 2.2, we have

$$
\begin{aligned}
\|\left(x_{n}-\right. & \left.x_{n-1}\right)+\left(f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right) \|^{q} \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{q}+q\left\langle f\left(x_{n}\right) \oplus f\left(x_{n-1}\right), J_{q}\left(x_{n}-x_{n-1}\right)\right\rangle \\
& +C_{q}\left\|f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right\|^{q} \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{q}+q\left\|f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right\|\left\|x_{n}-x_{n-1}\right\|^{q-1} \\
& +C_{q}\left\|f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right\|^{q} \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{q}+q\left\|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right\|\left\|x_{n}-x_{n-1}\right\|^{q-1} \\
& +C_{q}\left\|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right\|^{q} \\
\leq & \left\|x_{n}-x_{n-1}\right\|^{q}+q \lambda_{f}\left\|x_{n}-x_{n-1}\right\|^{q}+C_{q} \lambda_{f}^{q}\left\|x_{n}-x_{n-1}\right\| \\
\leq & \left(1+q \lambda_{f}+C_{q} \lambda_{f}^{q}\right)\left\|x_{n}-x_{n-1}\right\|^{q},
\end{aligned}
$$

which implies that

$$
\begin{align*}
\left\|\left(x_{n}-x_{n-1}\right)+\left(f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right)\right\| & \leq \sqrt[q]{\left(1+q \lambda_{f}+C_{q} \lambda_{f}^{q}\right)\left\|x_{n}-x_{n-1}\right\|} \\
& =\theta_{1}\left\|x_{n}-x_{n-1}\right\|, \tag{4.19}
\end{align*}
$$

where $\theta_{1}=\sqrt[q]{1+q \lambda_{f}+C_{q} \lambda_{f}^{q}}$.
As S is Lipschitz continuous in both arguments with constants $\lambda_{S_{1}}$ and $\lambda_{S_{2}}$, respectively, p is Lipschitz continuous with constant λ_{p}, B is D-Lipschitz continuous, using (iii) of Proposition 2.8 and Algorithm 4.1 we obtain $\left\|S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right\|$

$$
\begin{align*}
\leq & \left\|S\left(p\left(x_{n}\right), v_{n}\right)-S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right\| \\
= & \| S\left(p\left(x_{n}\right), v_{n}\right)+S\left(p\left(x_{n-1}\right), v_{n}\right) \\
& -S\left(p\left(x_{n-1}\right), v_{n}\right)-S\left(p\left(x_{n-1}\right), v_{n-1}\right) \| \\
= & \| S\left(p\left(x_{n}\right), v_{n}\right)-S\left(p\left(x_{n-1}\right), v_{n}\right) \\
& +S\left(p\left(x_{n-1}\right), v_{n}\right)-S\left(p\left(x_{n-1}\right), v_{n-1}\right) \| \\
\leq & \left\|S\left(p\left(x_{n}\right), v_{n}\right)-S\left(p\left(x_{n-1}\right), v_{n}\right)\right\| \\
& +\left\|S\left(p\left(x_{n-1}\right), v_{n}\right)-S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right\| \\
\leq & \lambda_{S_{1}} \lambda_{p}\left\|x_{n}-x_{n-1}\right\|+\lambda_{S_{2}}\left\|v_{n}-v_{n-1}\right\| \\
\leq & \lambda_{S_{1}} \lambda_{p}\left\|x_{n}-x_{n-1}\right\|+\lambda_{S_{2}} D\left(B\left(y_{n}\right), B\left(y_{n-1}\right)\right) \\
\leq & \lambda_{S_{1}} \lambda_{p}\left\|x_{n}-x_{n-1}\right\|+\lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\| . \tag{4.20}
\end{align*}
$$

Using (4.20), Lemma 2.2, we obtain

$$
\begin{align*}
& \left\|\left(x_{n-1}-x_{n}\right)+\rho\left[S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right]\right\|^{q} \\
& \leq\left\|x_{n}-x_{n-1}\right\|^{q}+\rho q\left\langle S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right), J_{q}\left(x_{n-1}-x_{n}\right)\right\rangle \\
& +C_{q} \rho^{q}\left\|S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right\|^{q} \\
& \leq\left\|x_{n}-x_{n-1}\right\|^{q}+\rho q\left\|S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right\|\left\|x_{n}-x_{n-1}\right\|^{q-1} \\
& +C_{q} \rho^{q}\left\|S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right\|^{q} \\
& \leq\left\|x_{n}-x_{n-1}\right\|^{q}+\rho q\left[\lambda_{S_{1}} \lambda_{p}\left\|x_{n}-x_{n-1}\right\|\right. \\
& \left.+\lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\|\right]\left(\left\|x_{n}-x_{n-1}\right\|^{q-1}\right)+C_{q} \rho^{q}\left[\lambda_{S_{1}} \lambda_{p}\left\|x_{n}-x_{n-1}\right\|\right. \\
& \left.+\lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\|\right]^{q} \\
& =\left(1+\rho q \lambda_{S_{1}} \lambda_{p}\right)\left\|x_{n}-x_{n-1}\right\|^{q}+\rho q \lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\|\left\|x_{n}-x_{n-1}\right\|^{q-1} \\
& +C_{q} \rho^{q}\left(\lambda_{S_{1}} \lambda_{p}\left\|x_{n}-x_{n-1}\right\|+\lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\|\right)^{q} \\
& =\left(\sqrt[q]{1+\rho q \lambda_{S_{1}} \lambda_{p}}\left\|x_{n}-x_{n-1}\right\|\right)^{q}+\rho q \lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\|\left\|x_{n}-x_{n-1}\right\|^{q-1} \\
& +\left(\sqrt[q]{C_{q}} \rho \lambda_{S_{1}} \lambda_{p}\left\|x_{n}-x_{n-1}\right\|+\sqrt[q]{C_{q}} \rho \lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\|\right)^{q} \\
& \leq\left[\left(\sqrt[q]{1+\rho q \lambda_{S_{1}} \lambda_{p}}+\sqrt[q]{C_{q}} \rho \lambda_{S_{1}} \lambda_{p}\right)\left\|x_{n}-x_{n-1}\right\|+\sqrt[q]{C_{q}} \rho \lambda_{S_{2}} \lambda_{D_{B}}\left\|y_{n}-y_{n-1}\right\|\right]^{q} \\
& =\left[\theta_{2}\left\|x_{n}-x_{n-1}\right\|+\theta_{3}\left\|y_{n}-y_{n-1}\right\|\right]^{q}, \tag{4.21}
\end{align*}
$$

where $\theta_{2}=\left(\sqrt[q]{1+\rho q \lambda_{S_{1}} \lambda_{p}}+\sqrt[q]{C_{q}} \rho \lambda_{S_{1}} \lambda_{p}\right)$ and $\theta_{3}=\sqrt[q]{C_{q}} \rho \lambda_{S_{2}} \lambda_{D_{B}}$.

Thus from (4.21), it follows that
$\left\|\left(x_{n-1}-x_{n}\right)+\rho\left[S\left(p\left(x_{n}\right), v_{n}\right) \oplus S\left(p\left(x_{n-1}\right), v_{n-1}\right)\right]\right\|$

$$
\begin{equation*}
\leq \theta_{2}\left\|x_{n}-x_{n-1}\right\|+\theta_{3}\left\|y_{n}-y_{n-1}\right\| \tag{4.22}
\end{equation*}
$$

Combining (4.19) and (4.22), (4.18) becomes

$$
\begin{equation*}
\left\|z_{n+1}^{\prime} \oplus z_{n}^{\prime}\right\| \leq\left(\theta_{1}+\theta_{2}\right)\left\|x_{n}-x_{n-1}\right\|+\theta_{3}\left\|y_{n}-y_{n-1}\right\| \tag{4.23}
\end{equation*}
$$

Since $z_{n}^{\prime} \propto z_{n+1}^{\prime}$, we have

$$
\begin{equation*}
\left\|z_{n+1}^{\prime} \oplus z_{n}^{\prime}\right\|=\left\|z_{n+1}^{\prime}-z_{n}^{\prime}\right\| \leq\left(\theta_{1}+\theta_{2}\right)\left\|x_{n}-x_{n-1}\right\|+\theta_{3}\left\|y_{n}-y_{n-1}\right\| \tag{4.24}
\end{equation*}
$$

Again using Algorithm 4.1, we have

$$
\begin{aligned}
\left\|z_{n+1}^{\prime \prime} \oplus z_{n}^{\prime \prime}\right\|= & \left\|\left[g\left(y_{n}\right)+\gamma T\left(u_{n}, Q\left(y_{n}\right)\right)\right] \oplus\left[g\left(y_{n-1}\right)+\gamma T\left(u_{n-1}, Q\left(y_{n-1}\right)\right)\right]\right\| \\
= & \|\left[g\left(y_{n}\right) \oplus g\left(y_{n-1}\right)\right] \oplus \gamma\left[T\left(u_{n}, Q\left(y_{n}\right) \oplus T\left(u_{n-1}, Q\left(y_{n-1}\right)\right)\right] \|\right. \\
.25) & \left\|\left(y_{n}-y_{n-1}\right)+\left(g\left(y_{n}\right) \oplus g\left(y_{n-1}\right)\right)\right\| \\
& +\left\|\left(y_{n}-y_{n-1}\right)+\gamma\left[T\left(u_{n}, Q\left(y_{n}\right)\right) \oplus T\left(u_{n-1}, Q\left(y_{n-1}\right)\right)\right]\right\| .
\end{aligned}
$$

Using the Lipschitz continuity of g with constant λ_{g} and using the same arguments as for (4.19), we have

$$
\begin{align*}
\left\|\left(y_{n}-y_{n-1}\right)+\left(g\left(y_{n}\right) \oplus g\left(y_{n-1}\right)\right)\right\| & =\sqrt[q]{1+q \lambda_{g}+C_{q} \lambda_{g}^{q}\left\|y_{n}-y_{n-1}\right\|} \\
& =\theta_{4}\left\|y_{n}-y_{n-1}\right\| \tag{4.26}
\end{align*}
$$

where $\theta_{4}=\sqrt[q]{1+q \lambda_{g}+C_{q} \lambda_{g}^{q}}$.
As T is Lipschitz continuous in both arguments with constants $\lambda_{T_{1}}$ and $\lambda_{T_{2}}$, respectively, Q is Lipschitz continuous with constant λ_{Q}, A is D-Lipschitz continuous and using the same arguments as for (4.22), we have
$\left\|\left(y_{n}-y_{n-1}\right)+\gamma\left[T\left(u_{n}, Q\left(y_{n}\right)\right) \oplus T\left(u_{n-1}, Q\left(y_{n-1}\right)\right)\right]\right\|$

$$
\begin{equation*}
\leq \theta_{5}\left\|y_{n}-y_{n-1}\right\|+\theta_{6}\left\|x_{n}-x_{n-1}\right\| \tag{4.27}
\end{equation*}
$$

where $\theta_{5}=\sqrt[q]{1+q \gamma \lambda_{T_{2}} \lambda_{Q}}+\sqrt[q]{C_{q}}$ and $\theta_{6}=\sqrt[q]{C_{q}} \gamma \lambda_{T_{1}} \lambda_{D_{A}}$.
Thus,

$$
\begin{equation*}
\left\|z_{n+1}^{\prime \prime} \oplus z_{n}^{\prime \prime}\right\| \leq\left(\theta_{4}+\theta_{5}\right)\left\|y_{n}-y_{n-1}\right\|+\theta_{6}\left\|x_{n}-x_{n-1}\right\| \tag{4.28}
\end{equation*}
$$

Since $z_{n}^{\prime \prime} \propto z_{n+1}^{\prime \prime}$, we have

$$
\begin{equation*}
\left\|z_{n+1}^{\prime \prime} \oplus z_{n}^{\prime \prime}\right\|=\left\|z_{n+1}^{\prime \prime}-z_{n}^{\prime \prime}\right\| \leq\left(\theta_{4}+\theta_{5}\right)\left\|y_{n}-y_{n-1}\right\|+\theta_{6}\left\|x_{n}-x_{n-1}\right\| \tag{4.29}
\end{equation*}
$$

Combining (4.24) and (4.29), we have

$$
\begin{align*}
\left\|z_{n+1}^{\prime} \oplus z_{n}^{\prime}\right\|+\left\|z_{n+1}^{\prime \prime} \oplus z_{n}^{\prime \prime}\right\|= & \left\|z_{n+1}^{\prime}-z_{n}^{\prime}\right\|+\left\|z_{n+1}^{\prime \prime}-z_{n}^{\prime \prime}\right\| \\
\leq & \left(\theta_{1}+\theta_{2}\right)\left\|x_{n}-x_{n-1}\right\|+\theta_{3}\left\|y_{n}-y_{n-1}\right\| \\
& +\left(\theta_{4}+\theta_{5}\right)\left\|y_{n}-y_{n-1}\right\|+\theta_{6}\left\|x_{n}-x_{n-1}\right\| \\
= & \left(\theta_{1}+\theta_{2}+\theta_{6}\right)\left\|x_{n}-x_{n-1}\right\| \tag{4.30}\\
& +\left(\theta_{3}+\theta_{4}+\theta_{5}\right)\left\|y_{n}-y_{n-1}\right\| .
\end{align*}
$$

Using (4.19) and Lipschitz-type continuity of the resolvent operator J_{M}^{ρ}, we have

$$
\begin{aligned}
\left\|x_{n}-x_{n-1}\right\| & =\left\|x_{n}-x_{n-1}+\left(\left(f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\right)-\left(J_{M}^{\rho}\left(z_{n}^{\prime}\right) \oplus J_{M}^{\rho}\left(z_{n-1}^{\prime}\right)\right)\right)\right\| \\
& \leq \|\left(x_{n}-x_{n-1}\right)+\left(f\left(x_{n}\right) \oplus f\left(x_{n-1}\right)\|+\| J_{M}^{\rho}\left(z_{n}^{\prime}\right) \oplus J_{M}^{\rho}\left(z_{n-1}^{\prime}\right) \|\right. \\
& \leq \theta_{1}\left\|x_{n}-x_{n-1}\right\|+\frac{1}{(\alpha \rho-1)}\left\|z_{n}^{\prime}-z_{n-1}^{\prime}\right\| \\
& \leq \theta_{1}\left\|x_{n}-x_{n-1}\right\|+\theta_{7}\left\|z_{n}^{\prime}-z_{n-1}^{\prime}\right\|,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|x_{n}-x_{n-1}\right\| \leq \frac{\theta_{7}}{1-\theta_{1}}\left\|z_{n}^{\prime}-z_{n-1}^{\prime}\right\|, \text { where } \theta_{7}=\frac{1}{(\alpha \rho-1)}, \alpha>\frac{1}{\rho} . \tag{4.31}
\end{equation*}
$$

Using (4.26) and Lipschitz-type continuity of the resolvent operator J_{N}^{γ}, we have

$$
\begin{aligned}
\left\|y_{n}-y_{n-1}\right\| & =\left\|\left(y_{n}-y_{n-1}\right)+\left(\left(g\left(y_{n}\right) \oplus g\left(y_{n-1}\right)\right)-\left(J_{N}^{\gamma}\left(z_{n}^{\prime \prime}\right) \oplus J_{N}^{\gamma}\left(z_{n-1}^{\prime \prime}\right)\right)\right)\right\| \\
& \leq\left\|\left(y_{n}-y_{n-1}\right)+\left(g\left(y_{n}\right) \oplus g\left(y_{n-1}\right)\right)\right\|+\left\|J_{N}^{\gamma}\left(z_{n}{ }^{\prime \prime}\right) \oplus J_{N}^{\gamma}\left(z_{n-1}^{\prime \prime}\right)\right\| \\
& =\theta_{4}\left\|y_{n}-y_{n-1}\right\|+\frac{1}{\left(\alpha^{\prime} \rho^{\prime}-1\right)}\left\|z_{n}^{\prime \prime}-z_{n-1}^{\prime \prime}\right\| \\
& \leq \theta_{4}\left\|y_{n}-y_{n-1}\right\|+\theta_{8}\left\|z_{n}^{\prime \prime}-z_{n-1}^{\prime \prime}\right\|,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|y_{n}-y_{n-1}\right\| \leq \frac{\theta_{8}}{1-\theta_{4}}\left\|z_{n}^{\prime \prime}-z_{n-1}^{\prime \prime}\right\|, \text { where } \theta_{8}=\frac{1}{\left(\alpha^{\prime} \rho^{\prime}-1\right)}, \alpha^{\prime}>\frac{1}{\rho^{\prime}} . \tag{4.32}
\end{equation*}
$$

Combining (4.31), (4.32) with (4.30), we have

$$
\begin{align*}
\left\|z_{n+1}^{\prime}-z_{n}^{\prime}\right\|+\left\|z_{n+1}^{\prime \prime}-z_{n}^{\prime \prime}\right\| \leq & \frac{\left(\theta_{1}+\theta_{2}+\theta_{6}\right) \theta_{7}}{1-\theta_{1}}\left\|z_{n}^{\prime}-z_{n-1}^{\prime}\right\| \\
& +\frac{\left(\theta_{3}+\theta_{4}+\theta_{5}\right) \theta_{8}}{1-\theta_{4}}\left\|z_{n}^{\prime \prime}-z_{n-1}^{\prime \prime}\right\|, \\
\leq & \zeta(\theta)\left[\left\|z_{n}^{\prime}-z_{n-1}^{\prime}\right\|+\left\|z_{n}^{\prime \prime}-z_{n-1}^{\prime \prime}\right\|\right] \tag{4.33}
\end{align*}
$$

where

$$
\begin{equation*}
\zeta(\theta)=\max \left\{\frac{\left(\theta_{1}+\theta_{2}+\theta_{6}\right) \theta_{7}}{1-\theta_{1}}, \frac{\left(\theta_{3}+\theta_{4}+\theta_{5}\right) \theta_{8}}{1-\theta_{4}}\right\} . \tag{4.34}
\end{equation*}
$$

By (4.17), we know that $0<\zeta(\theta)<1$, and so (4.33) implies that $\left\{z_{n}^{\prime}\right\}$ and $\left\{z_{n}^{\prime \prime}\right\}$ are both cauchy sequences. Thus, there exists $z^{\prime} \in E_{1}$ and $z^{\prime \prime} \in E_{2}$ such that $z_{n}^{\prime} \rightarrow z^{\prime}$ and $z_{n}^{\prime \prime} \rightarrow z^{\prime \prime}$ as $n \rightarrow \infty$. From (4.31) and (4.32), it follows that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are also cauchy sequences in E_{1} and E_{2}, respectively, that is, there exist $x \in E_{1}, y \in E_{2}$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.

From Algorithm 4.1 and D-Lipschitz continuity of A and B, we have

$$
\begin{aligned}
& \left\|u_{n+1} \oplus u_{n}\right\| \leq\left\|u_{n+1}-u_{n}\right\| \leq D\left(A\left(x_{n+1}\right), A\left(x_{n}\right)\right) \leq \lambda_{D_{A}}\left\|x_{n+1}-x_{n}\right\|, \\
& \left\|v_{n+1} \oplus v_{n}\right\| \leq\left\|v_{n+1}-v_{n}\right\| \leq D\left(B\left(x_{n+1}\right), B\left(y_{n}\right)\right) \leq \lambda_{D_{B}}\left\|y_{n+1}-y_{n}\right\| .
\end{aligned}
$$

and hence, $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are also Cauchy sequences, let $u_{n} \rightarrow u$ and $v_{n} \rightarrow v$, respectively. By using the techniques of Ahmad and Yao [1], it is easy to show that
$u \in A(x), v \in B(y)$. By continuity of $f, g, p, Q, A, B, s, T, J_{M}^{\rho}, J_{N}^{\gamma}$ and Algorithm 4.1, we have

$$
\begin{aligned}
z^{\prime} & =f(x) \oplus \rho S(p(x), v)=J_{M}^{\rho}\left(z^{\prime}\right) \oplus \rho S(p(x), v) \in E_{1}, \\
z^{\prime \prime} & =g(y) \oplus \gamma T(u, Q(y))=J_{N}^{\gamma}\left(z^{\prime \prime}\right) \oplus \gamma T(u, Q(y)) \in E_{2} .
\end{aligned}
$$

By Proposition 4.1, the required result follows.

5. Conclusion

This paper is devoted to the study of a system of generalized resolvent equations involving XOR-operation in q-uniformly smooth Banach spaces with its corresponding system of generalized variational inclusions involving XOR-operation. It is shown that both the problems are equivalent and a fixed point formulation is also established. Some iterative algorithms are suggested and finally an existence and convergence result is proved.

We remark that our results are useful for other researchers of related domain and further can be extended in different directions.

References

[1] R. Ahmad and J. C. Yao, System of generalized resolvent equations with corresponding system of variational inclusions, J. Glob Optim, 44 (2009), 297-309.
[2] R. P. Agarwal, N. J. Huang and M. Y. Tan, Sensitivity analysis for a new system of generalized nonlinear quasi-variational inclusions, Appl. Math. Lett. 17 (2001), 345-352.
[3] R. Ahmad, I. Ali and C. F. Wen, Cayley inclusion problems involving XOR-operation, Mathematics 7 (2019): 302.
[4] I. Ali, R. Ahmad, M. Ishtiyak and C. F Wen, Sensitivity analysis of mixed Cayley inclusion problems with XOR-operation, Symmetry 12 (2020): 220.
[5] R. Ahmad, I. Ahmad, I. Ali, S. Homidan and C.-F.Wen, H(•, $\cdot)$-ordered compression mapping for solving XOR-variational inclusion problem, J. Nonlinear.Conv. Anal. 19 (2018), 2189-2201.
[6] C. Baiocchi and A. Capelo, Variational and Quasi variational Inequalities, Application to Free Boundary Problems, Wiley, New York, 1984.
[7] M. Binachi, Pseudo P-monotone Operators and Variational inequalities, Instituto di economitria e Mathematica Per decisioni economiche, universita cattolica del sacro cuore, Milan, Italy, 1993.
[8] G. Cohen and F. Chaplais, Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithm, J. Optim. theory Appl. 59 (1988), 360-390.
[9] H. Y. Du, Fixed points of increasng operators in ordered Banach spaces and applications, Appl. Anal. 38 (1990), 1-20.
[10] A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl. 185 (1994), 706-712.
[11] G. Isac, A. V. Bulavsky and V. V. Kalashnikkov, Complementarity, Equilibrium, Efficiency and Economics, Kluwar Academic Publishers, Dordrecht, 2002.
[12] D. Kinderlehrar and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.
[13] I. Konnov, Combined Relaxation Methods for variational inequalities, Lecture Notes in Economics and Math. Systems, vol. 495, Springer-Verlag, Berlin, 2001.
[14] H-Y. Lan, H. J. Kim and J. Y. Cho, On a new system of nonlinear A-monotone multivalued variational inclusions, J. Math. Anal. Appl. 327(2007), 481-493.
[15] H-G. Li, A nonlinear inclusion problem involving $(\alpha, \lambda)-N O D M$ set-valued mapping in ordered Hilbert space, Appl. Math. Lett. 25 (2012), 1384-1388.
[16] H-G. Li, Approximation solution for general nonlinear ordered variational inequalities and ordered equations in ordered Banach space, Nonlinear Anal. Forum, 13 (2008), 205-214.
[17] H-G. Li, Nonlinear inclusion problem for ordered RME set-valued mappings in ordered Hilbert space, Nonlinear Funct. Anal. Appl. 16 (2001), 1-8.
[18] H-G. Li, L.P. Li; M.M. Jin, A class of nonlinear mixed ordered inclusion problems for ordered $\left(\alpha_{A}, \lambda\right)-A N O D M$ set-valued mappings with strong comparison mappings, Fixed Point Theory Appl. 79 (2014): 2014.
[19] H.-G. Li, X.B. Li, Z. Y. Dang and C. Y. Wang, Solving GNOVI frameworks involving $\left(\gamma_{G}, \lambda\right)-$ weak-GRD set-valued mappings in positive Hilbert spaces, Fixed Point Theory Appl. 2014 (2014): Article number 146.
[20] A. Nagurney, Network Economics. A Variational Inequality Approach, Kluwar Academic Publishers, Dordrecht, 1993.
[21] P. D. Panagiotoupoulos and G. E. Stavroulakis, New types of variational principles based on the notion of quasidifferentiablity, Acta Mech. 94 (1992), 171-194.
[22] J. S. Pang, A symmetric variational inequality problems over product sets:application and iterative methods, Math. Program 31 (1985), 206-219.
[23] M. Patriksson, Nonlinear Programming and Variational Inequality Problems: A unified Approach, Kluwar Academic Publishers, Dordrecht, 1999.
[24] J. Pang and D. Zhu, A new system of generalized mixed quasi-variational inclusions with (H, η)-monotone operators, J. Math. Anal. Appl. 327 (2007), 175-187.
[25] H.-K. Xu, Inequalities in Banach spaces with Applications, Nonlinear Anaysis, Theory, Methods and Applications 16 (1991), 1127-1138.

Zahoor Ahmad Rather

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India E-mail address: zahoorrather348@gmail.com

Anshu Dagur

Rajeshwari Sadan,Police Lines Aligarh
E-mail address: anshudagur@gmail.com
Rais Ahmad
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
E-mail address: raisain_123@rediffmail.com

