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SHORT-TIME BEHAVIOR FOR A CLASS OF SEMILINEAR
NONLOCAL EVOLUTION EQUATIONS IN HILBERT SPACES

TRAN VAN TUAN

ABSTRACT. This paper studies the global solvability and finite-time attractivity
of solutions to a class of semilinear evolution equations in Hilbert spaces. Our
analysis is based on the theory of integral equations with completely positive
kernel, the fixed point theory and local estimates of solutions. An application to
semilinear integro-differential equations of parabolic type will be shown.

1. INTRODUCTION

During the last two decades, there has been an increasing interest in investigating
the qualitative behavior of dynamical systems on a bounded time interval. These
studies arise from various problems of applications, where one has to analyze tran-
sient behavior of the unknown function in differential systems on compact intervals
of time, see the introduction of [4,9] and references therein.

In this work, we employ the concept of the finite-time attractivity which is re-
cently introduced by Giesl and Rasmussen in [6,15] as a useful recipe in the control
theory, to analyze the behavior at terminal time of solutions to the following prob-
lem

(1.1) %(l@ou Tk fu— u(0)]) () + Au(t) = f(u(t)),t € (0,T]

(1.2) u(0) = uo,

where the state function u(-) takes values in a separable Hilbert space H, A is a linear
operator on H, f: H — H is a nonlinear function. Here k x v, for v € L}OC(R+; H),
denotes the Laplace convolution, i.e., (kxv)(t) = f(f k(t — s)v(s)ds.

Nonlocal differential equations like (1.1) naturally appear in a number of contexts,
particularly in the heat transfer processes in memory materials [5] (see also [13] and
the references therein) and in the homogenization of an one-phase flow model in a
fissured porous medium [1,8]. In the linear case (f is independent of ), (1.1)-(1.2)
was considered in [2,3, 8] with specific settings, where the authors dealt with the
well-posedness.

In order to examine (1.1)-(1.2), we make the following standing assumptions.

(Hk) ko > 0 and the kernel k € L} (RT) is a nonnegative and nonincreasing
function.

(Ha) A: D(A) — H is densely defined, self-adjoint and positively definite opera-
tor with a compact resolvent.
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Let ¢ be the solution of the integral equation

(1.3) kol(t) + /Ot k(t — m)l(T)dr = 1.

The hypothesis (Hk) ensures that £ is completely positive, according to Clément and
Nobhel in [5] (see the definition in Section 2). Using (1.3), one can transform (1.1) to
an abstract Volterra equation with completely positive kernel. Such equations occur
in various applications and have a long history. We refer the readers to monographs
of Gripenberg et al. [7] and of Priiss [13] for a full discussion of the Volterra equations
in finite dimensional spaces as well as in arbitrary Banach spaces.

Let us now turn to a brief discussion on some related results. In the case kg =0
and the kernel k(t) = g1—o(t) =t7*/T'(1 — ), € (0,1), we proved the finite-time
attractivity for problem (1.1)-(1.2) in [9] by using the fractional resolvent theory,
a singular Gronwall inequality and local estimates of solutions. The question of
finite-time attractivity was also addressed in [11] for a class of tempered fractional
equations. Very recently, in [10], the authors established a representation for so-
lutions to problem (1.1)-(1.2) in the case kg = 0 and derived some regularity and
stability results. In the present work, we find some appropriate conditions on k£ and
f ensuring the finite-time attractivity of solutions to (1.1)-(1.2) in the case ko > 0.
As a consequence, we prove the existence of periodic/anti-periodic solution of (1.1),
i.e., the solutions satisfying u(0) = £u(T).

Our work is arranged as follows. In the next section, using the approach developed
in [10], we derive the concept of mild solutions for inhomogeneous problems. In
Section 3, we prove the global solvability of problem (1.1)-(1.2) on [0,7] under
the assumption that the nonlinearity f is globally/locally Lipschitzian. Section
4 is devoted to showing our main results on the finite-time attractivity and their
consequences. In the last section, the obtained results will be demonstrated in a
class of partial differential equations.

2. PRELIMINARIES

In this section, we present some preliminary materials which will be used in the
sequel. Let the hypothesis (Hk) hold. For each p > 0, consider the scalar integral
Volterra equations

(2.1) su)+pu(lxs,)(t)=1, t>0,
and

(2.2) ru() + p(Cxry)(t) = £(t), t>0.
where ¢ is the unique solution of the integral equation
(2.3) kol +k*¢=1 on RT.

It is well known (see, e.g. [5,12]), that ¢ is absolutely continuous and nonnegative
function on [0, 7] and therefore the equations (2.1) and (2.2) are uniquely solved.

Recall that the kernel function /¢ is completely positive iff s,(-),,(-) are nonneg-
ative for every p > 0. Due to [5, Theorem 2.2], the relation (2.3) implies that the
kernel function £ is completely positive. Some important properties of s, and r,
are gathered in the following proposition, see [5,13,17,18] for more details.
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Proposition 2.1. Assume hypothesis (Hk), then the following claims hold.
i) For each >0, s, and r, belong to L}, (RY). Moreover s, € Hy'(RT), s,
18 nonincreasing and

(2.4) sult) < L

v 0t o.
S Traaeo@ rdtt=0

d
ii) ,u(l * ru) (t)=1—s5,(t),t >0 and @Su(t) = —pry(t) for a.e. t > 0.
iii) For each t > 0, the mappings
po= su(t), p—= ru(t)
are nonincreasing.

Proof. The proofs of the assertion i) and ii) can be found in [5, Section 2] or [13,
Proposition 4.5]. For the proof of assertion iii) we refer to [10, Proposition 2.1]
or [14, Lemm 5.1, Lemma 5.3]. O

For p > 0, we consider the scalar Volterra equation

(2.5) %(kgv + ko [v— o)) (t) = —po(t) + g(t).

Integrating equation (2.5) over [0,¢], and convoluting with the kernel ¢, one has
kol * [ —vo] + €5 kx[v—vo) = —p(l*€xv)+1xLxg.

Taking into account (2.3), we get

(2.6) v=wvg— pu(lxv)+Lxg.

In view of properties of s,(-) and r,(-) stated in Proposition 2.1, the Laplace trans-
form of these functions are well defined and given by

1 170)
S50 A) = ————— ’7?/\:7(2 .
A1+ pl(N) 1+ pb(N)
Applying the Laplace transform to both sides of the equation (2.6), we have
(2.7) b= voA ! — plt + 0.

It follows that
U= S/;ﬂ)o + @ﬁ
From the last relation, one finds that the solution of equation (2.5) is
v(t) = su(t)vo + (= g)(t).
By this observation, we get the following Gronwall type inequality, whose proof can

be found in [10, Proposition 2.2].

Lemma 2.2. Let > 0 and let v : RT — R be a continuous function satisfying
the integral inequality

v(t) < su(t)vo + /0 ru(t = s)(av(s) + b(s))ds,
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where 0 < a < p1, vg > 0 and b € L}, (RT). Then

t
(2.8) v(t) < sp—al vo+/ Tpu—a(t — 5)b(s) ds.
0

In particular, if b is constant then

o(t) < $ualt)vo + Mfau )

Consider the linear problem

(2.9) C‘;t(kou $ox [u—wo]) (£) + Au(t) = £(8), ¢ € (0,T].

(2.10) u(0) = ug
By the assumption (Ha), there exists a nondecreasing sequence {\,}5 ,
O< A < < <A <o\, = F0o0 as n — 400,

and a system of vectors {e,}>°; C D(A), which forms an orthonormal basis of H
such that Ae, = A\yep,for all n € N. In the sequel, we will use the notations (,-)
and || - || for the inner product and the norm in H, respectively.

For s € R, one can define the fractional power operator A° of A as follows

Az = Z)\; (2,en)en,z € Vg :=D(A%) = {z €H: ZA?f (2, e0)]* < oo} .

n=1 n=1

It should be noted that V; is a Banach space with the norm

1
00 2
Illv, = (Z N \(z,en)\2> , 2 € D(A?).

n=1

We can identify V_g = D(A™*) with V", the dual space of V5. Then V_; is a Banach
space with the norm

1
2

1hllv_, = <Z A525|<h,en>l2) :
n=1

where (-, -) denotes the duality pairing between V_g and V. Identifying H with its
dual H*, the following relations hold for all s > 0:

V.C H~H*CV_,

It is worth noting that (f,z) = (f,2) for all f € H,z € V.

We are in a position to give a representation for the mild solutions in terms of the
functions sy, (), 7, (). We note that equation (2.9) is equivalent to the Volterra
equation

(2.11) u—+L€x Au=ug+ £ = f.
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Let us define the following family of operators
o0
(2.12) S(t)z = sx,(t)znen,t >0,

n=1

(o]
Zmn (t)znen,t >0,z € H, 2z, = (2,ep).

n=1

(2.13) R(t)z

It is easily seen that, {S(¢)}+>0 and {R(t)}+~0 are the bounded linear operators on
H. In addition, by using Proposition 2.1(3), one has

(2.14) 1S()=]l < sx, @)1zl t > 0,2 €
(2.15) IR(t)z]| < 7, (D)]2]], t > 0,2 € H.

Moreover, by reasoning as in [10], for any f € C([0,7],H), we have R % f €
C([0,T]; H) and the following estimate holds

(2.16) (R )] S/O (= 8)[1f(s)] ds

here

(R f)(t) = /0 R(t —s)f(s)ds = Y (ra, * fa) (Dens falt) = (F(2),en).

n=1
We have the concept of mild solution to the problem (2.9)-(2.10) as follows.
Definition 2.3. A function u € C([0,T]; H) is called a mild solution of (2.9)-(2.10)
on [0, 7] with initial datum wug iff

u(t) = S(t)up + /0 R(t —s)f(s) ds,

for any ¢ € [0,T].

It should be noted that, one can follows the arguments as in [10] to show that,
a mild solution u of (2.9)-(2.10) is a weak solution of this problem, i.e., u €
c(o0,T;; H)ynC((0,T7]; V%), u(0) = ug, and u obeys (2.9) in the dual space V.

1.
2

3. GLOBAL SOLVABILITY

Based on the linear case, we introduce the notion of mild solutions to (1.1)-(1.2)
as the following.

Definition 3.1. A function u € C([0,7]; H) is called a mild solution of problem
(1.1)-(1.2) on the interval [0, 77 iff

u(t) = S(t)uo + /0 R(t —s)f(u(s)) ds,

for any t € [0,7].
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Let @ : C([0,T]; H) — C([0,T]; H) be the operator given by

(3.1) B(u)(t) = S(t)uo + /0 R(t — s)f (u(s)) ds, t € [0,T).

Then a function v € C([0,T]; H) is a mild solution to (1.1)-(1.2) iff it is a fixed
point of ®. As far as the nonlinearity f is concerned, we assume that

(Hf) The nonlinear function f : H — H is locally Lipschitz, that is

1f (1) = f(u2)l| < L(r)llur = uzll, Vur, uz € By,

where B, is the closed ball centered at origin with radius = in C([0,7]; H) and L(r)
is a positive number depending on r .
We analyze the first case for global solvability in the following theorem.

Theorem 3.2. Let the hypotheses (Hk),(Ha) and (Hf) hold. If f(0) = 0 and
a = limsup L(r) < A1, then there exist r > 0 and 6 > 0 such that the problem

r—0

(1.1)-(1.2) admits a unique global mild solution u € B, provided that ||up|| < J.

Proof. By assumption on the behaviour of f, for § € (0, A\; — «), there exists r* > 0
such that, for any r € (0,7*) and ||v|| < r, we get

If @) = [1f(v) = fO) < L(r)llv]| < (a+ 0)]Jv]]-
Now we consider the solution map ® : B, — C([0,T]; H) defined by (3.1). We see
that
’ t
[@(w)(B)]] < sx, (8)[[uoll +/0 ra (t = 7)(a+0)|u(r)|dr

< s, (1) ]|uoll + (a+ O)rATH (1 — sy, (1))

< sx, (O)[lluoll = (@ + AT 7] + (a+ )AL

<r, tel0,T],
provided that [lug|| < aAy'r, thanks to the fact that (o + #)A\[' < 1. Fixing an
6 and r mentioned above, for § = a)\l_lr, we have shown that ®(B,) C B, as

|lugl] < §. We now show that ® : B, — B, is a contraction mapping. Indeed, we
observe that, for uq,us € B,

HMmXﬂ—¢Wﬁ@HﬁA7m@—7ﬂﬂmﬁn—fwﬂﬂwm
SAUN-ﬂMWMM-W@WT

< [ ratt =@+ O)lun(r) - (s
0
< (Oé + ‘9)>‘1_1(1 — S\ (t))Hul - u2”007 vt € [07T]a

thanks to Proposition 2.1(ii), here || - || denotes the sup-norm in C([0,T]; H).
Hence

[®(u1) = P(uz)l|oo < (0 + AT lur — uz|oo,
which completes the proof. Il
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In the special case the nonlinear function f is globally Lipschitz, we also obtain
the global solvability of the problem (1.1)-(1.2) without any restriction on the initial
data.

Theorem 3.3. Let the hypotheses (Hk),(Ha) and (Hf) hold with L(r) being a
constant. Then the problem (1.1)-(1.2) has a unique global mild solution.

The proof is similar to the one used in [10, Theorem 4.2].

4. FINITE-TIME ATTRACTIVITY

This section presents our main result on finite-time attractivity of solutions to
(1.1).
Definition 4.1. (Finite-time attractivity). Let u*(-, ug) be the solution of equation
(1.1) corresponding to the initial datum wg.
(i) u* is called attractive on [0,T] if there exists an 7 > 0 such that

(4.1) [u(T, &) — u™ (T, uo)|| <€ — uol,

for all £ € By(uo)\{uo} and u(-,&) being the solution of (1.1) with respect
to initial datum ¢&.
(ii) u* is called exponentially attractive on [0, 7] if

1
(4.2) limsup— sup ||u(T,&) —u*" (T, up)| < 1,
N0 T £eBy(uo)

where u(+, ) is the solution of (1.1) with respect to initial datum &.

One can easily verify from the definition that exponential attractivity implies
attractivity. The following lemma gives a sufficient condition for exponential at-
tractivity, whose proof can be found in [9, Lemma 3.1].

Lemma 4.2. Let u*(-,ug) € C([0,T]; X) be a solution of (1.1). Then u* is expo-
nentially attractive on [0,T], provided that
T —u*(T
s g 11708 = (T )|
l€]l—0 €]l

<1,

where u(-,ug + &) is the solution of (1.1) with respect to initial datum ug + &.
The main result in this section is the following.

Theorem 4.3. Let the assumptions of Theorem 3.2 hold. Then there exists § > 0
such that, every solution u of (1.1) with ||u(0)|| < ¢ is exponentially attractive on
[0,T7].

Proof. Let r,0 and § be chosen as in the proof of Theorem 3.2, where one has
L(T) < a+0< Al.

Fixed £ € Bs and u*(t) = u*(¢,&*), we will show the attractivity for uv*. For £ € Bs
and u(t) = u(t, &), put

E=€— ¢ a(t) = u(t) —u'(t), t € [0,T].
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Then we see that

()] < sx, (@)II€] +/O (= 9)1f (uls)) = £ (u(s)) | ds
< s (€] +/0 (= s)L(r)[[a(s)| ds

~ t
< s @)I€N+ /0 (= s)(a+0)[[a(s)] ds.
Using Lemma 2.2 again, the above relation implies
@) < sx—a—o(®)IE]l, V¢ € [0,T].
Thus
[a(T)|

lim sup — < 1,
1é—o ¢l

thanks to the fact that s,(7") < 1 for every p > 0. Equivalently,

oy [T ) = 0 (126)

= H < 1.
€10 €]l

The proof is complete. O

In the case the nonlinear function f is globally Lipschitzian, we get the following
result.

Theorem 4.4. If the assumptions of Theorem 3.3 hold, then every solution of (1.1)
is exponentially attractive on [0, T, provided that L < Ay.

Proof. The arguments are similar to those in the proof of Theorem 4.3. Let u* =
u(+,&*) and u = u(+, &) be solutions of (1.1). Then

[u(t) = u" ()] < sx, (D€ = &7 + /O a (t = 8)|[f (u(s)) = fu™(s))llds

< sx (0)1€ =<7l +/O (8 = 8)Lllu(s) —u”(s)l|ds, t € [0, T].

Employing Lemma 2.2, we get
[u(t) = u* (@) < sx -2 @) = &7, vt € [0,T],

which implies the desired conclusion. O

Remark 4.5. We call the set B = {{ € H : u(-,§) is attractive on [0,T]}, where
u(-,€) is the solution of (1.1) with respect to the initial datum &, the basin of at-
traction for (1.1). Obviously, the basin of attraction for (1.1) under the assumption
of Theorem 4.4 is the whole space. By the setting in Theorem 4.3, we know that
B D Bj, with 6 small enough. However, the question of determining B in this case
is open.
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In the rest of section, by the same conditions ensuring the attractivity, we prove
the solvability result of the following problem

(4.4) %(l@ou ok [u— u(0)])(t) + Au(t) = f(u()),t € (0,T]

(4.5) u(0) = g(u),
where g : C([0,T); H) — H satisfies the following assumption.
(Hg) There exists 7 € (0, 7] such that

lg(ur) = g(ug)|| < sup lui(s) = ua(s)l, Yur, ug € C([0, T]; H).

s€[r,T]

It should be mentioned that assumption (Hg) is satisfied for the following typical
cases:
i) g(u) = u(T) (periodic condition)
i) g(u) = u( ) (anti-periodic condition)
k
g(u) = ZBZ (r;) where Y 16| < land 0 <71 <o < -+ <71 <T

=1
(multi- pomt boundary condition).

By mild solution to problem (4.4)-(4.5), we mean a function u € C([0,T]; H) satis-
fying

iii)

u(t) = /Rts (s)) ds,Vt € [0,T].
We are now in a position to prove the solvability of problem (4.4)-(4.5).

Theorem 4.6. Let the hypotheses of Theorem 3.3 and (Hg) hold. Then the problem
(4.4)-(4.5) has a mild solution.

Proof. Define the operator
J C([0,T}; H) = C([0,T]; H)
v J(v) =u

where u is the unique solution of the following Cauchy problem

d
p (kou + k = [u — u(0)]) () + Au(t) = f(u(t)),t € (0,T]

u(0) = g(v).
It suffices to prove the existence of a fixed point for J. Let vy, vy € C([0,T]; H) and

up = J(v1),u2 = J(v2). Exploiting the estimates as in the proof of Theorem 4.4
and the hypothesis (Hg) we get

[Jv1(t) — Jua ()] = [lua(t) — ua(t)]
< sx -2 (8)[|u1(0) — u2(0) ||
= sy —r(t)[|g(v1) — g(va) ||

< sxn-L(t) sup [vi(s) —va(s)l|-
se[r,T]
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Therefore,
[7%01(t) = JPua(t)]| < sx,-1(t) FHP] [Jor(t) — Joa(2)]]
7,1
< sup ||Jv1(t) — Jua(t)||
[7,T]
< sup [lvi(s) — va(s)|| sup sy, —(t)
7T [7,T]
(4.6) < sa—L(7)[Jvr = val],

thanks to the fact that s,(-) is nonincreasing for any p > 0.
Inequality (4.6) guarantees that J? is a contraction mapping on C([0,7]; H). Let
v € C([0,T]; H) be such that J?(v) = v and put 4 = J(v). It is easily seen that

J2(a) = J3(v) = J(0) = @

This turns out that @ coincides with © and it is the unique fixed point of J. The
proof is complete. O

5. AN APPLICATION

Consider the following nonlinear integrodifferential equation
1
(5.1)  Ou(z,t) + 0%u(z,t) = Bu(z,t) + h(/ u2(ac,t)dx)u(x, t),a € (0,1),
0

for x € (0,1),t € (0,71, subject to the boundary condition
(5.2) u(t,0) = u(t,1) =0,

and the initial condition

(5.3) u(0,z) = ¢&(x), x € [0,1].

In the above model, 95 stands for the Caputo fractional derivative of order «, 0,
denotes the generalized derivative in variable z. In this case the kernel k is given
by k(t) = g1—a(t)-

Let H = L?(0,1). The inner product and the norm in H are given by

()= | Cuople)ds, ol =( / (@),

Let A = —9? with the domain D(A) = H?(0,1) N H}(0,1). Tt is known that
A is a densely defined, self-adjoint and positive operator with domain D(A) and
has a compact resolvent on H (see, e.g [16, Proposition 3.5.1]). Moreover, the
eigenvalues of A consists of \,, = n?7?,n = 1,2,..., with corresponding eigenvectors
en =2 sin(nz),n > 1, which form an orthonormal basis in H. So the hypothesis
(Ha) is verified.

Let

Fo)(@) = h(/ol 2 (z) dx)v(x),v € 12(0,1).
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Clearly, the problem (5.1)-(5.3) is a model of (1.1)-(1.2) with kg = 1. A simple
computation shows that (—1)"k(™(t) > 0,V¥n € Ny, t > 0 and hence the kernel k is
completely monotonic. Consequently, the hypothesis (Hk) is satisfied.

Regarding the nonlinearity in equation (5.1), we assume that the function h
belongs to C1(R) and |h(r)| < a+ b|r|?, for some nonnegative constants a,b, 3.
One can check that

e f maps L?(0,1) into itself since for all v € L?(0,1)

e =n( [ e a) ([ e )

(lol®llvll < (a+ bllv]*#)fo]l.

=h
e For all v1,v9 € L?(0,1) such that ||v1|), |Jv2]| < r, by the mean value theorem,
one has

1 (v1) = F @)l < [R(llo1]?) = h(loal*)llvs ]| + A(lval*)[[o1 = val]
< rlllorll? = ol P18 (@lloa|* + (1 = 0)llvall?) + A(lval*) o1 — val]

< (2r% sup |B'(2)|+a+br*F)|vr — val.
2€[0,r2]

Hence, the hypothesis (Hf) is fulfilled with L(r) = 2r? SUpcfo,2) [ (2)] +a + br2P.
Obviously, 1irr(1] L(r) = a. Therefore, if a < w2, then every solution of (5.1)-(5.3)
r—

with £ small enough is attractive on [0, 7.

REFERENCES

[1] B. Amaziane, L. Pankratov and A. Piatnitski, Homogenization of a single phase flow through
a porous medium in a thin layer, Math. Models Methods Appl. Sci. 17 (2007), 1317-1349.

[2] A. Ashyralyev, Well-posedness of the Basset problem in spaces of smooth functions, Appl.
Math. Lett. 24 (2011), 1176-1180.

[3] E. Bazhlekova and 1. Dimovski, Ezact solution of two-term time-fractional Thornley’s problem
by operational method, Integral Transforms Spec. Funct. 25 (2014), 61-74.

[4] A. Berger, D.T. Son and S. Siegmund, Nonautonomous finite-time dynamics, Discrete Contin.
Dyn. Syst. Ser. B 9 (2008), 463-492.

[5] P. Clément and J. A. Nohel, Asymptotic behavior of solutions of nonlinear Volterra equations
with completely positive kernels, SIAM J. Math. Anal. 12 (1981), 514-535.

[6] P. Giesl and M. Rasmussen, Areas of attraction for nonautonomous differential equations on
finite time intervals, J. Math. Anal. Appl. 390 (2012), 27-46.

[7] G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations,
Encycl. Math. Appl., vol. 34, Cambridge University Press, Cambridge, 1990.

[8] U. Hornung and R. Showalter, Diffusion models for fractured media, J. Math. Anal. Appl. 147
(1990), 69-80.

[9] T. D. Ke and T. V. Tuan, Finite-time attractivity for semilinear fractional differential equa-
tions, Results Math. 73 (2018): 73.

[10] T. D. Ke, N. N. Thang and L. T. P. Thuy, Regularity and stability analysis for a class of
semilinear nonlocal differential equations in Hilbert spaces, J. Math. Anal. Appl. 483 (2020):
123655.

[11] T. D. Ke and N. N. Quan, Finite-time attractivity for semilinear tempered fractional wave
equations, Fract. Calc. Appl. Anal. 21 (2018), 1471-1492.

[12] R. K. Miller, On Volterra integral equations with nonnegative integrable resolvents, J. Math.
Anal. Appl. 22 (1968), 319-340.



290 TRAN VAN TUAN

[13] J. Priiss, Ewvolutionary Integral Equations and Applications, Modern Birkhauser Classics,
Birkh&user/Springer Basel AG, Basel, 1993.

[14] J. C. Pozo and V. Vergara, Fundamental solutions and decay of fully non-local problems,
Discrete Contin. Dyn. Syst. 39 (2019), 639-666.

[15] M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture
Notes in Mathematics 1907. Springer, Berlin, 2007.

[16] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Springer, New
York, 2009.

[17] V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal
subdiffusion equations via energy methods, STAM J. Math. Anal. 47 (2015), 210-239.

[18] R. Zacher, Mazimal regularity of type L, for abstract parabolic Volterra equations, J. Evol.
Equ. 5 (2005), 79-103.

Manuscript received May 20 2020
revised December 1 2020

TRAN VAN TUAN
Department of Mathematics, Hanoi Pedagogical University 2, Xuan Hoa, Phuc Yen, Vinh Phuc,
Vietnam

E-mail address: tranvantuan@hpu2.edu.vn



