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Let ℓ be the solution of the integral equation

(1.3) k0ℓ(t) +

∫ t

0
k(t− τ)ℓ(τ)dτ = 1.

The hypothesis (Hk) ensures that ℓ is completely positive, according to Clément and
Nohel in [5] (see the definition in Section 2). Using (1.3), one can transform (1.1) to
an abstract Volterra equation with completely positive kernel. Such equations occur
in various applications and have a long history. We refer the readers to monographs
of Gripenberg et al. [7] and of Prüss [13] for a full discussion of the Volterra equations
in finite dimensional spaces as well as in arbitrary Banach spaces.

Let us now turn to a brief discussion on some related results. In the case k0 = 0
and the kernel k(t) = g1−α(t) = t−α/Γ(1− α), α ∈ (0, 1), we proved the finite-time
attractivity for problem (1.1)-(1.2) in [9] by using the fractional resolvent theory,
a singular Gronwall inequality and local estimates of solutions. The question of
finite-time attractivity was also addressed in [11] for a class of tempered fractional
equations. Very recently, in [10], the authors established a representation for so-
lutions to problem (1.1)-(1.2) in the case k0 = 0 and derived some regularity and
stability results. In the present work, we find some appropriate conditions on k and
f ensuring the finite-time attractivity of solutions to (1.1)-(1.2) in the case k0 > 0.
As a consequence, we prove the existence of periodic/anti-periodic solution of (1.1),
i.e., the solutions satisfying u(0) = ±u(T ).

Our work is arranged as follows. In the next section, using the approach developed
in [10], we derive the concept of mild solutions for inhomogeneous problems. In
Section 3, we prove the global solvability of problem (1.1)-(1.2) on [0, T ] under
the assumption that the nonlinearity f is globally/locally Lipschitzian. Section
4 is devoted to showing our main results on the finite-time attractivity and their
consequences. In the last section, the obtained results will be demonstrated in a
class of partial differential equations.

2. Preliminaries

In this section, we present some preliminary materials which will be used in the
sequel. Let the hypothesis (Hk) hold. For each µ > 0, consider the scalar integral
Volterra equations

(2.1) sµ(t) + µ
(
ℓ ∗ sµ

)
(t) = 1, t ≥ 0,

and

(2.2) rµ(t) + µ
(
ℓ ∗ rµ

)
(t) = ℓ(t), t > 0.

where ℓ is the unique solution of the integral equation

(2.3) k0ℓ+ k ∗ ℓ = 1 on R+.

It is well known (see, e.g. [5, 12]), that ℓ is absolutely continuous and nonnegative
function on [0, T ] and therefore the equations (2.1) and (2.2) are uniquely solved.

Recall that the kernel function ℓ is completely positive iff sµ(·), rµ(·) are nonneg-
ative for every µ > 0. Due to [5, Theorem 2.2], the relation (2.3) implies that the
kernel function ℓ is completely positive. Some important properties of sµ and rµ
are gathered in the following proposition, see [5, 13,17,18] for more details.
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Proposition 2.1. Assume hypothesis (Hk), then the following claims hold.

i) For each µ > 0, sµ and rµ belong to L1
loc(R+). Moreover sµ ∈ H1,1

loc (R
+), sµ

is nonincreasing and

(2.4) sµ(t) ≤
1

1 + µ(1 ∗ ℓ)(t)
, for all t ≥ 0.

ii) µ
(
1 ∗ rµ

)
(t) = 1− sµ(t), t ≥ 0 and

d

dt
sµ(t) = −µrµ(t) for a.e. t > 0.

iii) For each t > 0, the mappings

µ 7→ sµ(t), µ 7→ rµ(t)

are nonincreasing.

Proof. The proofs of the assertion i) and ii) can be found in [5, Section 2] or [13,
Proposition 4.5]. For the proof of assertion iii) we refer to [10, Proposition 2.1]
or [14, Lemm 5.1, Lemma 5.3]. □

For µ > 0, we consider the scalar Volterra equation

(2.5)
d

dt

(
k0v + k ∗ [v − v0]

)
(t) = −µv(t) + g(t).

Integrating equation (2.5) over [0, t], and convoluting with the kernel ℓ, one has

k0ℓ ∗ [v − v0] + ℓ ∗ k ∗ [v − v0] = −µ
(
1 ∗ ℓ ∗ v) + 1 ∗ ℓ ∗ g.

Taking into account (2.3), we get

(2.6) v = v0 − µ(ℓ ∗ v) + ℓ ∗ g.

In view of properties of sµ(·) and rµ(·) stated in Proposition 2.1, the Laplace trans-
form of these functions are well defined and given by

ŝµ(λ) =
1

λ(1 + µℓ̂(λ))
, r̂µ(λ) =

ℓ̂(λ)

1 + µℓ̂(λ)
.

Applying the Laplace transform to both sides of the equation (2.6), we have

(2.7) v̂ = v0λ
−1 − µℓ̂v̂ + ℓ̂ĝ.

It follows that

v̂ = ŝµv0 + r̂µĝ.

From the last relation, one finds that the solution of equation (2.5) is

v(t) = sµ(t)v0 +
(
rµ ∗ g

)
(t).

By this observation, we get the following Gronwall type inequality, whose proof can

be found in [10, Proposition 2.2].

Lemma 2.2. Let µ > 0 and let v : R+ → R+ be a continuous function satisfying
the integral inequality

v(t) ≤ sµ(t)v0 +

∫ t

0
rµ(t− s)

(
a v(s) + b(s)

)
ds,



282 TRAN VAN TUAN

where 0 < a < µ, v0 ≥ 0 and b ∈ L1
loc(R+). Then

(2.8) v(t) ≤ sµ−a(t)v0 +

∫ t

0
rµ−a(t− s)b(s) ds.

In particular, if b is constant then

v(t) ≤ sµ−a(t)v0 +
b

µ− a

(
1− sµ−a(t)

)
.

Consider the linear problem

d

dt

(
k0u+ k ∗ [u− u0]

)
(t) +Au(t) = f(t), t ∈ (0, T ].(2.9)

u(0) = u0(2.10)

By the assumption (Ha), there exists a nondecreasing sequence {λn}∞n=1,

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · , λn → +∞ as n → +∞,

and a system of vectors {en}∞n=1 ⊂ D(A), which forms an orthonormal basis of H
such that Aen = λnen, for all n ∈ N. In the sequel, we will use the notations (·, ·)
and ‖ · ‖ for the inner product and the norm in H, respectively.

For s ∈ R, one can define the fractional power operator As of A as follows

Asz :=
∞∑
n=1

λs
n (z, en) en, z ∈ Vs := D(As) =

{
z ∈ H :

∞∑
n=1

λ2s
n |(z, en)|2 < ∞

}
.

It should be noted that Vs is a Banach space with the norm

‖z‖Vs =

( ∞∑
n=1

λ2s
n |(z, en)|2

) 1
2

, z ∈ D(As).

We can identify V−s = D(A−s) with V ∗
s , the dual space of Vs. Then V−s is a Banach

space with the norm

‖h‖V−s =

( ∞∑
n=1

λ−2s
n |〈h, en〉|2

) 1
2

,

where 〈·, ·〉 denotes the duality pairing between V−s and Vs. Identifying H with its
dual H∗, the following relations hold for all s ≥ 0:

Vs ⊂ H ' H∗ ⊂ V−s.

It is worth noting that 〈f, z〉 = (f, z) for all f ∈ H, z ∈ Vs.
We are in a position to give a representation for the mild solutions in terms of the

functions sλn(·), rλn(·). We note that equation (2.9) is equivalent to the Volterra
equation

(2.11) u+ ℓ ∗Au = u0 + ℓ ∗ f.
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Let us define the following family of operators

S(t)z =

∞∑
n=1

sλn(t)znen, t ≥ 0,(2.12)

R(t)z =
∞∑
n=1

rλn(t)znen, t > 0, z ∈ H, zn = (z, en).(2.13)

It is easily seen that, {S(t)}t≥0 and {R(t)}t>0 are the bounded linear operators on
H. In addition, by using Proposition 2.1(3), one has

‖S(t)z‖ ≤ sλ1(t)‖z‖, t ≥ 0, z ∈ H,(2.14)

‖R(t)z‖ ≤ rλ1(t)‖z‖, t > 0, z ∈ H.(2.15)

Moreover, by reasoning as in [10], for any f ∈ C([0, T ],H), we have R ∗ f ∈
C([0, T ];H) and the following estimate holds

(2.16) ‖(R ∗ f)(t)‖ ≤
∫ t

0
rλ1(t− s)‖f(s)‖ ds

here

(R ∗ f)(t) =
∫ t

0
R(t− s)f(s)ds =

∞∑
n=1

(
rλn ∗ fn

)
(t)en, fn(t) = (f(t), en).

We have the concept of mild solution to the problem (2.9)-(2.10) as follows.

Definition 2.3. A function u ∈ C([0, T ];H) is called a mild solution of (2.9)-(2.10)
on [0, T ] with initial datum u0 iff

u(t) = S(t)u0 +

∫ t

0
R(t− s)f(s) ds,

for any t ∈ [0, T ].

It should be noted that, one can follows the arguments as in [10] to show that,
a mild solution u of (2.9)-(2.10) is a weak solution of this problem, i.e., u ∈
C([0, T ];H) ∩ C((0, T ];V 1

2
), u(0) = u0, and u obeys (2.9) in the dual space V− 1

2
.

3. Global solvability

Based on the linear case, we introduce the notion of mild solutions to (1.1)-(1.2)
as the following.

Definition 3.1. A function u ∈ C([0, T ];H) is called a mild solution of problem
(1.1)-(1.2) on the interval [0, T ] iff

u(t) = S(t)u0 +

∫ t

0
R(t− s)f

(
u(s)

)
ds,

for any t ∈ [0, T ].
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Let Φ : C([0, T ];H) → C([0, T ];H) be the operator given by

(3.1) Φ(u)(t) = S(t)u0 +

∫ t

0
R(t− s)f

(
u(s)

)
ds, t ∈ [0, T ].

Then a function u ∈ C([0, T ];H) is a mild solution to (1.1)-(1.2) iff it is a fixed
point of Φ. As far as the nonlinearity f is concerned, we assume that

(Hf) The nonlinear function f : H → H is locally Lipschitz, that is

‖f(u1)− f(u2)‖ ≤ L(r)‖u1 − u2‖, ∀u1, u2 ∈ Br,

where Br is the closed ball centered at origin with radius r in C([0, T ];H) and L(r)
is a positive number depending on r .

We analyze the first case for global solvability in the following theorem.

Theorem 3.2. Let the hypotheses (Hk), (Ha) and (Hf) hold. If f(0) = 0 and
α = lim sup

r→0
L(r) < λ1, then there exist r > 0 and δ > 0 such that the problem

(1.1)-(1.2) admits a unique global mild solution u ∈ Br provided that ‖u0‖ ≤ δ.

Proof. By assumption on the behaviour of f , for θ ∈ (0, λ1−α), there exists r∗ > 0
such that, for any r ∈ (0, r∗) and ‖v‖ ≤ r, we get

‖f(v)‖ = ‖f(v)− f(0)‖ ≤ L(r)‖v‖ ≤ (α+ θ)‖v‖.
Now we consider the solution map Φ : Br → C([0, T ];H) defined by (3.1). We see
that

‖Φ(u)(t)‖ ≤ sλ1(t)‖u0‖+
∫ t

0
rλ1(t− τ)(α+ θ)‖u(τ)‖dτ

≤ sλ1(t)‖u0‖+ (α+ θ)rλ−1
1 (1− sλ1(t))

≤ sλ1(t)[‖u0‖ − (α+ θ)λ−1
1 r] + (α+ θ)λ−1

1 r

≤ r, t ∈ [0, T ],

provided that ‖u0‖ ≤ αλ−1
1 r, thanks to the fact that (α + θ)λ−1

1 < 1. Fixing an

θ and r mentioned above, for δ = αλ−1
1 r, we have shown that Φ(Br) ⊂ Br as

‖u0‖ ≤ δ. We now show that Φ : Br → Br is a contraction mapping. Indeed, we
observe that, for u1, u2 ∈ Br,

‖Φ(u1)(t)− Φ(u2)(t)|| ≤
∫ t

0
rλ1(t− τ)‖f(u1(τ))− f(u2(τ))‖dτ

≤
∫ t

0
rλ1(t− τ)L(r)‖u1(τ)− u2(τ)‖dτ

≤
∫ t

0
rλ1(t− τ)(α+ θ)‖u1(τ)− u2(τ)‖dτ

≤ (α+ θ)λ−1
1 (1− sλ1(t))‖u1 − u2‖∞, ∀t ∈ [0, T ],

thanks to Proposition 2.1(ii), here ‖ · ‖∞ denotes the sup-norm in C([0, T ];H).
Hence

‖Φ(u1)− Φ(u2)||∞ ≤ (α+ θ)λ−1
1 ‖u1 − u2‖∞,

which completes the proof. □
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In the special case the nonlinear function f is globally Lipschitz, we also obtain
the global solvability of the problem (1.1)-(1.2) without any restriction on the initial
data.

Theorem 3.3. Let the hypotheses (Hk), (Ha) and (Hf) hold with L(r) being a
constant. Then the problem (1.1)-(1.2) has a unique global mild solution.

The proof is similar to the one used in [10, Theorem 4.2].

4. Finite-time attractivity

This section presents our main result on finite-time attractivity of solutions to
(1.1).

Definition 4.1. (Finite-time attractivity). Let u∗(·, u0) be the solution of equation
(1.1) corresponding to the initial datum u0.

(i) u∗ is called attractive on [0, T ] if there exists an η > 0 such that

(4.1) ‖u(T, ξ)− u∗(T, u0)‖ < ‖ξ − u0‖,
for all ξ ∈ Bη(u0)\{u0} and u(·, ξ) being the solution of (1.1) with respect
to initial datum ξ.

(ii) u∗ is called exponentially attractive on [0, T ] if

(4.2) lim sup
η↘0

1

η
sup

ξ∈Bη(u0)
‖u(T, ξ)− u∗(T, u0)‖ < 1,

where u(·, ξ) is the solution of (1.1) with respect to initial datum ξ.

One can easily verify from the definition that exponential attractivity implies
attractivity. The following lemma gives a sufficient condition for exponential at-
tractivity, whose proof can be found in [9, Lemma 3.1].

Lemma 4.2. Let u∗(·, u0) ∈ C([0, T ];X) be a solution of (1.1). Then u∗ is expo-
nentially attractive on [0, T ], provided that

(4.3) lim sup
∥ξ∥→0

‖u(T, u0 + ξ)− u∗(T, u0)‖
‖ξ‖

< 1,

where u(·, u0 + ξ) is the solution of (1.1) with respect to initial datum u0 + ξ.

The main result in this section is the following.

Theorem 4.3. Let the assumptions of Theorem 3.2 hold. Then there exists δ > 0
such that, every solution u of (1.1) with ‖u(0)‖ ≤ δ is exponentially attractive on
[0, T ].

Proof. Let r, θ and δ be chosen as in the proof of Theorem 3.2, where one has

L(r) ≤ α+ θ < λ1.

Fixed ξ∗ ∈ Bδ and u∗(t) = u∗(t, ξ∗), we will show the attractivity for u∗. For ξ ∈ Bδ

and u(t) = u(t, ξ), put

ξ̃ = ξ − ξ∗, ũ(t) = u(t)− u∗(t), t ∈ [0, T ].
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Then we see that

‖ũ(t)‖ ≤ sλ1(t)‖ξ̃‖+
∫ t

0
rλ1(t− s)‖f

(
u(s)

)
− f

(
u∗(s)

)
‖ ds

≤ sλ1(t)‖ξ̃‖+
∫ t

0
rλ1(t− s)L(r)‖ũ(s)‖ ds

≤ sλ1(t)‖ξ̃‖+
∫ t

0
rλ1(t− s)(α+ θ)‖ũ(s)‖ ds.

Using Lemma 2.2 again, the above relation implies

‖ũ(t)‖ ≤ sλ1−α−θ(t)‖ξ̃‖, ∀t ∈ [0, T ].

Thus

lim sup
∥ξ̃∥→0

‖ũ(T )‖
‖ξ̃‖

< 1,

thanks to the fact that sµ(T ) < 1 for every µ > 0. Equivalently,

lim sup
∥ξ̃∥→0

‖u(T, ξ)− u∗(T, ξ∗)‖
‖ξ̃‖

< 1.

The proof is complete. □

In the case the nonlinear function f is globally Lipschitzian, we get the following
result.

Theorem 4.4. If the assumptions of Theorem 3.3 hold, then every solution of (1.1)
is exponentially attractive on [0, T ], provided that L < λ1.

Proof. The arguments are similar to those in the proof of Theorem 4.3. Let u∗ =
u(·, ξ∗) and u = u(·, ξ) be solutions of (1.1). Then

‖u(t)− u∗(t)‖ ≤ sλ1(t)‖ξ − ξ∗‖+
∫ t

0
rλ1(t− s)‖f(u(s))− f(u∗(s))‖ds

≤ sλ1(t)‖ξ − ξ∗‖+
∫ t

0
rλ1(t− s)L‖u(s)− u∗(s)‖ds, t ∈ [0, T ].

Employing Lemma 2.2, we get

‖u(t)− u∗(t)‖ ≤ sλ1−L(t)‖ξ − ξ∗‖, ∀t ∈ [0, T ],

which implies the desired conclusion. □

Remark 4.5. We call the set B = {ξ ∈ H : u(·, ξ) is attractive on [0, T ]}, where
u(·, ξ) is the solution of (1.1) with respect to the initial datum ξ, the basin of at-
traction for (1.1). Obviously, the basin of attraction for (1.1) under the assumption
of Theorem 4.4 is the whole space. By the setting in Theorem 4.3, we know that
B ⊃ Bδ, with δ small enough. However, the question of determining B in this case
is open.
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In the rest of section, by the same conditions ensuring the attractivity, we prove
the solvability result of the following problem

d

dt

(
k0u+ k ∗ [u− u(0)]

)
(t) +Au(t) = f

(
u(t)

)
, t ∈ (0, T ](4.4)

u(0) = g(u),(4.5)

where g : C([0, T ];H) → H satisfies the following assumption.

(Hg) There exists τ ∈ (0, T ] such that

‖g(u1)− g(u2)‖ ≤ sup
s∈[τ,T ]

‖u1(s)− u2(s)‖, ∀u1, u2 ∈ C([0, T ];H).

It should be mentioned that assumption (Hg) is satisfied for the following typical
cases:

i) g(u) = u(T ) (periodic condition)
ii) g(u) = −u(T ) (anti-periodic condition)

iii) g(u) =
k∑

i=1
βiu(τi) where

k∑
i=1

|βi| ≤ 1 and 0 < τ1 < τ2 < · · · < τk ≤ T

(multi-point boundary condition).

By mild solution to problem (4.4)-(4.5), we mean a function u ∈ C([0, T ];H) satis-
fying

u(t) = S(t)g(u) +

∫ t

0
R(t− s)f

(
u(s)

)
ds, ∀t ∈ [0, T ].

We are now in a position to prove the solvability of problem (4.4)-(4.5).

Theorem 4.6. Let the hypotheses of Theorem 3.3 and (Hg) hold. Then the problem
(4.4)-(4.5) has a mild solution.

Proof. Define the operator

J : C([0, T ];H) → C([0, T ];H)

v 7→ J(v) = u

where u is the unique solution of the following Cauchy problem

d

dt

(
k0u+ k ∗ [u− u(0)]

)
(t) +Au(t) = f

(
u(t)

)
, t ∈ (0, T ]

u(0) = g(v).

It suffices to prove the existence of a fixed point for J . Let v1, v2 ∈ C([0, T ];H) and
u1 = J(v1), u2 = J(v2). Exploiting the estimates as in the proof of Theorem 4.4
and the hypothesis (Hg) we get

‖Jv1(t)− Jv2(t)‖ = ‖u1(t)− u2(t)‖
≤ sλ1−L(t)‖u1(0)− u2(0)‖
= sλ1−L(t)‖g(v1)− g(v2)‖
≤ sλ1−L(t) sup

s∈[τ,T ]
‖v1(s)− v2(s)‖.
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Therefore,

‖J2v1(t)− J2v2(t)‖ ≤ sλ1−L(t) sup
[τ,T ]

‖Jv1(t)− Jv2(t)‖

≤ sup
[τ,T ]

‖Jv1(t)− Jv2(t)‖

≤ sup
[τ,T ]

‖v1(s)− v2(s)‖ sup
[τ,T ]

sλ1−L(t)

≤ sλ1−L(τ)‖v1 − v2‖,(4.6)

thanks to the fact that sµ(·) is nonincreasing for any µ > 0.
Inequality (4.6) guarantees that J2 is a contraction mapping on C([0, T ];H). Let

v̄ ∈ C([0, T ];H) be such that J2(v̄) = v̄ and put ū = J(v̄). It is easily seen that

J2(ū) = J3(v̄) = J(v̄) = ū.

This turns out that ū coincides with v̄ and it is the unique fixed point of J . The
proof is complete. □

5. An application

Consider the following nonlinear integrodifferential equation

(5.1) ∂tu(x, t) + ∂α
t u(x, t) = ∂2

xu(x, t) + h
(∫ 1

0
u2(x, t)dx

)
u(x, t), α ∈ (0, 1),

for x ∈ (0, 1), t ∈ (0, T ], subject to the boundary condition

(5.2) u(t, 0) = u(t, 1) = 0,

and the initial condition

(5.3) u(0, x) = ξ(x), x ∈ [0, 1].

In the above model, ∂α
t stands for the Caputo fractional derivative of order α, ∂x

denotes the generalized derivative in variable x. In this case the kernel k is given
by k(t) = g1−α(t).

Let H = L2(0, 1). The inner product and the norm in H are given by

(u, v) =

∫ 1

0
u(x)v(x)dx, ||v|| =

(∫ 1

0
|v(x)|2dx

) 1
2
.

Let A = −∂2
x with the domain D(A) = H2(0, 1) ∩ H1

0 (0, 1). It is known that
A is a densely defined, self-adjoint and positive operator with domain D(A) and
has a compact resolvent on H (see, e.g [16, Proposition 3.5.1]). Moreover, the
eigenvalues of A consists of λn = n2π2, n = 1, 2, . . ., with corresponding eigenvectors
en =

√
2 sin(nx), n ≥ 1, which form an orthonormal basis in H. So the hypothesis

(Ha) is verified.
Let

f(v)(x) = h

(∫ 1

0
v2(x) dx

)
v(x), v ∈ L2(0, 1).



SHORT-TIME BEHAVIOR FOR SEMILINEAR NONLOCAL DES 289

Clearly, the problem (5.1)-(5.3) is a model of (1.1)-(1.2) with k0 = 1. A simple

computation shows that (−1)nk(n)(t) ≥ 0, ∀n ∈ N0, t > 0 and hence the kernel k is
completely monotonic. Consequently, the hypothesis (Hk) is satisfied.

Regarding the nonlinearity in equation (5.1), we assume that the function h
belongs to C1

(
R
)
and |h(r)| ≤ a + b|r|β , for some nonnegative constants a, b, β.

One can check that

• f maps L2(0, 1) into itself since for all v ∈ L2(0, 1)

‖f(v)‖ = h

(∫ 1

0
v2(x) dx

)(∫ 1

0
v2(x) dx

)1/2

= h(‖v‖2)‖v‖ ≤ (a+ b‖v‖2β)‖v‖.

• For all v1, v2 ∈ L2(0, 1) such that ‖v1‖, ‖v2‖ ≤ r, by the mean value theorem,
one has

‖f(v1)− f(v2)‖ ≤ |h(‖v1‖2)− h(‖v2‖2)|‖v1‖+ h(‖v2‖2)‖v1 − v2‖
≤ r|‖v1‖2 − ‖v2‖2||h′

(
θ‖v1‖2 + (1− θ)‖v2‖2

)
+ h(‖v2‖2)‖v1 − v2‖

≤
(
2r2 sup

z∈[0,r2]
|h′(z)|+ a+ br2β

)
‖v1 − v2‖.

Hence, the hypothesis (Hf) is fulfilled with L(r) = 2r2 supz∈[0,r2] |h′(z)|+ a+ br2β .

Obviously, lim
r→0

L(r) = a. Therefore, if a < π2, then every solution of (5.1)-(5.3)

with ξ small enough is attractive on [0, T ].
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