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CONSTRAINED PROBLEMS VIA SUB-SUPERSOLUTION

DUMITRU MOTREANU

ABSTRACT. The aim of the paper is to study a quasilinear Dirichlet equation
driven by a differential operator of (p,q)-Laplacian type and with a reaction
term involving convection and convolution for which pointwise constraints on
the solution are imposed. Our main contribution is to handle this constrained
problem through a sub-supersolution approach applied to the elliptic equation.
The idea is to make a suitable choice of the sub-supersolution with respect to
the constraints. Under verifiable hypotheses on the constraints and on the non-
linearity in equation we establish the existence of solutions in a weak sense. In
particular, the method of sub-supersolution is developed for nonlinear elliptic
problems with both convection and convolution, which is done for the first time.
The applicability of our result is demonstrated by an example.

1. INTRODUCTION

Let © ¢ RY be a bounded domain with Lipschitz boundary 9Q and let a €
LY(RYN) and b € L*(RY) be fixed functions with a(z) < b(x) for almost every = €
RY. We formulate the following quasilinear elliptic problem on € with homogeneous
Dirichlet boundary condition, convection, convolution and constraints of obstacle

type:

—Apu— pAgu = f(xz,pxu,V(p*u)) in Q
(1.1) u=20 on 0N
a(z) < u(x) < b(x) a.e. in

for 1 < ¢ <p < +oo, >0, and p € LY(RY), p > 0 almost everywhere. For the
rest of the paper we assume that p < N. The complementary case p > N can be
managed analogously.

We emphasize the presence of the constraints with strict inequalities in the state-
ment of (1.1). In order to handle the multivalued character caused by the pointwise
constraints a(z) < u(z) < b(x) for a.e. x € Q we argue along the sub-supersolution
method applied to the Dirichlet problem incorporated in (1.1):

—Apu — pAgu = f(z, pxu, V(p*u)) in
u=0 on 0€2.

This is an original idea that we think to be fruitful for other multivalued constrained
problems. Implicitly, we build a sub-supersolution technique for (1.2) involving both
convection and convolution, which is done here for the first time.

In order to simplify the notation, for any real number r > 1 we set ' =r/(r — 1)
(the Holder conjugate of r). In particular, we have p' =p/(p—1) < ¢ =q/(¢—1).

(1.2)
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In the left-hand side of equation (1.1) there are the negative p-Laplacian —A,, :
Wol’p(Q) — WL (Q) expressed as

(—Apu,v) = /Q |Vu(z)[P~2Vu(z) - Vo(z) dz for all u,v € Wol’p(Q)
and the negative g-Laplacian —A, : W, 9(Q) — W—19(Q),
(—Aqu,v) = /Q |Vu(z)|7*Vu(z) - Vo(z)dz for all u,v € Wol’q(Q).

For p = 0 the driving operator reduces to the negative p-Laplacian —A,,, whereas
for 1 = 1 we have the negative (p, ¢)-Laplacian —A, — A,. Hereafter, the symbols
| | and - stand, respectively, for the Euclidean norm and the standard product in
RV, Since 1 < ¢ < p < 400, the continuous embedding Wol’p(Q) — Wol’q(Q) holds,
which makes the operator —A, — uA, be well defined on the space VVO1 P(Q). Let
p* denote the Sobolev critical exponent p* = Np/(N — p) (recall that we assume
p < N).

The right-hand side of equation (1.1) depends on the solution u and its gradient
Vu, which prevents us to use variational methods. Such a nonlinearity is often called
convection. We refer to [3] for recent results on problems involving convection terms.
In our case, the situation is more complex because the convection is described by a
Carathéodory function f: Q x R x RV — R (i.e., f(-,s,&) is measurable on € for
all (5,¢) € R x RN and f(z,-,-) is continuous for a.e. = € Q) composed with the
convolution

p*u(xr) = / p(x —y)u(y)dy for a.e. x € RV
RN

of p e LYRN) and u € W, P(Q) ¢ WHP(RN). Notice that the convolution p *
is well defined since u € WO1 P(Q) can be extended on RY with zero outside Q. Tt
is worth mentioning that the convolution is a nonlocal operator. The study of the
problems involving the composition of convection and convolution has been initiated
in [4] and continued in [5]. We emphasize that the results in [4]- [5] do not address
the method of sub-supersolution.

We impose the following growth condition on the nonlinearity f(z, s, &) that only
concerns the values of s in the interval a(z) < b(z) for = € Q almost everywhere.

(H1) The Carathéodory function f: Q2 x R x R — R satisfies
|f(z,t,8)] < o(x)+cé|" foraex € Q, alltec[p*alz),pxbz)], € RY,
with some ¢ € L~ () and constants ¢ > 0, r € [1, ﬁ).

Remark 1.1. (a) The criterion to reach the greatest magnitude of 7 in assumption
(H) is to have a finite integral [, |Vu|"vdz whenever u,v € W,*(Q), thus Vu €
LP(Q,RN) and v € LP"(Q). From Hélder’s inequality

p=r

/ |Vu|"vdx < (/ \Vu]pdx)p (/ ]v]pprda:) ’
Q Q Q

we must require through Rellich-Kondrachov compact embedding theorem that

z% < p* with r < p, which gives exactly r < ﬁ.
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(b) Suppose a,b € W1P(Q) and note that u € Wol’p(Q) being solution of (1.1),
in particular of (1.2). Then the required inequality a < u a.e. in , in conjunction
with w = 0 on 01, forces a < 0 on 0). Likewise, upon the formulation of (1.1),
we must necessarily have @ > 0 on 92. These facts suggest a powerful link of the
functions a and b given in (1.1) with a sub-supersolution of (1.2) (see below).

(¢) The assumptions a,b € L'(RY) with a(x) < b(x) for almost every z € RY
and p € L'(RY) with p > 0 almost everywhere ensure that p * a < p * b almost
everywhere, thus the ordered interval [p * a(x), p * b(x)] in hypothesis (H1) makes
sense.

By a (weak) solution to problem (1.1) we mean a function u € VVO1 P(Q) such that
fCpxul-),Vipxu)(-) € LP)(Q), a(z) < u(z) < b(z) for a.e. z € Q, and

(1.3) / \Vu|P~2Vu(z) - Vodz + p/ \Vu|!™2Vu(z) - Vodz
Q Q

= / flz,pxu,V(p*u))vde, Yv € Wol’p(Q).
Q

In this context, a function u € Wy (Q) is (weak) solution to problem (1.2) if
fGopxu(), Vipxu)(-)) € L&) (Q) and (1.3) holds true.

We recall the notion of sub-supersolution to the Dirichlet problem (1.2). A func-
tion u € W1P(Q) is a subsolution (or lower solution) for problem (1.2) if u < 0 on
90 (in the sense of traces), f(-,u(-), Vu(-)) € L®)' () and

(1.4) / \VulP~2Vu(z) - Vodz + u/ \Vu|T2Vu(z) - Vodz
Q Q
< / flz,p*xu,V(p*u))vdr, Yv € Wol’p(Q), v >0 a.e. in .
Q

A function u € W1P(Q) is a supersolution (or upper solution) for problem (1.2) if
7> 0 on 0Q (in the sense of traces), f(-,a(-), Va(-)) € L¥)'(Q) and

(1.5) / |VaP—2Va(z) - Vodz + ,u/ V4|92V (x) - Vodz
Q Q
> / f(x, p*u,V(p*a))vde, Yo e WyP(Q), v>0ae. in Q.
Q

The second hypothesis that we assume refers to the functions a(x) and b(x) in
the formulation of problem (1.1).

(H2) There exist a subsolution u € W1?(Q) and a supersolution u € W1?(Q) to
problem (1.2) such that

a(x) < u(x) <u(x) < b(x) fora.exel

Our main abstract result provides the existence of a (weak) solution to problem
(1.1) under assumptions (H1)-(H2). Section 3 is devoted to this result with its proof
relying on a few preliminary tools discussed in Section 2. An effective application
is presented in Section 4 to obtain positive solutions, thus offering a clear example
of the interest to have strict inequalities in the statement of problem (1.1).
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2. PRELIMINARY TOOLS

Throughout the rest of the paper, the space VVO1 P (Q) is endowed with the norm
VOl e ry)-

The operators —A, : Wy P(Q) — W=7 (Q) and —A, : Wy(Q) — W19 (Q) are
continuous, strictly monotone and bounded (in the sense that they map bounded
sets to bounded sets). Therefore, recalling that 1 < ¢ < p < +o00 and p > 0, the
operator —A, — uA, : Wol’p(Q) — W~ (Q) has the same properties.

Assumption (H?2) provides a subsolution u € W1P(Q) and a supersolution @ €
WP(Q) for equation (1.2) with u(z) < %(x) for a.e z € Q. We associate to the
ordered pair u < @ the truncation operator 71" : Wol’p(Q) — WhP(Q) given by

u(z) if wu(z) <u(x)
(2.1) (Tu)(x) = u(z) if w(r) <ulzr)<u(x)
u(z) if wu(z) > u(x)
for all u € VVO1 P(Q) and a.e. z € Q. The operator T is continuous and bounded.

We also need a cut-off function 7 : Q2 x R — R associated with the ordered pair
u < 7 defined as

r

—(u(z) —s)r—r if s<u(x)
(2.2) m(z,s) =< 0 if u(x) <s<ux)
(s —a(x))r—r if s>u(x
for all (z,s) € Q x R, with 7 given by hypothesis (H1). Since u,uw € LP" (), the
definition in (2.2) yields the estimate
(2.3) |7 (z,s)] < co|s|P%T +n(x) for a.e. € Q, all s € R,

p*(p—r)

(©). Consequently, by (2.3) and
*(p—r)
the compact embedding Wol’p(Q) C LFoD— (©2) (note that

with a constant ¢y > 0 and a function n € L

prp—r)—r
because r € [1, oy) in (H1)), the mapping 11 : W, P(Q) — (W, P(2))* defined by
((u),v) = / 7 (ax, wvdz, Yu,v € WyP(Q)
Q
is completely continuous. Another useful estimate derived from (2.2) is
_b
(2.4) / m(z,u(z))u(x)de > biflul|"5  —bg forallue Wol’p(Q),
Q Lr—7(Q)

with constants b1 > 0 and by > 0.
Using again hypotheses (H1)-(H2) we observe that it is well defined the mapping
Ny : [p*u,p*a] — W=7 (Q) given by

(N (u), v) = /ﬂ F(aru(z), V())o(x) de
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forallu € [pxu,pxul and v € Wol’p(Q), where

[pru,pxt) :={weW"P(Q): pxu<w<pxae in Q}.
The mapping Ny : [p*u, pxu] — W= (Q) is completely continuous in view of the
fact that the embedding W1P(Q) C L () is compact by the Rellich-Kondrachov
theorem (note that -2 < p* due to the assumption r € [1, ﬁ) in (H1)).

As mentioned before, an element u € I/VO1 P(Q) is viewed as belonging to WP (RY)
by identifying it to its extension with zero outside €2. Therefore the convolution p*xu
of p€ LY(RY) and u € Wol’p(Q) can be done. We have that p + v € WHP(RY) with
the weak partial derivatives

for which the following estimates are available
Vi=1,...,N
Hp * Ox; lLe(RN) — < lellz H Ox; llLr ()’ vi Y

(see [1, §9.1]). Consequently, the corresponding gradient estimate can be carried
out

(2.5) IV (o * u)ll oy mvy < Nllpllprway [Vl oo ryy-

3. MAIN ABSTRACT RESULT
Our main abstract result on problem (1.1) reads as follows.

Theorem 3.1. Assume that conditions (H1) and (H2) hold. Then there ezists a

(weak) solution u € Wol’p(Q) to problem (1.1) Moreover, it is a (weak) solution to
problem (1.2) satisfying the enclosure property u(x) < u(x) < u(x) for a.e. x € ),
where uw < W is the sub-supersolution to equation (1.2) guaranteed by hypothesis
(H2).

Proof. For each A > 0 we introduce the operator Aj : W P(Q) — W12 (Q) defined
by

(3.1) Ay = =By — pAg + X = Ny(p T().

We note that the operator A) : Wol’p(Q) — WL (Q) in (3.1) is well defined and
bounded.

Next we show that the operator Aj : WO1 P(Q) — W17 (Q) is pseudomonotone.
Let uy, — u in Wol’p(ﬂ) and

(3.2) lim sup(Ay(uy), un —u) < 0.

n—o0

The compact embedding WO1 PQ) c L%(Q) ensures that along a relabeled
subsequence, the strong convergence un — w in L%(Q) holds. Since the
sequence {II(uy)} is bounded in L7 = (Q), we deduce that

(3.3) lim (IT(up), up, — u) = 0.

n—oo
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By assumption (H1), the sequence {Nf(p * T(uy))} is bounded in L7(Q). The
compact embedding T/VO1 P(Q) C v (Q) combined with u, — u in VVO1 P(Q) implies

up, — uw in Lr=(§2), so we obtain
(3.4) li_)m (N¢(p*T(up)), un —u) =0.

Taking into account (3.1), (3.3), and (3.4), we see that (3.2) becomes
(3.5) lim sup(—Apuy, — pAqun, uyp —u) < 0.

n—oo
At this point we invoke the S, property that is satisfied by the operator —A, —
pAg rendering the strong convergence u, — u in VVO1 P(Q) (refer to [2, Theorem
2.109]). Now the continuity of the operator Aj : Wol’p(Q) — WP (Q) allows
us to infer that Ay(un) — Ax(u), so Ax(u,) — Ax(u) in W=H7(Q), and that
(Axtup, un) = (Axu, u), thus obtaining that the operator Ay : Wol’p(Q) — WLP(Q)
is pseudomonotone (see, e.g., [2, Definition 2.97]).

We pass to check that the operator Ay : Wol’p(Q) — WL (Q) is coercive pro-
vided A > 0 is sufficiently large, which means that

(3.6) lim A,

= +00.
IVull 1pqrNy—=+o0 HVUHLP(Q,RN)

In order to prove (3.6) we have to estimate
(3.7) / |Vu|Pdz + ,u/ |Vu|ldz

—i—)\/QTr(a:,u)ud:c - /Q flz,px (Tu),V(p* (Tu)))udz, Yu € W&’p(Q).

By (3.7), (2.4) and hypothesis (H1), which can be used thanks to pxTu € [pxu, pxu]
as known from (2.1) and hypothesis (H2), it turns out

(3.8) (Ax(u),u) = [[Vull7, g pvy + )‘(bl”u”z;r%(n) ~b2)

—lloll,2

r 1,p
L C/Q\V(p*(Tu)ﬂ luldz, Yu € Wy (Q).

The integral term in (3.8) can be estimated on the basis of (2.1) and the decompo-
sition

/Q V(o % (Tw)["uldz = /{ V(0 w)"uldz

<u<u}
+[ S wllads+ [V smulds.
{u<u} {u>u}
Then Holder’s inequality and Sobolev embedding theorem imply

(3.9) /Q IV (p * (Tw)|"fulde < /Q 19 (0% )| fuldz + 1| Vel oz



CONSTRAINED PROBLEMS 245

for all u € WO1 P(), with a constant ¢; > 0. Through Holder’s inequality, Young’s
inequality with an € > 0 and (2.5) we are able to estimate the first integral term in
the right-hand side of (3.9) as follows

/ V(pxw)["ulde < ||V (p* u)[Lpqrnlull, 2

_p_

< eN?lIoILs ) I Vull Lo my + c@llull” S 2= (g

pr)

with a constant ¢(e) > 0 depending on e. Returning to (3.8) we get from (3.9) that

_p
(3.10) (), w) 2 IVl qpn) +2 (blHqup%r(Q) - b2>
_p
—c2||Vull oo ryy — ¢ <6NPH’)HL1 ey VUl vy + C<6)’uH£pT5r(Q)>

for all u € WO1 P(Q), with a constant co > 0. If we fix ¢ > 0 sufficiently small
and then choose A > 0 sufficiently large, (3.10) entails (3.6) (note that p > 1 and
by > O).

We have shown that the operator A) : Wol’p(Q) — WP (Q) is bounded, pseu-
domonotone and coercive provided A > 0 is large enough. We are thus enabled
to apply the main theorem for pseudomonotone operators (see, e.g., [2, Theorem
2.99])) ensuring the existence of u € WO1 P(Q) solving the equation Ay (u) = 0, which
in view of (3.1) reads as

(3.11) / \Vu|P~2Vu - Vodz + u/ |Vu|!2Vu - Vodz
Q Q

+)\/ m(z, u)vdz
Q

= /Qf(:lr,p* (Tw), V(p* (Tu)))vdz, Yv € WyP().

Our next goal is to show that v < v < @ a.e. in ) thus achieving comparison
with the subsolution v and supersolution u whose existence is assumed in hypothesis
(H2). First, we prove that v < @ a.e. in 2. To this end, we use as test function
(u—u)" = max{u —u,0}. Due to the condition u > 0 on 9 in the sense of traces,
we have indeed that (u —u)" € WyP(Q), so v = (u—u)" can be inserted in (3.11)
and (1.5) obtaining
(3.12) Jo IVulP™2Vu - V(u — )T de + p o |VulT™2Vu - V(u — 1) tda

+A [om(z,u(z))(u —u)t (z)de
= Jo f(@,px (Tu), V(px (Tw)))(u —u)" (v)dz

and

(3.13) [y |VuP2vu-V(u-—u)tdz + p [, |Vu|?*Vu - V(u —u)tde
> o fx, pxa,V(pxu))(u—1u)"de.
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From (3.12) and (3.13) we derive
/ (IVulP~>Vu — |VaPP2va) - V(u — u)dz
{u>u}
+ u/ (IVulP~?Vu — |ValP—2va) - V(u — u)dx
{u>u}
+ /\/ m(x,u(x))(u —u)dx
{u>u}

< [ (e (Ta), T (Tu)) = flap 0, 9o+ ) - )
{u>u}

Replacing (T'u)(z) and 7 (x, u(x)) with their expressions according to (2.1) and (2.2),
we find that

/ (IVulP~*Vu — |VaPP2va) - V(u — u)dz

{u>u}

+ u/ (|VulP~2Vu — |VaPP~2va) - V(u — u)dz
{u>u}

p

+A /{u>u}(u(a:) —u(zx))rrdx

S/ ~ (fla,pxa,V(p*7) - f(z,p*7, V(p*7)))(u —u)dz = 0.
{u>u}

Since the mappings & +— |£[P72¢ and & +— |£]772¢ on RN are monotone, we infer

/ (u(w) —a(x))rr dz <0,
{u>u}

which yields u <@ a.e in €.
In order to prove that u < u a.e in {2 we argue by taking as test function (u—u)* =

max{u — u, 0} which is an element of W, (2) because u < 0 on d in the sense of
traces. If we plug v = (uw — u)™ in (3.11) and (1.4) we note that

(3.14) Jo IVulP2Vu - V(u—uw)tde + p o |Vu|T?Vu - V(u — u)Tda
+A [ (@, u(x))(uw —u) " (z)de
= Jo (@, px (Tu), V(p* (Tw)))(uw - u)* ()dx

and

3.15 VulP~2Vu - V(u—u)tde + p [, V|92V - V(u — u)Tde
0 Q
< Jo f(xpxu, V(p*u)(u—u)"de.



CONSTRAINED PROBLEMS 247
From (3.14) and (3.15) we derive

/ (IVuP~2Vu — |VulP">Vu) - V(u — u)dz
{u>u}
+ u/ (IVu[P2Vu — |VulP~2Vu) - V(u — u)dz
{u>u}
+ /\/ m(x,u(x))(u — u)dr
{u>u}

< / (F(@,p 1w, V(o xw) — f(a, px (Tu), V(p * (T))) (u — u)d.
{u>u}

Arguing as before along (2.1), (2.2) and the monotonicity of the mappings & —
|€[P~2¢ and € +— |€]772€ on RY | we get

)\/{u>u}(u(a?) —u(r))r—rdr < /{u>u}(f(x,p s u, V(p*u))

= f(@,pxu, V(p*u)))(u—u)ds
=0,

which amounts to saying that v < u a.e. in 2.

Therefore we have established the enclosure property v < u < @ a.e. in 2. Then,
in view of (2.1) and (2.2), we see that (3.11) reduces to (1.3). Moreover, again on
the basis of the location u < u <7 a.e. in €, it follows from assumption (H2) that
a(z) < u(z) < b(x) for a.e. x € Q, thereby u € Wol’p(Q) is a solution of problem
(1.1). The proof is thus complete.

O

4. AN EXAMPLE

In this section we present an example of how Theorem 3.1 can be applied to
concrete problems of type (1.1). The main difficulty is the effective constructions
of sub-supersolution u < @ required in assumption (H2).

In order to simplify the discussion, we suppose that @ C RY is a bounded domain
with a C* boundary 092, ¢ = 2, p € (2,+00), and p = 1, i.e., the case of (p,2)-
Laplacian is taken. Let r € [1, ﬁ), a > 0 and 8 > 0 be given constants and let
p € LY(RY) with compact support, p > 0 a.e., p Z 0, and v € L¥(Q), v > 0 a.e. in
Q. Seeking positive and bounded solutions to problem (1.1), we are led to assume
that a(x) =0 and b(z) = S.

With the mentioned data, we state the problem

—Apu—Au = f(z,pxu,V(p*u)) in Q,
(4.1) u=20 on 0N
0<u(z)<p a.e. in Q,
where f: Q x R x RV — R is given by
Q@ ifs<0
(4.2) flz,5,8) = ¢ a+s(y(@)+[E]") if0<s<1

a+(2—=s)(y(z)+g") ifs>1
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whenever (z,5,&) € Q x R x RV,
It is straightforward to check that f is a Carathéodory function for which condi-
tion (H1) is fulfilled. In order to comply with condition (H2) we further assume

a+2y(x
(4.3) ess 81618 fy(a;Y)() < Bllpllpr wy-

We construct the subsolution u required in (H2) by means of the first eigenvalue of
the negative Laplacian —A with homogeneous Dirichlet boundary condition which
is

(4.4) A1 = min {”WHLW e WhA (@) \ {0}} .

Tl

It is well-known that there exists a corresponding eigenfunction u; € C°°(€) with
up > 0in € (see, e.g., [1, pages 311-312)).
Fix € > 0 so small to have g(p * u1)(z) < 1 and

P H—Apur)(z) + eduy(z) < a

for all z € Q. If we choose u = euy, then through (4.2), (4.4) and the choice of ¢ it
holds pointwise

—Apu—Au = —sp_lApul +ehur <«
< atpx(eun)(@)(v(x) + [V(p * (eur))(@)[")
[, px (ew) (@), V(p * (ewr)) (@)
Hence (1.4) is true, that is, u is a subsolution of problem (4.1) taking into account
that ©v = 0 on 992.

Concerning the construction of a supersolution for problem (4.1), we note from
(4.3) that we can choose a constant C' > 0 such that

-1 o+ 2y(z)
(4.5) HPHU(RN)GSS?GJE @ <C<p

and eui(z) < C for all z € , with a possibly smaller e > 0. We find by (4.5) that
pxC(x) = Cllpllp1rry > 2 for all z € Q. Setting uw = C, the first inequality in (4.5)
and (4.2) lead to the pointwise inequality
—Ayu—Au = —A,C—-AC

= 0

z at+ (2= Clpllpey))y(z)

= f(z,pxC(x),V(p*C)(x))

[, pxu(z), V(p«a)(z)).

This shows the validity of (1.5), which establishes that @ is a supersolution to

problem (4.1). In view of 0 < u = eu; < C =u < 3, Theorem 3.1 can be applied
to problem (4.1) ensuring the existence of a weak solution.
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