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provided that the latter is solvable. Latter, Abbas and Attouch [1] considered the
following generalization of the dynamical system (1.2)

(1.3)

{
−ẋ(t) = x(t)− proxµΦ (x(t)− µB(x(t))) a.e. t ≥ 0,

x(0) = x0,

where Φ: H → R ∪ {+∞} is a proper, convex and lower semicontinuous functions
defined on a real Hilbert space H, B : H → H is a cocoercive operator, x0 ∈ H,
µ > 0 and proxµΦ : H → H

proxµΦ(x) := argminy∈H

{
Φ(y) +

1

2µ
‖y − x‖2

}
,

denotes the proximal point operator of Φ. Finally, in the particular case of Tt ≡ T ,
the authors of [8] prove the weak convergence of the orbits of the dynamical system
(1.1), to a fixed point for the operator T : H → H, extending the results mentioned
above.
In this paper, we propose the following variant of the dynamical system (1.1)

(1.4)

{
−ẋ(t) = x(t)− Tt(x(t)) + ε(t)(x(t)− y(t)) a.e. t ≥ 0,

x(0) = x0 ∈ D,

where (Tt)t>0 is a family of nonexpansive operator from D into D approaching a
nonexpansive operator T : D → D, as t → +∞, y : [0,∞) → D and ε : [0,∞) →
[0,∞) are appropriate functions. The system (1.4) corresponds to a Tikhonov-like
regularization of the dynamical system (1.1). This kind of regularization has been
considered by several authors (see, e.g., [3, 9]). In [9], the authors consider the
system

(1.5) −ẋ(t) ∈ Ax(t) + ε(t)x(t),

where A is a maximal monotone operator defined on a Hilbert space and ε(t) tends

to 0 as t → +∞ with
∫ +∞
0 ε(s)ds = +∞. They prove the strong convergence

towards the least-norm point in A−1(0) provided that the function ε(t) has bounded
variation. This setting includes the operator A = I − T when T is defined in the
whole Hilbert space H. However, when the operator T is defined only in a closed
convex subset D ⊂ H with D 6= H, the operator I − T is not necessarily maximal
monotone, and, thus, it is not clear that the dynamical system (1.5) is well defined.
The main contributions of this paper is to prove that, under mild assumptions, the
system (1.4) is well defined on D (see Proposition 4.1) and that the orbits of (1.4)
converge strongly to the point projFixT (y) provided the set of fixed points of T ,
FixT , is nonempty (see Theorem 4.4).

We emphasize that our motivation to study the system (1.4), which is governed
by a family of time-dependent nonexpansive operators rather than a fixed one, is
twofold. On one hand, it enables accelerating the convergence towards a fixed point.
On the other hand, it establishes a stability result with respect to perturbations on
the initial operator, which may be helpful from the numerical point of view.

The paper is organized as follows. In Section 2, we set the notation of the paper
and prove preliminary results on non-expansive operators. In Section 3, we present
the main properties of the dynamical system (1.1). In Section 4, we present the
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main result of the paper (see Theorem 4.4); namely, the strong convergence of the
trajectories of the dynamical system (1.4) to a point in the set Fix T . Then, we
give some applications of the main result to the dynamical system (1.3). The paper
ends with conclusions and final remarks.

2. Notation and preliminaries

Let H be a Hilbert space endowed with a scalar product 〈·, ·〉 and unit ball B.
Given a nonempty, closed and convex set S ⊂ H, we define the distance function
dS and the projection over S as the maps

dS(x) := inf
y∈S

‖y − x‖ and projS(x) := {y ∈ S : dS(x) = ‖x− y‖}.

For S as a above, it is not difficult to prove that the map x 7→ d2S(x) is differentiable
with

∇d2S(x) = 2 (x− projS(x)) for all x ∈ H.
Moreover, the following inequality holds

(2.1) 〈x− projS(x), y − projS(x)〉 ≤ 0 for all y ∈ S.

We refer to [5] for more details.
Let Φ: H → R ∪ {+∞} be a proper, convex and lower semicontinuous function

and µ > 0. The convex subdifferential of Φ at x ∈ H is defined by

(2.2) ∂Φ(x) = {x∗ ∈ H : Φ(y) ≥ Φ(x) + 〈x∗, y − x〉 for all y ∈ H}.
Besides, the proximal point operator of Φ is defined as

(2.3) proxµΦ(x) := argminy∈H

{
Φ(y) +

1

2µ
‖y − x‖2

}
.

The proximal point operator is everywhere well defined and the map x 7→ proxµΦ(x)
is Lipschitz of constant 1 (see [5, Section 12.4]). Moreover, when Φ is the indicator
function of a closed and convex set C, then the proximal point operator coincides
with the projection operator over C, that is, proxµΦ(x) = projC(x).

The proximal point operator plays a fundamental role in optimization theory.
Indeed, this operator is the basis of several optimization algorithms (see, e.g., [5]).
Moreover, it is well known (see, e.g., [5, Proposition 12.29]) that the set of fixed
points of this operator coincides with the set of solution of the problem

inf
x∈H

Φ(x).

The following definitions will be used throughout the paper.

Definition 2.1. An operator T : D ⊂ H → H is called

(1) β-cocoercive on D, if

〈T (x)− T (y), x− y〉 ≥ β‖T (x)− T (y)‖2 for all x, y ∈ D.

(2) Non-expansive on D if

‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x, y ∈ D.

(3) Firmly non-expansive on D if

‖T (x)− T (y)‖2 + ‖(Id−T )(x)− (Id−T )(y)‖2 ≤ ‖x− y‖2 for all x, y ∈ D.
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It is important to mention that if D is closed and convex and T : D → D is
non-expansive, then the set of fixed points of T , FixT , is closed and convex (see,
e.g., [5, Corollary 4.24]). Moreover, if, in addition, D is bounded, the Browder-
Göhde-Kirk’s Theorem (see, e.g., [5, Theorem 4.29]) asserts that the set Fix T is
nonempty. On the other hand, if T is α-Lipschitz with α ∈ [0, 1), then FixT is a
singleton.

Let us consider a non-expansive operator T : D → D and define the operator
G : D → H given by

G(x) = x− T (x).

It is clear that the set of fixed point of T coincides with the set of zeros of G.
Moreover, according to [5, Proposition 4.4], if the operator T is non-expansive, then
T is monotone. The following lemma gives the existence of approximate zeros of G.

Lemma 2.2. Assume that T : D → D is non-expansive and fix y ∈ D. Then, for
every ϵ > 0 there exists a unique xyϵ ∈ D such that

ϵxyϵ +G(xyϵ ) = ϵy.(2.4)

Proof. Since the operator T is non-expansive on D, we can apply [5, Proposition
4.30], to obtain that for all η ∈ (0, 1) there exists a unique xyη ∈ D such that

xyη = ηy + (1− η)T (xyη).

In particular, taking η = ϵ
1+ϵ , we obtain the existence of a unique xyϵ ∈ D such that

xyϵ =
ϵ

1 + ϵ
y +

(
1− ϵ

1 + ϵ

)
T (xyϵ ),

which implies the result. □ □
Now, let us define F : (0,+∞)×D → D, given by

F(ϵ, y) = xyϵ ,(2.5)

where xyϵ is the unique solution of (2.4) given by Lemma 2.2.
The next results give us some properties of the trajectory xyϵ

Lemma 2.3. Consider the function F defined in (2.5). Then,

i) For all ϵ > 0 the function F(ϵ, ·) is firmly nonexpansive on D.
ii) If FixT = ∅, then for all y ∈ D, limϵ→0+ ‖F(ϵ, y)‖ = +∞.
iii) For all ϵ > 0, and all x∗ ∈ FixT

‖y −F(ϵ, y)‖2 + ‖F(ϵ, y)− x∗‖2 ≤ ‖y − x∗‖2.
iv) If FixT 6= ∅, then

lim
ϵ→0+

F(ϵ, y) = projFixT (y).

v) For all y ∈ D, the function ϵ→ ‖y −F(ϵ, y)‖ is decreasing.
vi) For all y ∈ D, the function F(·, y) is continuous.

Proof. See [5, Proposition 4.30]. □
The following result is fundamental to establish continuity properties for the map

ε 7→ F(ε, y) for y ∈ D fixed.
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Lemma 2.4. Consider µ > λ > 0. Then for every y ∈ D

F(λ, y) = F
(
µ,
λ

µ
y +

(
1− λ

µ

)
F(λ, y)

)
.(2.6)

Proof. We observe that

F(λ, y) ∈ D, and
λ

µ
y +

(
1− λ

µ

)
F(λ, y) ∈ D,

thus (2.6) is well-defined.
To end the proof, it is enough to verify that F(λ, y) satisfies (2.4) with

ϵ = µ and z =
λ

µ
y +

(
1− λ

µ

)
F(λ, y).

Indeed,

µF(λ, y) +G(F(λ, y)) = µF(λ, y) + λF(λ, y) +G(F(λ, y))− λF(λ, y)

= µF(λ, y) + λy − λF(λ, y)

= µ

(
λ

µ
y + (1− λ

µ
)F(λ, y)

)
,

which ends the proof. □

The following proposition establishes the continuity and differentiability almost
everywhere of the map ϵ 7→ F(ϵ, x) for x ∈ D fixed.

Proposition 2.5. For every ϵ1, ϵ2 > 0 and x ∈ D

‖F(ϵ2, x)−F(ϵ1, x)‖ ≤ |ϵ2 − ϵ1|
min{ϵ1, ϵ2}

‖x−F(min{ϵ1, ϵ2}, x)‖.

Consequently, for every x ∈ D the function F(·, x) is locally Lipschitz and for all
x ∈ D and a.e. t > 0 ∥∥∥∥ ddtF(·, x)(t)

∥∥∥∥ ≤ 1

t
‖x−F(t, x)‖.

Proof. Fix x ∈ D and assume that ϵ2 > ϵ1. Then, according to Lemma 2.4,

‖F(ϵ2, x)−F(ϵ1, x)‖ =

∥∥∥∥F(ϵ2, x)−F
(
ϵ2,

ϵ1
ϵ2
x+ (1− ϵ1

ϵ2
)F(ϵ2, x)

)∥∥∥∥ .
Next, due to Lemma 2.3 i), we know that F(ϵ2, ·) is nonexpansive. Thus,

‖F(ϵ2, x)−F(ϵ1, x)‖ ≤
(
1− ϵ1

ϵ2

)
‖x−F(ϵ2, x)‖ =

(ϵ2 − ϵ1)

ϵ2
‖x−F(ϵ2, x)‖.

Repeating the argument for ϵ1 > ϵ2, we obtain the result. □
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3. Dynamical systems associated with nonexpansive operators

In this section, let us formally establish some convergence result to the following
dynamical system

(3.1)

{
−ẋ(t) = x(t)− T (x(t)) a.e. t ≥ 0,

x(0) = x0 ∈ D,

where T : D → D is a nonexpansive operator defined over a closed and convex set
D ⊂ H. The dynamical system (3.1) was considered in [8] for a non-expansive
operator T : H → H defined in the whole space. We extend this result for a merely
closed and convex set D ⊂ H. The results established here will be used to compare
with the Tikhonov-like regularization proposed in this article.

The following proposition establishes the well-posedness and invariance of (3.1).

Proposition 3.1. If T : D → D is a nonexpansive operator, then the dynamical
system (3.1) admits a unique solution x ∈ ACloc (R+;H). Moreover, this solution
satisfies x(t) ∈ D for all t ≥ 0.

Proof. See the proof of Proposition 4.1 below. □

The following proposition establishes convergence properties of the dynamical
system (3.1). Its proof follows from Proposition 3.1 and ideas from [8, Theorem 6],
where it is established for the case D = H by using Lyapunov analysis combined
with the Opial Lemma.

Proposition 3.2. Let T : D → D be a nonexpansive operator with FixT 6= ∅. Let
x(·) be the unique solution of (3.1). Then the following assertions hold:

(i) the trajectory x is bounded and
∫ +∞
0 ‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞ (T (x(t))− x(t)) = 0 and for all t > 0

‖x(t)− Tx(t)‖ ≤ 1√
t
dist (x0,FixT ) ;

(iii) limt→+∞ ẋ(t) = 0;
(iv) x(t) converges weakly to a point in FixT , as t→ +∞.

Moreover, if T is α-Lipschitz with α ∈ [0, 1), then the unique fixed point x∗ of T is
globally exponentially stable, that is,

‖x(t)− x∗‖ ≤ e−(1−α)t‖x0 − x∗‖ for all t ≥ 0.

4. Tikhonov-like regularization

In this section, we study the Tikhonov-like regularization for the dynamical sys-
tem (1.1). Thus, we will study the well-posedness and invariance of the dynamical
system (1.4), where (Tt)t>0 is a family of nonexpansive operators from D into D,
y and ε are function satisfying Assumption A below. The following proposition
establishes, under general assumptions, the well-posedness and the invariance for
the dynamical system (1.4).
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Proposition 4.1. Assume that (Tt)t>0 is a family of nonexpansive operators from
D into D. If the maps t 7→ ε(t), t 7→ y(t) and t 7→ Tt(x) are locally integrable
for all x ∈ D. Then, the dynamical system (1.4) admits a unique solution x ∈
ACloc (R+;H). Moreover, this solution is invariant with respect to D, that is, x(t) ∈
D for all t ≥ 0.

Proof. Let us consider the dynamical system

(4.1)


−ẋ(t) = projD (x(t))− Tt(projD (x(t)))

+ ε(t)(projD (x(t))− y(t)) a.e. t ≥ 0,

x(0) = x0 ∈ D.

According to the classical Cauchy-Lipschitz theorem (see, e.g., [?, Theorem 30.9,
p. 819]), the dynamical system (4.1) has a unique solution x ∈ ACloc (R+;H).
We aim to prove that x(t) ∈ D for all t ≥ 0. To do that, we define the function
ψ(t) := 1

2d
2
D(x(t)). This function is absolutely continuous and for a.e. t ≥ 0

ψ̇(t) = 〈x(t)− projD(x(t)), ẋ(t)〉
= 〈x(t)− projD(x(t)), Tt(projD(x(t)))− projD(x(t))〉
+ ε(t)〈x(t)− projD(x(t)), y(t)− projD(x(t))〉
≤ 0,

where we have used the inequality (2.1). Thus, since ψ(0) = 0, it follows that
ψ(t) = 0 for all t ≥ 0. Therefore, projD (x(t)) = x(t) for all t ≥ 0, which proves
that x is the unique solution of the dynamical system (1.4). □

In order to provide asymptotic convergence of the solution of the dynamical
system (1.4), we consider the following assumptions:

Assumption A. Let (Tt)t>0 be a family of nonexpansive operators from D into
D, ε : R+ → R+ be a positive function, and y : R+ → D satisfying

(a) ε is absolutely continuous, nonincreasing with limt→+∞ ε(t) = 0 and∫ +∞
0 ε(s)ds = +∞;

(b) the map t 7→ y(t) is locally absolutely continuous, y(t) → y ∈ D and
‖ẏ(t)‖ → 0 as t→ ∞.

(c) the map t 7→ Tt(x) belongs to L
1
loc (R+,H) for all x ∈ D.

(d) limt→+∞ ψ(t)/ε(t) = 0, where

(4.2)

ψ(t) := 2‖y(t)− y‖+ w(t,F(ε(t), y)) + ‖ẏ(t)‖

− ε̇(t)

ε(t)
(2‖y(t)− y‖+ dFixT (y)) ,

with F(ϵ, y) the unique solution of (2.4) given by Lemma 2.2 associated to
the non-expansive operator T : D → D, and

w(t, x) := ‖Tt(x)− T (x)‖ for all t ≥ 0 and all x ∈ D.(4.3)

The following proposition shows that condition (d) of Assumption A can be
obtained through a suitable time scale reparametrization.
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Proposition 4.2. Let (Tt)t>0 be a family of nonexpansive operators from D into
D, ε : R+ → R+ be positive function, and y : R+ → D satisfying statements (a), (b)
and (c) of Assumption A. Suppose that

• limt→∞ ε̇(t)/ε2(t) = 0;
• limt→∞ t · (‖y(t)− y‖+ ‖ẏ(t)‖) = 0;
• for every compact set K ⊂ D, limt→∞ t · supx∈K ‖Tt(x)− T (x)‖ = 0.

Then, the family of nonexpansive operators T̂t(x) := T1/ϵ(t)(x) and the function
ŷ(t) = y(1/ϵ(t)) satisfies statement (d) of Assumption A.

Proof. It is easy to check that ‖ŷ(t)− y‖/ϵ(t) → 0, as t→ ∞. Moreover,

d

dt
ŷ(t) = −ẏ(1/ϵ(t)) ϵ̇(t)

ϵ2(t)
,

which shows that
1

ε(t)

d

dt
ŷ(t) → 0, as t→ ∞.

Finally, since F(ϵ(·), y) is continuous and F(ϵ(t), y) converges as t→ ∞ (see Lemma
2.3), we have that the set K := {F(ϵ(t), y) : t ≥ 0} is compact on H. Then, as
t→ +∞,

‖T̂t(F(ϵ(t), y))− T (F(ϵ(t), y)))‖
ϵ(t)

≤ 1

ϵ(t)
· sup
x∈K

‖T1/ϵ(t)(x)− T (x)‖ → 0.

Therefore, limt→∞ ψ(t)/ϵ(t) = 0. Thus, we have verified the statement (d) of As-
sumption A . □
Remark 4.3. We observe that in Proposition 4.2, for instance, the function ε(t) =
(1 + t)−β with β ∈ (0, 1) satisfies limt→+∞ ε̇(t)/ε2(t) = 0. Moreover, since the
function w, defined in (4.3), is only measurable in t, the limit in statement (d)
could be taken in a essentially sense, that is ess limt→+∞ ψ(t)/ε(t) = 0, which
means for all γ > 0, there exists tγ ∈ (0,+∞) such that

ψ(t)

ε(t)
≤ γ, for almost all t ≥ tγ .

In what follows, it is convenient to recall that, according to Assumption A, as
t → +∞, y(t) → y ∈ D and Tt → T , for some non-expansive operator T : D → D
(see conditions (b) and (d)) of Assumption A.

The next theorem is the main result of the paper and establishes, under mild
assumptions, that the point projFixT (y) is globally asymptotically stable for the
dynamical system (1.4), that is,

(4.4) x(t) → projFixT (y) as t→ +∞.

We underline that the importance of this result is that the obtained convergence
in (4.4) is strong, in contrast with the dynamical system considered in Proposition
3.2. Moreover, Theorem 4.4 considers the time-dependent case, where the operators
are only defined in the set D ⊂ H, which is new in the literature.

Theorem 4.4. Ley y ∈ D and T : D → D be a non-expansive operator with FixT 6=
∅, for which Assumption A holds. Then the unique solution x(t) of (1.4) converges
strongly to projFixT (y), as t→ +∞.
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Before giving the proof, it is important to emphasize the advantages of Theorem
4.4 compared with Proposition 3.2. First, the trajectories of (1.4) are always defined
in the set D. Thus, T needs only to be defined in this set. Second, the convergence
obtained in Theorem 4.4 is strong, while the convergence in Proposition 3.2 is
weak. Finally, all the trajectories of (1.4) (regardless of the starting point) converge
strongly to the point projFixT (y).

Proof. Define the operators

Gt(x) := x− Tt(x), G(x) := x− T (x).

Since Tt(·) and T are nonexpansive on D, it is clear that Gt(·) and G are monotone
operators on D (see, e.g., [5, Example 20.7]).

Consider the functions z(t) := F(ε(t), y(t)) and

θ(t) :=
1

2
‖x(t)− z(t)‖2,

where F is the function defined in (2.5) and x(·) is the unique solution of the
dynamical system (1.4) provided by Proposition 4.1. According to Proposition 2.5,
θ is locally absolutely continuous and for almost all t ≥ 0, we have

θ̇(t) =

〈
x(t)− z(t), ẋ(t)− d

dt
z(t)

〉
= 〈x(t)− z(t),−Gt(x(t)) + ϵ(t)y(t)− ϵ(t)x(t)〉 −

〈
x(t)− z(t),

d

dt
z(t)

〉
= 〈x(t)− z(t),−Gt(x(t)) +Gt(z(t))〉
+ 〈x(t)− z(t),−Gt(z(t)) +Gt(F(ε(t), y)〉
+ 〈x(t)− z(t),−Gt(F(ε(t), y)) +G(z(t))〉+ ϵ(t) 〈x(t)− z(t), z(t)− x(t)〉

−
〈
x(t)− z(t),

d

dt
z(t)

〉
,

where we have used the definition of z(t) (see Equation (2.4)). Now, let us upper
estimate the right-hand side of the above inequality. First, since Gt(·) is monotone
on D and x(t) ∈ D for all t ≥ 0, the following inequality holds

〈x(t)− z(t),−Gt(x(t)) +Gt(z(t))〉 ≤ 0.

Moreover, on the one hand, using that Tt(·) and F(ϵ, ·) are nonexpansive (see Lemma
2.3)

|〈x(t)− z(t), Gt(z(t))−Gt(F(ε(t), y))〉| ≤
√

2θ(t)‖Gt(z(t))−Gt(F(ε(t), y))‖

≤ 2
√
2θ(t)‖y(t)− y‖.

On the other hand, using (4.3), we get

|〈x(t)− z(t), Gt(F(ε(t), y))−G(F(ε(t), y))〉|

≤
√
2θ(t)‖Gt(F(ε(t), y))−G(F(ε(t), y))‖

=
√
2θ(t)‖Tt(F(ε(t), y))− T (F(ε(t), y))‖

=
√
2θ(t)w(t,F(ε(t), y)),
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Now, using Lebourg’s mean value (see, e.g., [7, Theorem 2.3.7]), we have the fol-
lowing estimation∥∥∥∥ ddtz(t)

∥∥∥∥ ≤ − ε̇(t)
ε(t)

‖y(t)− z(t)‖+ ‖ẏ(t)‖, a.e. t ≥ 0,

where we have used Proposition 2.5 and assertions i) and v) of Lemma 2.3.
Finally,〈
x(t)− z(t),

d

dt
z(t)

〉
≤
√
2θ(t)

∥∥∥∥ ddtz(t)
∥∥∥∥

≤
√
2θ(t)

(
− ε̇(t)
ε(t)

‖y(t)− z(t)‖+ ‖ẏ(t)‖
)
,

≤
√

2θ(t)

(
− ε̇(t)
ε(t)

(2‖y(t)− y‖+ dFixT (y)) + ‖ẏ(t)‖
)
.

Thus, for a.e. t ≥ 0

θ̇(t) + 2ε(t)θ(t) ≤ ψ(t)
√

2θ(t),

where ψ was defined in (4.2). Hence, the function φ(t) =
√
2θ(t) satisfies

φ̇(t) + ε(t)φ(t) ≤ ψ(t) for a.e. t ≥ 0.

Therefore, according to Gronwall’s Lemma (see, e.g., [?]), for all t ≥ 0

φ(t) ≤ exp

(
−
∫ t

0
ε(τ)dτ

)(
φ(0) +

∫ t

0
ψ(s) exp

(∫ s

0
ε(τ)dτ

)
ds

)
Moreover, since Assumption A holds, the right-hand side in the last inequality goes

to zero. Indeed, let us denote Γ(t) := exp
(∫ t

0 ε(τ)dτ
)
and

r(t) := exp

(
−
∫ t

0
ε(τ)dτ

)(∫ t

0
ψ(s) exp

(∫ s

0
ε(τ)dτ

)
ds

)
.

Consider γ > 0, then there exists tγ > 0 such that ψ(s)/ε(s) ≤ γ, for almost all
s > tγ . Hence, for all t ≥ tγ

r(t) = Γ(t)

(∫ t

tγ

ψ(s) exp

(∫ s

0
ε(τ)dτ

)
ds+

∫ tγ

0
ψ(s) exp

(∫ s

0
ε(τ)dτ

)
ds

)

≤ Γ(t)

(
γ

∫ t

tγ

ε(s) exp

(∫ s

0
ε(τ)dτ

)
ds+

∫ tγ

0
ψ(s) exp

(∫ s

0
ε(τ)dτ

)
ds

)
.

Moreover, as t→ +∞,

exp

(
−
∫ t

0
ε(τ)dτ

)(∫ tγ

0
ψ(s) exp

(∫ s

0
ε(τ)dτ

)
ds

)
→ 0,

exp

(
−
∫ t

0
ε(τ)dτ

)(
γ

∫ t

tγ

ε(s) exp

(∫ s

0
ε(τ)dτ

)
ds

)
→ γ.



TIKHONOV-LIKE REGULARIZATION OF DYNAMICAL SYSTEMS 233

Therefore, for all γ > 0, lim supt→+∞ r(t) ≤ γ, which proves that φ(t) → 0 as
t→ +∞. Finally, according to Lemma 2.3 i) and iv),

lim sup
t→+∞

‖x(t)− projFixT (y)‖ ≤ lim sup
t→+∞

‖x(t)−F(ε(t), y(t))‖

+ lim sup
t→+∞

‖F(ε(t), y(t))−F(ε(t), y)‖

+ lim sup
t→+∞

‖F(ε(t), y)− projFixT (y)‖

≤ lim sup
t→+∞

‖x(t)−F(ε(t), y(t))‖+ lim sup
t→+∞

‖y(t)− y‖

+ lim sup
t→+∞

‖F(ε(t), y)− projFixT (y)‖,

which ends the proof. □

5. Applications

In this section, we present two applications of Theorem 4.4 to the dynamical
systems (1.3) and (1.2), respectively.
Consider a proper, convex and lower semicontinuous function Φ: H → R ∪ {+∞}
and its convex subdifferential ∂Φ (see formula (2.2)) and its proximal point operator
proxµΦ(·) defined in (2.2) and (2.3), respectively. Assume that B : D ⊂ domΦ → H
is a β-cocoercive operator. The following result is a well known property (see,
e.g., [1]).

Proposition 5.1. If µ ∈ (0, 2β), then the operator T := x 7→ proxµΦ (x− µBx) is
non-expansive. Moreover, for all x, y ∈ D

‖Tx− Ty‖2 + µ(2β − µ)‖Bx−By‖2 ≤ ‖x− y‖2.(5.1)

Thus, as a consequence of Theorem 4.4, we have the following theorem which
extends the results from [1].

Theorem 5.2. Let Φt,Φ : H → R ∪ {+∞} be a family of proper, convex, and
lower semicontinuous functions, D be a nonempty, closed and convex set contain-
ing domΦ, domΦt, and let Bt, B : D → H be a family of β-cocoercive operators.
Assume that y ∈ D, µ ∈ (0, 2β) and

(i) The function ϵ is absolutely continuous, nonincreasing with limt→+∞ ε(t) =

0,
∫ +∞
0 ε(s)ds = +∞ and limt→+∞ ϵ̇(t)/ϵ2(t) = 0.

(ii) The map t 7→ Φt(x) is measurable for all x ∈ H and there exists κ : R+ → R+

such that for all (t, z) ∈ R+ ×H

‖ proxµΦt
(z)− proxµΦ(z)‖ ≤ κ(t)(‖z‖+ cΦ)

p,(5.2)

where cΦ and p are positive constants and limt→+∞ κ(t)/ε(t) = 0.
(iii) For every compact set K ⊂ D,

lim
t→+∞

1

ε(t)
sup
x∈K

‖Bt(x)−B(x)‖ = 0.

(iv) For every x ∈ D, the map t→ proxµΦ (x− µBtx) is measurable.
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Let x : [0,+∞) → H be the unique solution of{
−ẋ(t) = x(t)− proxµΦt

(x(t)− µBtx(t)) + ε(t)(x(t)− y),

x(0) = x0 ∈ D.

Then x(t) converges strongly to projzer(∂Φ+B)(y), as t→ +∞, provided that zer(∂Φ+

B) 6= ∅.

Proof. Let us define Tt(x) := proxµΦ (x− µBtx) and T (x) := proxµΦ (x− µBx), by
Proposition 5.1, they are nonexpansive operators from D to D. It is clear that

FixT = zer(∂Φ+B).

We will verify the hypotheses (a)-(d) of Assumption A to apply Theorem 4.4. It
is clear that (a) and (b) hold. Moreover, the local integrability in (c) follows from
(5.1). Let us verify (d). Indeed, define zt := F(ϵ(t), y)) for t > 0. We have

w(t,F(ϵ(t), y)) = ‖Tt(F(ϵ(t), y))− T (F(ϵ(t), y))‖
≤ ‖ proxµΦt

(zt − µBtzt)− proxµΦ (zt − µBtzt) ‖
+ µ‖Bt(zt)−B(zt)‖
≤ κ(t)(‖zt − µBtzt‖+ cΦ)

p + µ‖Bt(zt)−B(zt)‖
≤ κ(t) sup

x∈K
(‖x− µBtx‖+ cΦ)

p + µ sup
x∈K

‖Bt(x)−B(x)‖,

where K := {F(ϵ(t), y) : t ≥ 0} is compact on H. Hence, for all t > 0,

ψ(t)

ε(t)
≤ κ(t)

ε(t)
sup
x∈K

(‖x− µBtx‖+ cΦ)
p +

µ

ε(t)
sup
x∈K

‖Bt(x)−B(x)‖ − ε̇(t)

ε2(t)
dFixT (y),

which, by virtue of (i)-(iii), implies that limt→+∞ ψ(t)/ε(t) = 0. Finally, the result
follows from Theorem 4.4.

□

Remark 5.3. It is worth to emphasize that in the last theorem the operator Bt

must to be defined only in closed and convex sets containing of domΦ and not in
all the space as in [8]. Moreover, the trajectory converges to a point in domΦ, but
the initial point could be outside of the set.

In the rest of this section, we present a Tikhonov-like regularization for the dy-
namical system (1.2). To this end, we recall the following result from [13], which
is a Baillon-Haddad theorem for convex functions defined in open and convex sets
(see also [4, Theorem 3.3] for the twice continuously differentiable case).

Proposition 5.4. Let U be a nonempty open convex subset of H, let f : U → R be
convex and Fréchet differentiable on U , and let β > 0. Then ∇f is 1/β-Lipschitz
continuous if and only if it is β-cocoercive.

The importance of Proposition 5.4 is that it provides a class of cocoercive oper-
ators which are not necessarily defined in the whole space.
Recall that the set of optimal solutions for the problem

(5.3) min
x∈C

φ(x),
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is
zer(∇φ+N(C; ·)) = {x ∈ C : 0 ∈ ∇φ(x) +N(C;x)},

where N(C;x) = {ζ ∈ S : 〈ζ, y − x〉 for all y ∈ S} is the normal cone of convex
analysis. Moreover, under mild assumptions, the trajectories of (1.2) approaches
weakly to an optimal solution of the optimization problem (5.3) (see Proposition 3.2
and Reference [2]). The following theorem provides a Tikhonov-like regularization
for the dynamical system (1.2) proposed by Antipin [2].

Theorem 5.5. Let (Ct)t>0, C and D be nonempty, closed and convex sets such that
Ct, C ⊆ D, and let φt, φ be a family of 1/β-Lipschitz and convex functions defined
on a convex and open set containing D. Assume that y ∈ D, µ ∈ (0, 2β) and

(i) The function ϵ is absolutely continuous, nonincreasing with limt→+∞ ε(t) =

0,
∫ +∞
0 ε(s)ds = +∞ and limt→+∞ ϵ̇(t)/ϵ2(t) = 0.

(ii) The sets (Ct)t>0 and C are uniformly bounded and

lim
t→+∞

Haus1/2(Ct, C)

ε(t)
= 0,

where Haus(Ct, C) denotes the Hausdorff distance between Ct and C, given
by

Haus(Ct, C) = max

{
sup
x∈Ct

d(x,C), sup
x∈C

d(x,Ct)

}
.

(iii) For every compact set K ⊂ D,

lim
t→+∞

1

ε(t)
sup
x∈K

‖∇φt(x)−∇φ(x)‖ = 0.

(iv) For every x ∈ D, the map t→ φt(x) is measurable.

Let x : [0,+∞) → H be the unique solution of{
−ẋ(t) = x(t)− projCt

(x(t)− µ∇φt(x(t))) + ε(t)(x(t)− y),

x(0) = x0 ∈ D.

Then x(t) converges strongly to projzer(∇φ+N(C;·))(y), as t → +∞, provided that

zer(∇φ+N(C; ·)) 6= ∅.

Proof. Let us consider Φ := δC , Φt := δCt , the indicator function of C and Ct,
respectively, and the operators Bt := ∇φt and B := ∇φ. By Proposition 5.4, we
have that Bt and B are β-cocoercive on D. Then, in order to apply Theorem 5.2,
we have to check that (5.2) holds (the other assumptions can be checked easily).
Indeed, by [12, Inequality (2.17) in Lemma p. 362] we have that

‖ projCt
(z)− projC(z)‖2 ≤ 2(dCt(z) + dC(z))Haus(Ct, C) for all z ∈ H.

Without loss of generality, we can assume that c := supt≥0Haus(Ct, C) < +∞, then
fixing z0 ∈ C, we have

dCt(z) + dC(z) ≤ Haus(Ct, C) + 2‖z − z0‖ ≤ Haus(Ct, C) + 2‖z‖+ 2‖z0‖.

Hence, (5.2) holds with p = 1/2, cΦ = ‖z0‖ + 1
2c, and κ(t) := 2Haus1/2(Ct, C).

Therefore, by virtue of Theorem 5.2, we get the result. □
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6. Conclusions and final remarks

In this paper, we propose a new Tikhonov-like regularization for dynamical sys-
tems associated with time-dependent non-expansive operators defined in closed and
convex sets (possibly not the whole space H). Our main contribution is to prove
well-posedness, invariance, and strong convergence of the proposed dynamical sys-
tem to a specific point in the set Fix T , provided that the latter is not empty. This
result extends known results in the literature and, in particular, proposes a dynam-
ical system whose solution is defined in the domain of the non-expansive operator T
and converging strongly to a fixed point. Moreover, as an application of our results,
we propose Tikhonov-like regularization for two dynamical systems arising in the
study of optimization problems.
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[13] P. Pérez-Aros and E. Vilches, An enhanced Baillon-Haddad theorem for convex functions on
convex sets, Appl. Math. Optim. 2019, doi: https://doi.org/10.1007/s00245-019-09626-6.

[14] E. Schechter, Handbook of Analysis and Its Foundations, Academic Press, Inc., San Diego,
CA, 1997.

Manuscript received February 11 2021

revised April 5 2021

Pedro Pérez-Aros
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