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2. Mean derivatives

In this section we briefly describe preliminary facts about mean derivatives. See
details in [4–7].

Consider a stochastic process ξ(t) in Rn, t ∈ [0, T ], given on a certain probability
space (Ω,F ,P) and such that ξ(t) is an L1 random element for all t. It is known
that such a process determines 3 families of σ-subalgebras of the σ-algebra F :

(i) ”the past” Pξ
t generated by preimages of Borel sets from Rn under all mappings

ξ(s) : Ω → Rn for 0 ≤ s ≤ t;

(ii) ”the future” Fξ
t generated by preimages of Borel sets from Rn under all

mappings ξ(s) : Ω → Rn for t ≤ s ≤ T ;

(iii) ”the present” (”now”) N ξ
t generated by preimages of Borel sets from Rn

under the mapping ξ(t) : Ω → Rn.
All the above families we suppose to be complete, i.e., containing all sets of

probability zero.

For the sake of convenience we denote by Eξ
t the conditional expectation E(·|N ξ

t )

with respect to the ”present” N ξ
t for ξ(t).

Following [5–7], introduce the following notions of forward and backward mean
derivatives.

Definition 2.1. (i) The forward mean derivative Dξ(t) of ξ(t) at the time instant
t is an L1 random element of the form

(2.1) Dξ(t) = lim
△t→+0

Eξ
t (
ξ(t+△t)− ξ(t)

△t
),

where the limit is supposed to exist in L1(Ω,F ,P) and △t → +0 means that △t
tends to 0 and △t > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random element

(2.2) D∗ξ(t) = lim
∆t→+0

Eξ
t (
ξ(t)− ξ(t−∆t)

∆t
)

where (as well as in (i)) the limit is assumed to exist in L1(Ω,F ,P) and ∆t → +0
means that ∆t → 0 and ∆t > 0.

Remark 2.2. If ξ(t) is a Markov process then evidently Eξ
t can be replaced by

E(·|Pξ
t ) in (2.1) and by E(·|Fξ

t ) in (2.2). In initial Nelson’s works there were two
versions of definition of mean derivatives: as in our Definition 2.1 and with con-
ditional expectations with respect to ”past” and ”future” as above that coincide
for Markov processes. We shall not suppose ξ(t) to be a Markov process and give
the definition with conditional expectation with respect to ”present” taking into
account the physical principle of locality: the derivative should be determined by
the present state of the system, not by its past or future.

Following [1] (see also [4]) we introduce the differential operator D2 that differ-
entiates an L1 random process ξ(t), t ∈ [0, T ] according to the rule

(2.3) D2ξ(t) = lim
△t→+0

Eξ
t (
(ξ(t+△t)− ξ(t))(ξ(t+△t)− ξ(t))∗

△t
),
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where (ξ(t+△t)−ξ(t)) is considered as a column vector (vector in Rn), (ξ(t+△t)−
ξ(t))∗ is a row vector (transposed, or conjugate vector) and the limit is supposed to
exists in L1(Ω,F ,P). We emphasize that the matrix product of a column on the left
and a row on the right is a matrix. It is shown that D2ξ(t) takes values in S̄+(n),
the set of symmetric semi-positive definite matrices. We call D2 the quadratic mean
derivative.

Remark 2.3. From the properties of conditional expectation (see, e.g., [8]) it fol-
lows that there exist Borel mappings a(t, x), a∗(t, x) and α(t, x) from R × Rn to
Rn and to S̄+, respectively, such that Dξ(t) = a(t, ξ(t)), D∗ξ(t) = a∗(t, ξ(t)) and
D2ξ(t) = α(t, ξ(t)). Following [8] we call a(t, x), a∗(t, x) and α(t, x) the regressions.

Let Borel measurable mappings a(t, x) and α(t, x) from [0, T ]×Rn to Rn and to
S̄+(n), respectively, be given. We call the system of the form

(2.4)

{
Dξ(t) = a(t, ξ(t)),
D2ξ(t) = α(t, ξ(t)),

a first order differential equation with forward mean derivatives.

Definition 2.4. We say that (2.4) has a solution on [0, T ] with initial condition
ξ(0) = x0, if there exist a probability space (Ω,F ,P) and a process ξ(t) given on
(Ω,F ,P) and taking values in Rn such that P-a.s. and for almost all t (2.4) is
satisfied.

Several existence of solution theorems for (2.4) can be found in [1].

Definition 2.5. The smooth function φ : X → R sending the topological space X
to R is called proper if the preimage of every relatively compact set in R is relatively
compact in X.

Denote by L the generator of Markov process generated by equation (2.4).

Theorem 2.6. Let on Rn there exist a smooth proper positive function φ : Rn → R
such that Lφ < C for all t ∈ [0,+∞) and x ∈ Rn where C > 0 is a certain real
constant. Then the flow generated by equation (2.4) is complete, i.e. all solutions
of (2.4) with deterministic initial values exist for t ∈ [0,+∞).

Theorem 2.6 is a reformulation of [2, Theorem IX. 6A].

3. Differential inclusions with backward mean derivatives

The system

(3.1)

{
D∗ξ(t) = a(t, ξ(t))
D2ξ(t) = α(t, ξ(t))

is called a first order differential equation with backward mean derivatives.
Notice that we do not introduce the notion of backward analog of operator D2

since, applying the properties of Itô integral, one can easily prove that for a diffusion
process ξ(t) the result of application of that analog coincides with D2ξ(t) (for the
case of diffusion processes this follows from the results of [6, 7]).
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Let a(t, x) and α(t, x) be set-valued mappings from [0, T ] × Rn to Rn and to
S̄+(n), respectively. The system of the form

(3.2)

{
D∗ξ(t) ∈ a(t, ξ(t)),
D2ξ(t) ∈ α(t, ξ(t)).

is called a first order differential inclusion with backward mean derivatives.

Definition 3.1. We say that (3.2) has a solution on [0, T ] with “inverse” Cauchy
condition ξ(T ) = ξ0, if there exist a probability space (Ω,F ,P) and a process ξ(t)
given on (Ω,F ,P) and taking values in Rn such that ξ(T ) = ξ0 and P-a.s. and for
almost all t inclusion (3.2) is satisfied.

For equations with backward mean derivatives and inclusions with forward mean
derivatives the definition of solution is quite analogous.

Consider a solution η(t), given on t ∈ [0, T ], with initial condition η(0) = ξ0 of
the following differential inclusion with forward mean derivatives

(3.3)

{
Dη(t) ∈ −a(1− t, η(t)),
D2η(t) ∈ α(1− t, η(t)).

Theorem 3.2. The process ξ(t) = ξ0 − η(T ) + η(T − t) is a solution of (3.2) with
condition ξ(T ) = ξ0 where η(t) is a solution of (3.3) with initial condition η(0) = ξ0.

Indeed, D∗ξ(t) = −Dη(T − t) ∈ a(t, η(T − t)) = a(t, ξ(t)). For D2ξ(t) the
arguments are analogous.

Now we are in position to find conditions, under which solutions of (3.2) exist on
every interval [0, T ].

Specify t ∈ [0, T ], x ∈ Rn, a point a ∈ a(t, x) with coordinates ai of this vector
and a point α ∈ α(t, x) with elemets αij of this matrix. Consider the differential

operator L(t, x.a, α) = −ai ∂
∂xi + αij ∂2

∂xi∂xj

Theorem 3.3. Let a and α be lower semicontinuous and have closed convex values.
If on Rn there exists a smooth proper positive function φ : Rn → R such that for
every t ∈ [0, T ], x ∈ Rn, a ∈ a(t, x) and α ∈ α(t, x) the estimate L(t, x.a, α)φ < C
holds for some real C > 0, on every interval [0, T ] there exists a solution of (3.2)
with deterministic value of “inverse” Cauchy problem with ξ(T ) = ξ0.

Proof. By Michael’s theorem their exist continuous selectors a(t.x) of a(t,x) and
α(t, x) of α(t.x), respectively. So, it is sufficient to prove the statement of theorem
for the solution of (3.1) with those a(t.x) and α(t, x). But this solution is a solution
of equation with forward mean derivatives

(3.4)

{
Dη(t) ∈ −a(1− t, η(t)),
D2η(t) ∈ α(1− t, η(t)).

where η(t) is a solution of (3.4) with initial condition η(0) = ξ0.The generator L
of the flow generated by equation (3.4) is a selector of L(t, x.a, α). Hence, by the
hypothesis of theorem, equation (3.4) satisfies the conditions of Theorem 2.6 and
so the solution exists for all t ∈ [0,∞). Thus on every interval [0, T ] the solution of
“inverse” Cauchy problem for (3.2) with ξ(T ) = ξ0 exists. □
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