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(3) We explain why our approach remains valid for semilinear functional differ-
ential equations where the initial memories are not necessarily observed in
the space of continuous functions, that is, the space where the initial mem-
ories are observed can be of a very different nature from where the system
evolves, in particular, we explain why our approach remains valid in the
case of infinite delay (without giving results).

(4) We give two illustrations that explain, in general, why our approach is more
complete and effective compared to those that were used before from the
point of view of applications.

(5) To validate our approach, we establish an existence result.

The above mentioned points (1) − (4) will be considered in Section 3. In Section 4
we consider the point (5).

2. Preliminaries

Multivalued maps and measures of noncompactness. Let X, Y be two topo-
logical vector spaces. We denote by P(Y ) the family of all nonempty subsets of Y
and byK(Y ) (resp. Kv(Y )) we denote the collection of all nonempty compact (resp.
nonempty compact convex) subsets of X.

A multivalued map F : X → P(Y ) is said to be: (i) upper semicontinuous (u.s.c)
if F−1(O) = {x ∈ X : F (x) ⊂ O} is an open subset of X for every open O ⊂ Y ;

(ii) closed if its graph ΓF = {(x, y) ∈ X × Y : y ∈ F (x)} is a closed subset of
X × Y ;

(iii) compact if F (X) is compact in Y ;
Let Z be a Banach space and (O,≤) a partially ordered set.
A multifunction 𝟋 : [0, T ] → K(Z) is said to be strongly measurable if there

exists a sequence {𝟋n}∞n=1 of step multifunctions such that
Haus (𝟋(t),𝟋n(t)) → 0 as n → ∞ for µ − a.e. t ∈ [0, T ] where µ denotes a

Lebesgue measure on [0, T ] and Haus is the Hausdorff metric on K(Z).
Every strongly measurable multivalued map 𝟋 admits a strongly measurable selec-
tion f i.e., f : [0, T ] → Z measurable such that f(t) ∈ 𝟋(t) for a.e. t ∈ [0, T ].

A function Ψ : P(Z) → O is called a measure of noncompactness in E if

Ψ(Ω) = Ψ(
−
coΩ)

for every Ω ⊂ P(E), where
−
coΩ denotes the closed convex hull of Ω.

The measure Ψ is called :
(i) nonsingular if for every a ∈ Z, Ω ∈ P(Z), Ψ({a} ∪ Ω) = Ψ(Ω);
(ii) monotone, if Ω0, Ω1 ∈ P(Z) and Ω0 ⊆ Ω1 imply Ψ(Ω0) ≤ Ψ(Ω1);
(iii) If O is a cone in a Banach space we will say that Ψ is regular if Ψ(Ω) = 0 is

equivalent to the relative compactness of the set Ω.
One of most important example of a measure of noncompactness possessing all

these properties is the Hausdorff measure of noncompactness defined by:

χ(Ω) = inf{ε > 0;Ω has a finite ε-net in Z}.

Let Ψ : P(Z) → (Y,≤) be a measure of noncompactness in Z. Let Z ⊂ Z be a
closed subset. A multifunction G : Z → K(Z) is called Ψ-condensing, if for every



PERIODIC PROBLEM FOR DELAY EVOLUTION INCLUSIONS 187

bounded set Ω ⊂ Z, the relation Ψ(G(Ω)) ≥ Ψ(Ω) implies the relative compactness
of Ω.

In the proof of existence result will need the following results [9, Corollary 3.3.1
and Proposition 3.5.1].

Theorem 2.1. Let M be a convex closed subset of Z. If G : M → Kv(M) is a
closed β-condensing multimap, where β is a nonsingular measure of noncompact-
ness defined on subsets of Z, then the fixed points set FixG = {x : x ∈ G(x)} is
nonempty.

Proposition 2.2. Let C ⊂ Z be a closed subset and F : C → K(Z) a closed β-
condensing multifunction, where β is a monotone measure of noncompactness. If
the fixed point FixF is bounded then it is compact.

The Cauchy operator and its properties. By the symbol L1([0, T ];Z) we de-
note the space of all Bochner summable functions equipped with the usual norm.

Definition 2.3. A sequence {fn}∞n=1 ⊂ L1([0, T ];Z) is semicompact if:
(i) it is integrably bounded: ∥fn(t)∥ ≤ p(t) for a.e. t ∈ [0, T ] and for every n ≥ 1
where p(.) ∈ L1([0, T ],R+);
(ii) the set {fn(t)}∞n=1 is relatively compact for almost every t ∈ [0, T ].

Lemma 2.4 ( [2]). Any semicompact sequence in L1([0, T ];Z) is weakly compact
in L1([0, T ];E).

Let A : D(A) ⊂ Z → Z be a linear operator generating a C0-semigroup,
(T (t))t≥0. Then, the Cauchy operator S : Z × L1([0, T ];Z) −→ C([0, T ]; E), such
that S(u, g) stands for the unique mild solution to the Cauchy problem{

x′(t) = Ax(t) + g(t), t ∈ [0, T ],

x(0) = u,

is well defined. Moreover, by means of the variation of constants formula, S(·, ·)
can be expressed explicitly by

(2.1) S(u, g)(t) = T (t)u+

∫ t

0
T (t− s) g(s) ds.

Remark 2.5. Since (T (t))t≥0 is a strongly continuous semigroup, then there exists
D > 0 such that,

∥T (t)∥Z ≤ D for all t ∈ [0, T ].

(see e.g. [1, Theorem 1.3.1]).

The basic properties of the operator S(·, ·) can be summarized in the following
two lemmas. For the first lemma see [9, Lemma 4.2.1], for the second see [9, Lemma
4.2.1, Theorem 4.2.2].

Lemma 2.6. Assume that (T (t))t≥0 is a C0- semigroup. Then, for every semi-
comapct sequence {fn}∞n=1 ⊂ L1([0, T ];Z), the set {S(u, fn)}∞n=1 is relatively com-
pact in C([0, T ];Z), for every u in Z.
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Lemma 2.7. Assume that (T (t))t≥0 is a C0-semigroup. Let {fn}∞n=1 be an inte-
grably bounded sequence in L1([0, T ],Z) such that χ({fn(t)}∞n=1) ≤ ζ(t) a.e. t ∈
[0, T ], where ζ ∈ L1

+([0, T ]. Then, for every u ∈ Z,

(2.2) χE(S(u, {fn(t)}∞n=1)) ≤ 2D

∫ t

0
ζ(s)ds;

where D has been defined in Remark 2.5.

Remark 2.8. If E is separable, then (2.2) has the form

χZ(S(u, {fn(t)}∞n=1)) ≤ D

∫ t

0
ζ(s)ds.

Using Lemma 2.6 and following the same lines as the proof of [5, Lemma 4.5]
with almost obvious modifications, we obtain,

Lemma 2.9. Assume that (T (t))t≥0 is a C0- semigroup. Then, for every relatively
compact subset K of Z and every semicomapct sequence {fn}∞n=1 ⊂ L1([0, T ];Z),
the set {S(K, fn)}∞n=1 is relatively compact in C([0, T ];Z). Moreover, if fn →

w
f0

in L1([0, T ];Z) and un → u0 in E, then S(un, fn) → S(u0, f0) in C([0, T ];Z).

Using Lemma 2.7 and following the same lines as the proof of [5, Lemma 4.4]
with almost obvious modifications, we get,

Lemma 2.10. Assume that (T (t))t≥0 is a C0- semigroup such that, for every
t ∈ [0, T ], ∥T (t)∥ ≤ q e−p t, for some constants q ≥ 1 and p > 0. Let {fn}∞n=1

be an integrably bounded sequence in L1([0, T ],Z). Suppose that χ({fn(t)}) ≤
ζ(t), for a.e. t ∈ [0, T ], where ζ(.) ∈ L1

+[0, T ]. Then for every bounded subset
Θ ⊂ E and for all t ∈ [0, T ]:

(2.3) χZ {S(Θ, {fn}∞n=1)(t)} ≤ 2 q

∫ t

0
ζ(s)ds+ q e−p tχZ(Θ),

where

{S(Θ, {fn}∞n=1)(t)} =
⋃
u∈Θ
n≥1

S(u, fn)(t).

Remark 2.11. If Z is separable, then (2.3) has the form

(2.4) χZ {S(Θ, {fn}∞n=1)(t)} ≤ q

∫ t

0
ζ(s)ds+ q e−p tχE(Θ).

3. More complete formulation of the periodic problem

We aim in this section to give a complete definition of a periodic solution to
semilinear functional differential equations with finite delay described by

(3.1) x′(t) = Ax(t) +H(t, xt), t ≥ 0.

It is natural to treat the associated periodic boundary value problem first. The
associated periodic boundary value problem that was considred is written in the
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form

(3.2)

{
x′(t) = Ax(t) +H(t, xt), t ∈ [0, T ],

x0 = xT ,

where A : D(A) ⊂ E → E, is a linear operator generating a C0-semigroup (T (t))t≥0

and H : [0, T ] × C([−r, 0];E) → E, is a given map satisfying some conditions. For
any continuous function x : [−r, T ] → E and any t ≥ 0, the function xt denotes the
element of C([−r, 0];E), defined by xt(θ) = x(t+ θ), θ ∈ [−r, 0].

Such a consideration of the problem (3.2) is due to the fact that the later is a well-
defined, in the sense that, we know how to study the associated Cauchy problem.
It is clear that there is a direct influence of the approach used in the study of the
periodic problem where the delay is absent.

Recall that the Cauchy operator S : E ×L1([0, T ];E) −→ C([0, T ];E), is defined
by (2.1).

Definition 3.1. A function x ∈ C([−r, T ];E) is a mild solution to the problem
(3.2) if x0 = xT and for every t ∈ [0, T ], x(t) = S(x(0), f), where f(t) = H(t, xt)
a.e. t ∈ [0, T ].

Let us show that the formulation given by Problem (3.2) is too restrictive for the
study of the periodic problem (3.1) even from theoretical point of view. For the
sake of simplicity, we set,

Definition 3.2. A function z in C([a, b];E) (b− a ≥ T ), is said to be T -periodic if
z is a restriction on [a, b] of some T -periodic function defined from R with values in
E. In such a context, we denote by CT ([a, b];E) the space of continuous T -periodic
functions defined on [a, b] and with values in E.

The expression x0 = xT implies that every mild solution of the problem (3.2) is
necessarily an element of CT ([−r, T ];E). Then, the problem (3.2) can be written
equivalently as:

(3.3)

{
y′(t) = Ay(t) +H(t, ŷt), t ∈ [0, T ],

y(0) = y(T ),

where ŷ is a T -periodic extension of y ∈ C([0, T ];E) on all [−r, T ]. It follows that
the problem (3.2) can be seen as the one without delay. The multivalued version
of the problem (3.3) (equivalently of the problem (3.2)) was studied in [10]. So,
for the study of the problem (3.2), we simply have to deal with the problem (3.3)
where ŷ is a T -periodic extension of y ∈ C([0, T ];E) on all [−r, T ] and use, for
example, the same approach given in [10]. Note that, if in place of C([−r, 0];E) we
choose another space, we must be sure that the latter contains T -periodic extension
of the elements of C([0, T ];E) on ]−r, 0], if not, then the study of the problem (3.3)
(as a consequence the problem (3.2)) will be absurd as will be shown in the next
remark. To explain in a clearer way why the formulation given by Problem (3.2) is
too restrictive even from theoretical point of view, consider the problem,

(3.4)

{
x′(t) = Ax(t) +H(t, xt), t ∈ [0, T ],

x(0) = x(T ).
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Definition 3.3. A function x ∈ C([−r, T ];E) is a mild solution to the problem (3.4)
if x(0) = x(T ) and for every t ∈ [0, T ], x(t) = S(x(0), f), where f(t) = H(t, xt) a.e.
t ∈ [0, T ].

Remark 3.4. It is clear that if x is a mild solution to Problem (3.2) then x is a
mild solution to Problem (3.4).

Because of the existence of the delay (initial memories), one must initially specify,
by words, the meaning of a mild solution to the problem (3.4). Let us agree on this
general principle: finding a mild solution to the problem (3.4) is equivalent to finding
an initial condition (a memory) that gives rise to periodic evolution (x(0) = x(T )).
It is the evolution of the solution (i.e., x |[0,T ]) which must be generated by an initial

memory and not the reverse. Of course, the formulation given by problem (3.2) does
not respect this general principle because for a given solution ŷ to Problem (3.3)
(equivalently to Problem (3.2)), the initial memory ŷ0 is entirely defined by the
evolution of ŷ (ŷ0 is necessarily a T -periodic extension of y on [−r, 0]). So, finding a
solution through the formulation given by problem (3.2) (equivalently by Problem
(3.3)) is like finding the evolution of the solution on [0, T ] by imposing, a priori, that
its memory is nothing but its T -periodic extension on [−r, 0]. This explains that the
formulation given by Problem (3.2) is too restrictive and moreover uninteresting.

Remark 3.5. It is interesting to note that the reasoning developed above remains
true even in the case of an infinite delay, i.e., r = ∞. If x is a mild solution of
the problem (3.2), then x |[0,T ] is continuous, the expression x0 = xT implies that x

is necessarily an element of CT (]−∞, T ];E) if the phase space is CT (]−∞, 0];E)
or it can be represented by an element of CT (] − ∞, T ];E), as being an element
belonging to an equivalence class of measurable functions almost everywhere equal,
if the phase space is the one introduced by Hale and Kato [6] . As a consequence,
for the study of the problem (3.2), we simply have to deal with the problem (3.3)
where ŷ is a T -periodic extension of y ∈ C([0, T ];E) on all ] − ∞, T ] and use, for
example, the same approach given in [10]. Now, take as phase space, the space C0

(see [6] ), defined by C0 = {φ ∈ BC : limθ→∞ φ(θ) = 0}, where BC is the space of
all continuous bounded function from ]−∞, 0] into E endowed with the sup-norm.
It is clear that for any T > 0, the unique T -periodic element of C0 is the null
function. As a consequence, the null function is the unique candidate as a solution
to the problem (3.2) (we will deal with the infinite delay case in detail in another
work).

So, to study the periodic Problem (3.1), it is more natural to study Problem
(3.4). This will allow us thereafter to make a complete study of the Problem (3.1).
Of course, the study of Problem (3.4) cannot be done directly because the latter is
poorly defined, in the sense that, the memories are observed only at the time t = 0
and, the associated Cauchy problem is not well defined. To face this constraint,
we will show that the set of mild solutions of Problem (3.4) can be observed as an
infinite union of mild solutions sets of well-defined problems (i.e., problems that we
know how to study the associated Cauchy problems) and, to justify our approach, we
will show that the manner with which we will treat Problem (3.4) is also interesting
from the point of view of applications.
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Let us start by studying Problem (3.4). It is formally assumed, for the moment,
that the solutions sets to the problems that we are going to consider are nonempty.
Conditions which ensure that such sets are nonempty will be given in Section 4.

Let us denote by Σ, the mild solution set of the problem (3.4) i.e.,

(3.5) Σ = {x ∈ C([−r, T ];E) : x is a mild solution to Problem (3.4)} .

For any z ∈ C([0, T ];E) and any ψ ∈ C([−r, 0];E) such that z(0) = ψ(0), denote
by z[ψ] the element of C([−r, T ];E), given by

z[ψ](t) =

{
z(t), t ∈ [0, T ],

ψ(t), t ∈ [−r, 0].

One can easily check that

C([−r, T ];E) = {y[ψ] : y ∈ C([0, T ];E), ψ ∈ C([−r, 0];E); z(0) = ψ(0)} .

Moreover, each x ∈ C([−r, T ];E) can be written in a unique way as x = y[ψ], for
some y ∈ C([0, T ];E) and, ψ ∈ C([−r, 0];E) such that, ψ(0) = y(0).

Let us consider the Banach subspace B0 of C([−r, 0];E) defined as follow,

(3.6) B0 = {φ ∈ C([−r, 0];E) : φ(0) = 0} .

For φ ∈ B0, let Λφ : C([0, T ];E) → C([−r, 0];E), be an operator such that, for
every y ∈ C([0, T ];E),

(3.7) Λφ(y) = y(0) + φ.

It is clear the operator Λφ is well defined, continuous and maps bounded sets onto
bounded sets. Let us consider the periodic boundary value problem

(Pφ)

{
y′(t) = Ay(t) + F (t, y[Λφ(y)]t), t ∈ [0, T ],

y(0) = y(T ).

Denote by Σφ[0, T ], the mild solution set of the problem (Pφ), i.e.,

(3.8) Σφ[0, T ] = {y ∈ C([0, T ];E) : y is a mild solution to Problem (Pφ)} .

It is clear that if y ∈ Σφ[0, T ] then,

(3.9) y[Λφ(y)](t) =

{
y(t), t ∈ [0, T ],

Λφ(y)(t), t ∈ [−r, 0].
=

{
y(t), t ∈ [0, T ],

y(0) + φ(t), t ∈ [−r, 0],

is a mild solution of the problem (3.4). For every φ ∈ B0, set

(3.10) Σφ[−r, T ] = {y[Λφ(y)] : y ∈ Σφ[0, T ]} = {y[y(0) + φ] : y ∈ Σφ} .

So, for any φ ∈ B0 , we have Σφ[−r, T ] ⊂ Σ. Let us show that Σ = ∪
φ∈B0

Σφ[−r, T ].

Let x ∈ Σ. Set ψ = x0 and, y(t) = x(t), t ∈ [0, T ]. It is clear that for every
t ∈ [−r, T ], we have x(t) = y[Λφ(y)], where φ = ψ − ψ(0) an element of B0. Since
y ∈ Σφ[0, T ], we deduce that x ∈ Σφ[−r, T ]. Thus,

(3.11) Σ = ∪
φ∈B0

Σφ[−r, T ].
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Remark 3.6. Our approach allows a deep study of the periodic problem (3.4) in
the meaning that it allows to observe the initial segments of the solutions in other
spaces that may be of very different nature than C([−r, 0];E). Indeed, for τ ∈ [0, r[,
let us consider the Banach space L1

τ = L1
τ ([−r, 0];E) (inspired from [6]), given by

L1
τ =

{
ψ : ψ |[−τ,0] is continuous and, ψ |[−r,−τ ] ∈ L1([−τ, 0];E)

}
.

Suppose that H : [0, T ] × L1
τ ([−r, 0];E) → E and for every ψ ∈ L1

τ , the Cauchy
problem

(3.12)

{
x′(t) = Ax(t) +H(t, xt), t ∈ [0, T ],

x0 = ψ,

has at least a mild solution. In this case for the study of the problem (3.4) ( with
L1
τ ([−r, 0];E) in place of C([−r, 0];E) ), we have to study the problems (Pφ) where

φ ∈ L1
τ ([−r, 0];E) such that φ(0) = 0 and Λφ : C([0, T ];E) → L1

τ ([−r, 0];E), is
given by, Λφ(y)(·) = y(0) + φ(·). A solution x = y[Λφ(y)] does not need to be
represented by an element of CT ([−r, T ];E).

Mild periodic solution. Now, we have to explain how a solution to the problem
(3.4) can generate a periodic solution to the problem (3.1). Suppose that the map
H : R+ × C([−r, 0];E) → E, is T -periodic on the first argument, i.e.,

(HT ) For every v ∈ C([−r, 0];E), H(t+ T, v) = H(t, u) a.e. t ∈ R+.

First of all, note that under Hypothesis (HT ), if x is a mild solution to the problem
(3.2)(recall that in this case x ∈ CT ([−r, T ];E), see Definition 3.2) then its T -
periodic extension on all [−r,+∞] is a T -periodic solution of the problem (3.1).
The study of the periodic solutions to the problem (3.1) through Problem (3.2) is a
simple consequence. Now, let x ∈ C([−r, T ];E) be a mild solution of the problem
(3.4) (i.e., x ∈ Σ). Set y = x |[0,T ]. It is clear that, x = y[x0] and y is a mild solution

to the problem

(3.13)

{
y′(t) = Ay(t) +H(t, y[x0]t), t ∈ [0, T ],

y(0) = y(T ).

For n ≥ 0, denote by xn0 , the translation of x0 to the interval [nT − r, nT ] (we want
that the evolution in each time interval [nT, (n+ 1)T ], n ≥ 0, occurs while keeping
the initial memory x0, we will explain in Remark 3.7 why such a consideration is
more natural) and by yn the translation of y to the interval [nT, (n+1)T ] (we want
to have a periodic evolution starting from t ≥ 0), i.e., for every n ≥ 0, we set,{

xn0 (θ) = x0(θ − nT ), θ ∈ [nT − r, nT ],

yn(t) = y(t− nT ), t ∈ [nT, (n+ 1)T ].

Note that x00 = x0 and y0 = y. For every t ∈ [0, T ], we have, yn[xn0 ]t+nT = y[x0]t
(geometrically this fact is obvious), which is equivalent to write,

(3.14) yn[xn0 ]t = y[x0]t−nT , for every t ∈ [nT, (n+ 1)T ].
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For every n ≥ 0, the problem (3.13) can be written equivalently as{
y′(t− nT ) = Ay(t− nT ) +H(t− nT, y[x0]t−nT ), t ∈ [nT, (n+ 1)T ],

y(0) = y(T ).

By using (3.14) and the fact that H is T -periodic on the first argument, we
deduce, that every n ≥ 0, yn is a mild solution to the problem

(3.15)

{
(yn)′(t) = Ayn(t) +H(t, yn[xn0 ]t), t ∈ [nT, (n+ 1)T ],

yn(nT ) = yn((n+ 1)T ).

It results that if H satisfies Hypothesis (HT ) and x = y[x0] is a mild solution of the
problem (3.4), then x̂ = ŷ[x0], where ŷ is a T -periodic extension of y on all [0,+∞[,
is a T -periodic mild solution to (3.1) that conserves the memory when the equation
(3.1) evolves on each time interval [nT, (n+ 1)T ], n ≥ 0.

Remark 3.7. If the evolution of the solution in each time interval [nT, (n+1)T ], n ≥
0, occurs without keeping the initial memory x0, i.e., it occurs in each time interval
[nT, (n + 1)T ], n ≥ 0, by taking as initial memory xnT , under these conditions
we are in the case of the problem (3.2). A periodic solution of the problem (3.1)
belong necessarily to CT ([−r,+∞[, E) and, is nothing but a T -periodic extension of
a solution to the problem (3.2) (which is necessarily an element of CT ([−r, T ], E)),
on all the interval [−r,+∞], in other words, if the initial memory is not preserved,
one will be in the case of the formulation given by Problem (3.2), that we now know
that it is not very interesting (see also Remark 3.4). Thus, to define a periodic
solution to Problem (3.1), it is natural to assume that the evolution of the solution
in each time interval [nT, (n+ 1)T ], n ≥ 0, occurs with keeping the initial memory.

Recall that CT = CT ([0,+∞[;E) (see Definition 3.2) denotes the space of con-
tinuous T -periodic functions defined on [0,+∞[ with values in E. Let us denote by
CT = CT ([−r,+∞[;E) the space defined as follows,

CT =
{
x : x is continuous, x0 ∈ C([−r, 0];E) and, x |[0,+∞[ ∈ CT

}
.

We are now in position to give a more complete definition of a mild periodic solution
to the problem (3.1) under the condition that H satisfies Hypothesis (HT ).

Definition 3.8. A function x ∈ CT is a T -periodic mild solution to the problem
(3.1) if and only if, x |[−r,T ] ∈ Σφ[−r, T ] for some φ ∈ B0.

Let us denote by ΣΣ the set of all T -periodic mild solutions to the problem (3.1)
and, by ΣT ⊂ CT the set of all T -periodic extension of the elements of Σ | [0,T ] on

all [0,+∞[ (see (3.5)). Then,

ΣΣ = ΣT .

Now, if for each φ ∈ B0, we denote by Σφ
T [−r, T ] ⊂ CT , the set of all T -periodic

extension of the elements of Σφ[−r, T ] | [0,T ] on all [0,+∞[, from (3.11), we get

ΣΣ = ΣT = ∪
φ∈B0

Σφ
T [−r, T ].
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Recall (see (3.9)) that , for each φ ∈ B0,

(3.16) x ∈ Σφ[−r, T ] ⇔ x = y[Λφ] with y ∈ Σφ[0, T ].

So, Definition 3.8 can be written equivalently:

Definition 3.9. A function y ∈ CT ([0,+∞[;E) is a T -periodic mild solution to the
problem (3.1), if and only if, y |[0,T ] ∈ Σφ[0, T ] for some φ ∈ B0.

Now, if, for each φ ∈ B0, we denote by Σφ
T [0, T ] the set of all T -periodic extension

of the elements of Σφ[0, T ] on all [0,+∞[, from (3.16), we get

∪
φ∈B0

Σφ
T [−r, T ] = ∪

φ∈B0

{
y[Λφ] : y ∈ Σφ

T [0, T ]
}
.

Thus,

(3.17) ΣΣ = ∪
φ∈B0

{
y[Λφ] : y ∈ Σφ

T [0, T ]
}
.

Remark 3.10. In applications the choice of φ can be dictated by the problem to
be studied.

Intuitive Illustration 1. Suppose we want to send a flying object so that its
motion law is governed by a finite-delay semilinear differential equation and that
after a certain time, say after t = 0 ( we take t = −r, r > 0, the time of the beginning
of the flight), its movement is periodic. It is clear that the movement of this object
must be programmed following a trajectory of a periodic solution. Suppose that
between the instants, t = −r and t = 0, (where r is assumed to be large enough
compared to T ), this object must pass through a danger zone. It is clear that the
movement of this object should not be too predictable between the instants, t = −r
and t = 0. So, programming the movement of this object following a solution found
through the translation operator or equivalently following a solution found through
the formulation given by the problem (3.2) would be really a bad choice. We can
program its motion following a solution belonging to Σφ

T [−r, T ], where φ ∈ B0, is a
difficult function to predict.

Intuitive Illustration 2. A system that evolves while still keeping its initial
memory can be observed in the study of the exhaling operation of a person who
inhales air in a uniform way (initial memory). A respirologist who wants to analyze
the lungs of a patient, asks the latter to inhale the air in a repeated and uniform
manner. So, the graph which defines the inhaling operation is known. The respirol-
ogist is interested in the graph which defines the exhaling operation (which is a
consequence of the inhaling operation). Now, if for each inhaling-exhaling opera-
tion, the respirologist only looks at the graph which defines the exhaling operation
in order to subsequently deduce, by a periodic extension, the graph of the inhaling
operation, this will be absurd, since he cannot deduce anything about the state
of health of the patient’s lungs. The formulation given by (3.2) puts us in such a
context.

4. Hypotheses and existence result

To validate our approach which was developed in the previous section, we must
give at least one existence result which ensures that the sets with which we have
developed our approach, i.e., Σφ[0, T ] , Σφ[−r, T ] and Σ, are nonempty. According
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to the relations (3.10) and (3.11), it enough to show that, for each φ ∈ B0, under
some conditions, , the set Σφ[0, T ] is nonempty. Of course, the fact that we will
consider the multivalued case (differential inclusions) does not change anything on
our approach, what changes is the fact that the solutions are written through their
selections.

Let φ be an element of B0 (see Definition (3)). Consider the problem

(P̂φ)

{
y′(t) ∈ Ay(t) + F (t, y[Λφ(y)]t), t ∈ [0, T ],

y(0) = y(T ).

where A : D(A) ⊂ E → E, is a linear operator not necessarily bounded, F :
[0, T ]×C([−r, 0];E) → Kv(E) a multifunction and the map Λφ(·) has been defined
in (3.7). Suppose that:

(A1) The operator A generates a C0 semigroup (T (t))t≥0 on E.
(A2) The semigroup (T (t))t≥0 is decreasing, i.e., there exist constants C ≥ 1 and

ω > 0 such that

∥T (t)∥ ≤ C e−ω t, t ∈ [0, T ].

(F1) For all u ∈ C([−r, 0];E), the mapping t→ F (t, u) is measurable.
(F2) For a.e. t ∈ [0, T ], the map F (t, ·) is u.s.c.
(F3) There exists α(.) ∈ L1

+([0, T ]) such that for all u ∈ C([−r, 0];E),

∥F (t, u)∥ ≤ α(t), a.e. t ∈ [0, T ].

(F4) There exists a function κ(·) ∈ L1
+([0, T ]) such that, for every bounded subset

D ⊂ C([−r, 0];E),

χ (F (t,D)) ≤ κ(t) sup
−r≤θ≤0

χ(D(θ)),

for a.e. t ∈ [0, T ], whereD(θ) = {x(θ), x ∈ D} and χ denotes the Hausdorff
measure of noncompactness in E.

Remark 4.1. Recall that, under conditions (F1)− (F3), for every continuous map
ω : [0, T ] → C([−r, 0];E), there exists a summable selection f : [0, T ] → E of
the multivalued map F (·, ω(·)). (see Theorem 1.3.5 in [9]). Now consider the map
Π : [0, T ] × C([0, T ];E) → C([−r, 0];E), defined by Π(t, y) = y[Λφ(y)]t. It is easy
to check that, the map Π(·, y) is continuous for each y ∈ C([0, T ];E) and, Π(t, ·) is
Lipschitz continuous uniformly with respect to t ∈ [0, T ]. The continuity of Π(·, y)
and the fact that F (t,Π(t, y)) = F (t, y[Λφ(y)]t), a.e. t ∈ [0, T ], ensure that the

superposition operator sel
Λφ

F ,

sel
Λφ

F : C([0, T ];E) → L1([0, T ];E)

sel
Λφ

F (y) =
{
f ∈ L1([0, T ];E) : f(t) ∈ F (t, y[Λφ(y)]t), a.e. t ∈ [0, T ]

}
,

is well defined. The Lipschitz continuity of Π(t, ·) uniformly with respect to t ∈ [0, T ]
and Lemma 5.1.1 in [9] (see also [4, Lemma 4]), selΛF is weakly closed. More precisely:

Lemma 4.2. Let {yn}∞n=1 ⊂ C([0, T ];E) and {fn}∞n=1 ⊂ L1([0, T ];E) with, fn ∈
sel

Λφ

F (yn), n ≥ 1. If yn → y0 and, fn
w−→ f0, then f0 ∈ sel

Λφ

F (y0).



196 LAHCENE GUEDDA

Definition 4.3. A function y ∈ C([0, T ];E) is a mild solution to the problem (P̂φ)

if there exists f ∈ sel
Λφ

F (y) such that, x(·) = S(x(0), f)(·) and, x(0) = x(T ).

We denote by Σ̂φ[0, T ] the mild solution set of the problem P̂φ. We have

Theorem 4.4. Assume Hypotheses (A1)− (A2) and (F1)-(F4). If

(4.1) 2C
(
1 + 2C

)
∥κ(·)∥L1 + C2 e−ωT < 1,

then the mild solutions set Σ̂φ[0, T ] of the problem (P̂φ) is nonempty and compact.

Remark 4.5. If the map F (t, ·) is compact for a.e. t ∈ [0, T ], then κ(·) ≡ 0 and
the condition (4.1) is reduced to C2 e−ωT < 1, which is always satisfied if C = 1.

Before giving the proof of Theorem (4.4), we need to establish some auxiliary
results. Let us consider the multivalued operator Γφ,

(4.2)

{
Γφ : C([0, T ];E) −→ P(C([0, T ];E))

Γφ(y) = {S(S(y(0), f)(T ), f) : f ∈ sel
Λφ

F (y)},

where, S(·, ·) is the Cauchy operator defined in (2.1).

Lemma 4.6. We have:
Σ̂φ[0, T ] = FixΓφ.

Proof. Let y ∈ Γφ(y). Then, there exists f ∈ selΛF (y), such that

(4.3) y = S(S(y(0), f)(T ), f).

Since
y(0) = S(S(y(0), f)(T ), f)(0) = S(y(0), f)(T ),

we get,
y = S(y(0), f) with y(T ) = S(y(0), f)(T ) = y(0).

That is x ∈ Σ̂φ[0, T ]. Now, let y be a solution to the problem (P̂φ). Then, there
exists f ∈ selΛF (y) such that, y = S(y(0), f) and y(0) = y(T ). It results that y =
S(y(0), f) = S(y(T ), f). But y(T ) = S(y(0), f)(T ). Hence, y = S(S(y(0), f)(T ), f),
which means that y is a fixed point of Γφ. □
Remark 4.7. The idea of the construction of such operator is due to Ioan I. Vrabie
[14] (in the study of fully nonlinear differential equation where the delay is absent).

Lemma 4.8. The operator Γφ is with convex values.

Proof. Since the mulimap F is with convex values, we have immediately that,
for all convex subsets V of E and, V of L1([0, T ];E), the set S(V,V) =
{S(u, g) : u ∈ E, g ∈ V} is a convex subset of C([0, T ];E). The result follows from

the fact that, for each y ∈ C([0, T ];E), the sets sel
Λφ

F (y) and {S(y(0), f)(T ) : f ∈
sel

Λφ

F (y)} are convex subsets of L1([0, T ];E) and E respectively. □
Lemma 4.9. Let Ω be a bounded subset of C([0, T ];E). Then for for a.e. t ∈ [0, T ],
we have

χ {F (t, y[Λφ(y)]t) : y ∈ Ω} ≤ 2κ(t) sup
θ∈[0,t]

χ(Ω(θ)).
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Proof. By Hypothesis (F4), for a.e. t ∈ [0, T ] we have,

χ {F (t, y[Λφ(y)]t) : y ∈ Ω} ≤ κ(t) sup
θ∈[−r,0]

χ
(
{y[Λφ(y)]t(θ) : y ∈ Ω}

)
≤ κ(t) sup

θ∈[−r,0]
χ
(
{y[Λφ(y)](t+ θ) : y ∈ Ω}

)
≤ κ(t) sup

θ∈[−r,−t]
χ
(
{y[Λφ(y)](t+ θ) : y ∈ Ω}

)
+ κ(t) sup

θ∈[−t,0]
χ
(
{y[Λφ(y)](t+ θ) : y ∈ Ω}

)
≤ κ(t) sup

θ∈[−r,−t]
χ
(
{φ(t+ θ) + y(0) : y ∈ Ω}

)
+ κ(t) sup

θ∈[−t,0]
χ
(
{y(t+ θ) : y ∈ Ω}

)
= 2κ(t) sup

θ∈[0,t]
χ(Ω(θ)).

□

Lemma 4.10. The multimap Γφ is closed with compact values.

Proof. Let {yn}n, {zn}n ⊂ C([0, T ];E), such that yn −→ y0, zn ∈ Γφ(yn), n ≥ 1,

and zn −→ z0. Take any sequence {fn}n from L1([0, T ], E) such that fn ∈ sel
Λφ

F (yn)
and zn = S(S(yn(0), fn)(T ), fn), n ≥ 1. By Hypothesis (F3) the sequence {fn}n is
integrably bounded. By applying Lemma 4.9, we have

χ({fn(t)}+∞
n=1) ≤ 2κ(t)χ({yn(t)}+∞

n=1) = 0 a.e. t ∈ [0, T ].

It results that the sequence {fn}n is semicompact. Without loss of generality,

one can suppose that fn
w→ f0. Since ({yn(0)}∞n=1) is a relatively compact subset

of E, invoking Lemma 2.9 we get that the sequence {S(yn(0), fn)}n is relatively
compact in C([0, T ];E) and S(yn(0), fn) → S(y0(0), f0). In particular we have
S(yn(0), fn)(T ) → S(y0(0), f0)(T ) in E. Invoking again Lemma 2.9, we obtain

zn = S(S(yn(0), fn)(T ), fn) → S(S(y0(0), f0)(T ), f0).

By applying Lemma 4.2 we have f0 ∈ sel
Λφ

F (y0). Therefore, z0 ∈ Γφ(y0), which
yields the closedness of Γφ. Let y(·) ∈ C([0, T ];E). Lemma 4.9 and Hypothesis

(F3) ensure that every sequence {fn}n, fn ∈ sel
Λφ

F (y), is semicompact. Following
the same reasoning as above, one can easily show that S{(S(y(0), fn)(T ), fn)}∞n=1

is relatively compact in C([0, T ];E). The compactness of Γφ(y) follows from its
closeness. □

Let Ψ be a function defined on bounded subsets of C([0, T ];E), in the following
way

(4.4) Ψ(Ω) = max
D∈∆(Ω)

(
ϑ(D), modc(D)

)
,

where
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(4.5) ϑ(D) = sup
t∈[0,T ]

χ(D(t)),

modc(D) = lim
δ→0

sup
x∈D

max
|t1−t2|≤δ

∥x(t1)− x(t2)∥,

and ∆(Ω) is the collection of all denumerable subsets of Ω. The range for the
function Ψ is a cone R2

+, max is taken in the sense of the ordering induced by this
cone. The function Ψ is well defined, monotone, nonsingular and regular measure
of noncompactness in C([0, T ]; E) (see [9]).

Lemma 4.11. The operator Γφ is Ψ-condensing.

Proof. let Ω ⊂ C([0, T ];E) be bounded subset such that,

(4.6) Ψ(Γφ(Ω)) ≥ Ψ(Ω).

We have to show that (4.6) implies that Ω is relatively compact. Let the maximum
on the left-hand side of the inequality (4.6) be achieved for a countable set D′ =
{zn}∞n=1 ⊂ Γφ(Ω), i.e.,

Ψ(Γφ(Ω)) = (ϑ({zn}n=1), modc({zn}n=1)).

By the construction of the operator Γφ, there exists {yn}n=1 ⊂ Ω, such that{
zn = S(S(yn(0), fn)(T ), fn), n ≥, 1,
fn ∈ sel

Λφ

F (yn).

Inequality (4.6) implies that

(4.7) Ψ ({yn}∞n=1) ≤ Ψ({zn}∞n=1) .

Therefore,

(4.8) ϑ ({yn}∞n=1) ≤ ϑ ({zn}∞n=1) = ϑ ({S(S(yn(0), fn))(T ), fn}∞n=1) .

By applying Lemma 4.9, we have immediately,

χ(F (t, {yn[Λφ(y
n)]t}∞n=1)) ≤ 2 k(t) sup

θ∈[0,t]
χ({yn(θ)}∞n=1) ≤ 2 k(t)ϑ ({yn}∞n=1) .

The last inequality and Lemma 2.10 give

χ ({zn(0)}∞n=1) = χ({S(yn(0), fn)(T )}n)
≤ 4C ∥κ∥L1 ϑ

(
{yn}∞n=1

)
+ C e−ωTχ

(
{yn(0)}∞n=1

)
≤

(
4C ∥κ∥L1 + C e−ωT

)
ϑ
(
{yn}∞n=1

)
.
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Using the last estimate and again Lemma 2.10, for every t ∈ [0, T ], we get

χ ({zn(t)}∞n=1) = χ
(
{S

(
S(yn(0), fn)(T ), fn

)
(t)}∞n=1

)
≤ 2C

∫ t

0
κ(s)ϑ

(
{yn}∞n=1

)
ds+ C e−ωtχE ({S(yn(0), fn)(T )}∞n=1)

≤ 2C ∥κ(·)∥L1 ϑ
(
{yn}∞n=1

)
+ C χE ({S(yn(0), fn)(T )}∞n=1)

≤
[
2C ∥κ(·)∥L1 + C

(
4C ∥κ(·)∥L1 + C e−ωT

)]
ϑ
(
{yn}∞n=1

)
≤

[
2C

(
1 + 2C

)
∥κ(·)∥L1 + C2 e−ωT

]
ϑ
(
{yn}∞n=1

)
.

Therefore,

ϑ ({zn}∞n=1) = sup
t∈[0,T ]

χE ({zn(t)}∞n=1)

≤
[
2C

(
1 + 2C

)
∥κ(·)∥L1 + C2 e−ωT

]
ϑ
(
{yn}∞n=1

)
.(4.9)

The last inequality together with (4.8) give

(4.10) ϑ
(
{yn}∞n=1

)
≤

[
2C

(
1 + 2C

)
∥κ(·)∥L1 + C2 e−ωT

]
ϑ
(
{yn}∞n=1

)
.

By hypothesis, 2C
(
1 + 2C

)
∥κ(·)∥L1 + C2 e−ωT < 1. Therefore,

(4.11) ϑ
(
{yn}∞n=1

)
= 0.

By using Lemma 4.9 and Hypothesis (F3) we deduce that the sequence {fn}∞n=1

is semicompact in L1([0, T ];E). It results by Lemma 2.9 that the sequence
{S(yn(0), fn)(T )}∞n=1 = {zn(0)}∞n=1 is relatively compact in E. By applying once
again Lemma 2.9, we deduce that the sequence {zn}∞n=1={S(S(yn(0), fn)(T ), fn)}∞n=1

is relatively compact in C([0, T ];E). Consequently, modc ({zn}∞n=1) = 0. From In-
equality (4.7), modc ({yn}∞n=1) = 0. The last equality together with (4.11) imply
that Ψ(Ω) = (0, 0). Since Ψ is regular, we deduce that the Ω is relatively com-
pact. □

Proof of Theorem (4.4). From the previous lemmas, we know that the operator Γφ

is closed with compact convex values and Ψ-condensing, where Ψ is nonsingular,
regular and monotone measure of noncompactness. According to Theorem 2.1 and
Proposition 2.2, for the proof of Theorem (4.4), it remains only to show that Γφ

maps a ball of C([0, T ];E) into it self and that Σφ[0, T ] is bounded.
Recall that the constants C and ω are defined in Hypothesis (A2) and the func-

tion α(·) is defined in Hypothesis (F3). In the space C([0, T ];E), let us define an
equivalent norm as follows,

(4.12) ∥y∥L = e−L ∥y∥C([0,T ];E) ,

where L is a constant chosen big a enough such that,

(4.13) j = (C2 + C) e−L ∥α(·)∥L1 < 1.
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Let us denote by B(0, ρ) the closed ball in
(
C([0, T ];E), ∥·∥L

)
, centered at 0, with

radius ρ:

B(0, ρ) = {y ∈ C([0, T ];E) : ∥y∥L ≤ ρ} .

Let ρ∗ be a positive real number, such that

(4.14) ρ∗ ≥ j

1− C2 e−ωT
.

where j has been defined in (4.13). Note that Inequality (4.1) implies that C2 e−ωT <
1. Let us prove that the operator Γφ maps B(0, ρ∗) into itself. Let y ∈ B(0, ρ∗)

and z = S
((
S(y(0), f)

)
(T ), f

)
, f ∈ sel

Λφ

F (y), an element of Γφ(y) . For every

t ∈ [0, T ], we have,

∥z(t)∥ =
∥∥∥S((S(y(0), f))(T ), f)(t)∥∥∥

≤ C e−ω t
∥∥∥S(y(0), f)(T )∥∥∥+ C

∫ t

0
e−ω(t−τ) ∥f(τ)∥ dτ

≤ C e−ω t

[
C e−ωT ∥y(0)∥+ C

∫ T

0
e−ω(T−τ) ∥f(τ)∥ dτ

]
+ C

∫ t

0
e−ω(t−τ) ∥f(τ)∥ dτ.

≤ C2 e−ωT sup
t∈[0,T ]

∥y(t)∥+ (C2 + C) ∥α(·)∥L1 .

By using Inequalities (4.13) and (4.14), we obtain

∥z(·)∥L ≤ C2 e−ωT sup
t∈[0,T ]

e−L ∥y(t)∥+ (C2 + C) e−L ∥α(·)∥L1

≤ C2 e−ωT ρ∗ + j ≤ ρ∗.

That is, Γφ maps B(0, ρ∗) into itself. It remains to show that Σφ[0, T ] is bounded.
This fact results from the global boundedness condition (F3). Indeed, let y ∈ Σφ,
following the same lines as above (by taking y(·) in place of z(·)), for every t ∈ [0, T ],
we obtain,

∥y(t)∥ ≤ C2 e−ωT sup
t∈[0,T ]

∥y(t)∥+ (C2 + C) ∥α(·)∥L1 .

Thus,

sup
t∈[0,T ]

∥y(t)∥ ≤
(C2 + C) ∥α(·)∥L1

1− C2 e−ωT
.

The proof is complete. □

Remark 4.12. If E is separable then, Inequality (4.1) in Theorems 4.4 can be

reduced to C
(
1 + 2C

)
∥κ(·)∥L1 + C2 e−ωT < 1 (see Remark 2.11).

I would like to thank Professor V. V. Obukhovskii for encouragements.
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[7] H. Henŕıquez, Periodic solutions of quasi-linear partial functional differential equations with
unbounded delay, Funkcial. Ekvac. 37 (1994), 329–343.
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