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where T > 1, α ∈ (0, 1), β ∈ [0, 1] Fi : [1, T ] × E2 → P(E); i = 1, 2 are given

multivalued maps, (E, ‖ ·‖E) is a real separable Banach space , HDα,β
1 is the Hilfer–

Hadamard fractional derivative of order α and type β.
In this paper we discuss the existence of weak solutions to the coupled system

of Caputo type modification of the Erdélyi–Kober fractional differential inclusions
involving both retarded and advanced arguments given by:

(1.1)

{
(ρcD

α1

a+
u)(t) ∈ F1(t, u

t, vt)

(ρcD
α2

a+
v)(t) ∈ F2(t, u

t, vt)
; t ∈ I := [a, T ],

(1.2)

{
(u(t), v(t)) = (ϕ1(t), ϕ2(t)), t ∈ [a− r, a], r > 0

(u(t), v(t)) = (ψ1(t), ψ2(t)), t ∈ [T, T + β], β > 0,

where T > a ≥ 0, αi ∈ (1, 2]; i = 1, 2; (E, ‖ · ‖) is a real separable Banach space,
ρ
cD

αi

a+
is the Caputo type modification of the Erdélyi–Kober fractional derivative,

Fi : I×C([−r, β], E)×C([−r, β], E) → P(E) are given functions, ϕi ∈ C([a−r, a], E)
with ϕi(a) = 0 and ψi ∈ C([T, T + β], E) with ψi(T ) = 0; i = 1, 2. We denote by yt

the element of C([−r, β]) defined by:

yt(s) = y(t+ s) : s ∈ [−r, β].

This paper initiates the study of differential inclusions involving the Erdélyi–
Kober fractional derivative, which include the Hadamard fractional derivative as
special case.

2. Preliminaries

In this part, we present notations and definitions we will use throughout this
paper. By C([−r, β], E) we denote the Banach space of all continuous functions
from [−r, β] into E equipped with the norm

‖y‖[−r,β] = sup{‖y(t)‖ : −r ≤ t ≤ β}.

Also, let E1 = C([a − r, a], E), E2 = C([T, T + β], E). We denote by AC(I) the
space of absolutely continuous functions.

AC1(I) := {w : I −→ E : w′ ∈ AC(I)},

where

w′(t) = t
d

dt
w(t), t ∈ I.

C = {y : [a− r, T + β] 7−→ E : y |[a−r,a]∈ C([a− r, a], E), y |[a,T ]∈ AC1(I)

and y |[T,T+β]∈ C([T, T + β], E)}

be the spaces endowed, respectively, with the norms

‖y‖[a−r,a] = sup{‖y(t)‖ : a− r ≤ t ≤ a},

‖y‖[T,T+β] = sup{‖y(t)‖ : T ≤ t ≤ T + β},
‖y‖C = sup{‖y(t)‖ : a− r ≤ t ≤ T + β}.
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Define the weighted product space C := C × C with the norm

‖(u, v)‖C := ‖u‖C + ‖v‖C .
Let Eω = (E, σ(E,E∗)) be the Banach space E endowed with the weak topology
generated by the continuous linear functionals on E, and C(I, Eω) the Banach space
of weakly continuous functions on I, with the topology of weak uniform convergence.
Consider the space Xp

c (a, b), (c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue
measurable functions f on [a, b] for which ‖f‖Xp

c
< ∞, where the norm is defined

by:

‖f‖Xp
c
=

(∫ b

a
|tcf(t)|pdt

t

) 1
p

, (1 ≤ p <∞, c ∈ R).

In particular, in case when c = 1
p the space Xp

c (a, b) coincides with the Lp(a, b)

space, i.e., Xp
1
p

(a, b) = Lp(a, b).

Let L1(I, E) be the Banach space of Bochner integrable functions y : I −→ E with

norm ‖y‖L1 =
∫ T
a |y(t)|dt.

Definition 2.1 ([24,26,27]): (Erdélyi–Kober fractional integral)). Let α, c ∈ R. The
Erdélyi-Kober fractional integral of order α of a function g ∈ Xp

c (a, b) is defined by
:

(2.1) (ρIαa+g)(t) =
ρ1−α

Γ(α)

∫ t

a
sρ−1 (tρ − sρ)α−1 g(s)ds, t > a; ρ > 0,

where Γ is the Euler gamma function defined by

Γ(ξ) =

∫ ∞

0
tξ−1e−tdt, ξ > 0.

Definition 2.2 ([23]). The generalized fractional derivative, corresponding to the
fractional integral (2.1) is defined,by:

(2.2) ρDα
a+g(t) =

ρ1−n+α

Γ(n− α)

(
t1−ρ d

dt

)n ∫ t

a

sρ−1

(tρ − sρ)1−n+α
g(s)ds

= δnρ (
ρIn−α

a+
g)(t); 0 ≤ a < t,

where δnρ =
(
t1−ρ d

dt

)n
.

Definition 2.3 ([23, 28]). The Caputo-type generalized fractional derivative ρ
cDα

a+

is defined via the above generalized fractional derivative (2.2) as follows:

(2.3) (ρcD
α
a+g)(t) =

(
ρDα

a+

[
g(t)−

n−1∑
k=0

g(k)(a)

k!
(s− a)k

])
.

Lemma 2.4 ([23]). Let α, ρ ∈ R+, then

(2.4) (ρIαa+
ρ
cD

α
a+g)(t) = g(t)−

n−1∑
k=0

ck

(
tρ − aρ

ρ

)k

,

for some ck ∈ R, n = [α] + 1.

We define the following subsets of P(E) :
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Pcl(E) = {Y ∈ P(E) : Y is closed},
Pb(E) = {Y ∈ P(E) : Y is bounded},
Pcp(E) = {Y ∈ P(E) : Y is compact}
Pcv(E) = {Y ∈ P(E) : Y is convex}
Pcp,cv(E) = Pcp(E) ∩ Pcv(E).

Definition 2.5. A multivalued map G : I → Pcl(E) is said to be measurable if for
every y ∈ E, the function:

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}
is measurable.

Definition 2.6. A Banach space X is called weakly compactly generated (WCG,
for short) if it contains a weakly compact set whose linear span is dense in X.

Definition 2.7 ([31]). A function u : I → E is said to be Pettis integrable on I
if and only if there is an element uJ ∈ E corresponding to each J ⊂ I such that
ϕ(uJ) =

∫
J ϕ(u(s))ds for all ϕ ∈ E∗, where the integral on the right hand side is

assumed to exist in the sense of Lebesgue, (by definition, uJ =
∫
J u(s)ds).

Let P (I, E) be the space of all E−valued Pettis integrable functions on I, and
L1(I, E) be the Banach space of Bochner integrable functions u : I → E. Let
P1(I, E) denote the space P1(I, E) = {u ∈ P (I, E) : φ(u) ∈ L1(I,R); for every φ ∈
E∗} normed by

‖u‖P1 = sup
φ∈E∗, ∥φ∥≤1

∫ T

a
|φ(u(x))|dλx,

where λ stands for a Lebesgue measure on I.
The following result is due to Pettis (see [ [31], Theorem 3.4 and Corollary 3.41]).

Proposition 2.8 ( [31]). If u ∈ P1(I, E) and h is a measurable and essentially
bounded real-valued function, then uh ∈ P1(I, E).

Definition 2.9. A function h : E → E is said to be weakly sequentially continuous
if h takes each weakly convergent sequence in E to a weakly convergent sequence
in E (i.e., for any (xn) in E with xn → x in Eω then h(xn) → h(x) in Eω).

Definition 2.10. Let Pcl,cv(Q) = {Y ∈ P(Q) : Y is closed and convex}. A function
F : Q → Pcl,cv(Q) has a weakly sequentially closed graph, if for any sequence
(xn, yn) ∈ Q×Q, yn ∈ F (xn) for n ∈ {1, 2, . . .}, with xn → x in Eω, and yn → y in
Eω, then y ∈ F (x).

From the Hahn–Banach theorem, we have the following result

Proposition 2.11. Let E be a normed space, and x0 ∈ E with x0 6= 0. Then, there
exists φ ∈ E∗ with ‖φ‖ = 1 and φ(x0) = ‖x0‖.

For a given set V of functions v : I → E let us denote by V (t) = {v(t) : v ∈
V }; t ∈ I, and V (I) = {v(t) : v ∈ V, t ∈ I}.

Recall that the map µ : ΩE → [0,∞) defined by

µ(X) = inf{ϵ > 0 : there exists a weakly compact Ω ⊂ E such that X ⊂ ϵB1 +Ω}
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is the De Blasi measure of weak noncompactness, where ΩE is the bounded subset
of the Banach space E and B1 is the unit ball of E (for details, see [15]). The Blasi
measure of weak noncompactness satisfies the following properties.

Lemma 2.12 ([15]). Let A and B bounded sets.

(1) µ(B) = 0 ⇔ B is compact (B is weakly relatively compact).
(2) µ(cov(B)) = µ(B).
(3) µ(B) = α(B

ω
), (B

ω
denote the weak closure of B.)

(4) A ⊂ B ⇒ µ(A) ≤ µ(B).
(5) µ(A+B) ≤ µ(A) + µ(B), where A+B = {x+ y : x ∈ A, y ∈ B}.
(6) µ(λB) = |λ|µ(B); λ ∈ R, where λB = {λx : x ∈ B}.
(7) µ(A ∪B) = max{µ(A), µ(B)}.
(8) µ(B + x0) = µ(B) for any x0 ∈ E.

Lemma 2.13 ([14,17]). Let H ⊂ C(I, Eω) be a bounded and equicontinuous subset.
Then the function t→ µ(H(t)) is continuous on I, and

µC(H) = max
t∈I

µ(H(t)),

and

µ

({∫
I
u(s)ds : u ∈ H

})
≤
∫
I
µ(H(s))ds,

where H(t) = {u(t) : u ∈ H}; t ∈ I, and µC is the De Blasi measure of weak
noncompactness defined on the bounded sets of C(I, Eω).

In the sequel, we rely on the following fixed point theorem.

Theorem 2.14 ( [30]). Let E be a Banach space with Q a nonempty, bounded,
closed, convex and equicontinuous subset of a metrizable locally convex vector space
C such that 0 ∈ Q. Suppose T : Q→ Pcl,cv(Q) has weakly sequentially closed graph.
If the implication

(2.5) V = conv({0} ∪ T (V )) ⇒ V is relatively weakly compact,

holds for every subset V ⊂ Q, then the operator T has a fixed point.

3. Existence of Solutions

We start this section by defining what we mean by weak solution.

Definition 3.1. A function x : [a − r, T + β] → E is called weak solution of the
problem (1.1)− (1.2) if x ∈ C([a− r, T + β], Eω) satisfies (1.1) and (1.2).

Lemma 3.2. Let 1 < α ≤ 2, ϕ ∈ C([a−r, a], E) with ϕ(a) = 0, ψ ∈ C([T, T+β], E)
with ψ(T ) = 0, and h : I → E be an integrable function. Then the linear problem

(3.1) ρ
cD

α
a+y(t) = h(t), for a.e. t ∈ I := [a, T ], 1 < α ≤ 2,

(3.2) y(t) = ϕ(t), t ∈ [a− r, a], r > 0,

(3.3) y(t) = ψ(t), t ∈ [T, T + β], β > 0,
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has a unique solution, which is given by

(3.4) y(t) =



ϕ(t), if t ∈ [a− r, a],

−
∫ T
a G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where
(3.5)

G(t, s) =
ρ1−α

Γ(α)


(tρ−aρ)(T ρ−sρ)α−1sρ−1

(T ρ−aρ) − sρ−1(tρ − sρ)α−1, a ≤ s ≤ t ≤ T,

(tρ−aρ)(T ρ−sρ)α−1sρ−1

(T ρ−aρ) , a ≤ t ≤ s ≤ T.

Here G(t, s) is called the Green function of the boundary value problem (3.1)-(3.3).
Proof. From (2.4), we have

(3.6) y(t) = c0 + c1

(
tρ − aρ

ρ

)
+ρ Iαa+h(s), c0, c1 ∈ R,

therefore

y(a) = c0 = 0,

y(T ) = c1

(
T ρ − aρ

ρ

)
+
ρ1−α

Γ(α)

∫ T

a
(T ρ − sρ)α−1sρ−1h(s)ds,

and

c1 = − ρ2−α

(T ρ − aρ)Γ(α)

∫ T

a
(T ρ − sρ)α−1sρ−1h(s)ds.

Substitute the value of c0 and c1 into equation (3.6), we get equation (3.4).

y(t) =



ϕ(t), if t ∈ [a− r, a],

−
∫ T
a G(t, s)h(s)ds, if t ∈ I

ψ(t), if t ∈ [T, T + β],

where G is defined by equation (3.5), the proof is complete.

Lemma 3.3. Let Fi : I × C([−r, β], E) × C([−r, β], E) −→ P(E), i = 1, 2 be such
that SF◦u ⊂ C for any u ∈ C and SF◦v ⊂ C for any v ∈ C Then solving the
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system (1.1)−(1.2) is equivalent to the finding the solutions of the system of integral
equations

u(t) =



ϕ1(t), if t ∈ [a− r, a],

−
∫ T
a Gα1(t, s)w1(s)ds, if t ∈ I

ψ1(t), if t ∈ [T, T + β],

and

v(t) =



ϕ2(t), if t ∈ [a− r, a],

−
∫ T
a Gα2(t, s)w2(s)ds, if t ∈ I

ψ2(t), if t ∈ [T, T + β],

where
w1 ∈ SF1◦u, w2 ∈ SF2◦v,

and

G̃αi = sup

{∫ T

a
|Gαi(t, s)|ds, t ∈ I

}
; i = 1, 2.

The following hypotheses will be used in the sequel:

(H1) F1, F2 : I ×C([−r, β], E)×C([−r, β], E) → Pcp,cl,cv(E) have weakly sequen-
tially closed graph;

(H2) For all continuous functions u, v : [−r, β] → E, there exist measurable and
Pettis integrable functions w ∈ SF1◦u, z ∈ SF2◦v, a.e. on I;

(H3) There exist p1, p2 ∈ L∞(I,R+) such that for all φ ∈ E∗, we have

‖F1(t, u, v)‖P ≤ p1(t), for a.e. t ∈ I, and each u, v ∈ C([−r, β], E),

‖F2(t, u, v)‖P ≤ p2(t), for a.e. t ∈ I, and each u, v ∈ C([−r, β], E);

(H4) For all bounded sets Bi ⊂ C([−r, β], E), i = 1, 2 and each t ∈ I, we have

µ(F1(t, B1, B2)) ≤ p1(t) sup
s∈[−r,β]

µ(B1(s)),

µ(F2(t, B1, B2)) ≤ p2(t) sup
s∈[−r,β]

µ(B2(s)),

where
Bi(t) = {u(t) : u ∈ Bi}; i = 1, 2.

Set
p∗i = ess sup

t∈I
pi(t); i = 1, 2.

Now, we state and prove our existence result for problem (1.1)-(1.2) based on
Theorem 2.14.

Theorem 3.4. Assume that hypotheses (H1)-(H4) hold. If

(3.7) G̃α1p
∗
1 + G̃α2p

∗
2 < 1,

then problem (1.1)-(1.2) has at least one solution.
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Proof: Let the operator Ni : C 7−→ P(C), i = 1, 2 defined by

(3.8) (N1u)(t) =



h1 : [a− r, T + β] −→ C :

h1(t) =



ϕ1(t), if t ∈ [a− r, a],

−
∫ T
a Gα1(t, s)w1(s)ds, if t ∈ I

ψ1(t), if t ∈ [T, T + β].


,

and

(3.9) (N2v)(t) =



h2 : [a− r, T + β] −→ C :

h2(t) =



ϕ2(t), if t ∈ [a− r, a],

−
∫ T
a Gα2(t, s)w2(s)ds, if t ∈ I

ψ2(t), if t ∈ [T, T + β].


where

w1 ∈ SF1◦u = {u : Ω −→ L1(I, E) : w1(t) ∈ F1(t, u
t, vt) a.e. t ∈ I},

and

w2 ∈ SF2◦v = {v : Ω −→ L1(I, E) : w2(t) ∈ F2(t, u
t, vt) a.e. t ∈ I}.

Consider the multi-valued map N : C → P(C) defined by:

(N(u, v))(t) = ((N1u)(t), (N2v)(t)).

From Lemma 3.3 it is clear that the fixed points of N are solutions of (1.1)-(1.2) .

Set

(3.10) R ≥ max
{
L1 + L2, ‖ϕ1‖[a−r,a] + ‖ϕ2‖[a−r,a], ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β]

}
,

and define

Q =

(u, v) ∈ C × C :

‖(u, v)‖C ≤ R,

‖u(t2)− u(t1)‖E ≤ p∗1
∫ T
a |Gα1(t2, s)−Gα1(t1, s)|ds,

and ‖v(t2)− v(t1)‖E ≤ p∗2
∫ T
a |Gα2(t2, s)−Gα2(t1, s)|ds; t1, t2 ∈ I.


It is clear that Q is a bounded, closed and convex subset of C.

Step 1. N(u, v) is convex for each (u, v) ∈ C.
If (h1, d1), (h2, d2) belong to N(u, v), then there exist v1, v2 ∈ SF◦u and z1, z2 ∈ SF◦v
such that for each t ∈ I we have

hi(t) =

∫ T

a
Gα1(t, s)vi(s)ds; i = 1, 2,
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and

di(t) =

∫ T

a
Gα2(t, s)zi(s)ds; i = 1, 2.

Let 0 ≤ λ ≤ 1. For each t ∈ I, we have

(λh1 + (1− λ)h2)(t) =

∫ T

a
Gα1(t, s)(λv1(s) + (1− λ)v2(s))ds.

Since SF◦u is convex (because F has convex values), we have λh1+(1−λ)h2 ∈ N1(u).
Also, for each t ∈ I, we have

(λd1 + (1− λ)d2)(t) =

∫ T

a
Gα2(t, s)(λz1(s) + (1− λ)z2(s))ds.

Since SF◦v is convex (because F has convex values), we have λd1+(1−λ)d2 ∈ N2(v).
Hence λ(h1, d1) + (1− λ)(h2, d2) ∈ N(u, v).

Step 2. N maps Q into itself.
Let hi ∈ Ni(Q), i = 1, 2 then there exists u, v ∈ Q, such that h1 ∈ N1(u), h2 ∈

N2(v) and there exists a Pettis integrable function w1 ∈ F1 ◦ u and w2 ∈ F2 ◦ v,
assume that hi(t) 6= 0. Then there exists φ ∈ E∗ such that ‖hi(t)‖E = |φ (hi(t)) |.
Thus, for any i ∈ {1, 2} we have

‖hi(t)‖E = φ

(∫ T

a
Gαi(t, s)wi(s)ds

)
.

If t ∈ [a− r, a], then

‖h(t)‖E = ‖(h1(t), h2(t))‖E ≤ ‖ϕ1‖[a−r,a] + ‖ϕ2‖[a−r,a] ≤ R,

and if t ∈ [T, T + β], then

‖h(t)‖E = ‖(h1(t), h2(t))‖E ≤ ‖ψ1‖[T,T+β] + ‖ψ2‖[T,T+β] ≤ R.

For each t ∈ I, we have

‖hi(t)‖E ≤
∫ T

a
|Gαi(t, s)||φ(wi(s))|ds, i = 1, 2.

By (H3), we get

|φ(hi(t))| ≤ p∗i .

Therefore

‖hi(t)‖E ≤ p∗i

∫ T

a
|Gαi(t, s)|ds

≤ p∗i G̃αi = Li,

which implies that ‖hi(t)‖E ≤ Li.
Hence we get

‖h(t)‖E ≤ L1 + L2

≤ R.
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Now, suppose that h1 ∈ N1(u), h2 ∈ N2(v) and t1, t2 ∈ I = [a, T ] with t1 < t2 so
that (hi(t2)− (hi(t1) 6= 0, i = 1, 2 then, there exists φ ∈ E∗ such that,

‖h1(t2)− h1(t1)‖E = φ(h1(t2)− h1(t1)),

and ‖φ‖ = 1. Then, for any i ∈ {1, 2}, we have

‖h1(t2)− h1(t1)‖E = φ(h1(t2)− h1(t1))

≤ φ

(∫ T

a
|Gα1(t2, s)−Gα1(t1, s)|w1(s)

)
.

Thus, we get

‖h1(t2)− h1(t1)‖E ≤
∫ T

a
|Gα1(t2, s)−Gα1(t1, s)||φ(w1(s))|ds

≤ p∗1

∫ T

a
|Gα1(t2, s)−Gα1(t1, s)|ds.

Similarly,

‖h2(t2)− h2(t1)‖E ≤ p∗2

∫ T

a
|Gα2(t2, s)−Gα2(t1, s)|ds.

Consequently,
N(Q) ⊂ Q.

Step 3. N has weakly-sequentially closed graph.
Let (un, wn), (xn, yn) be a sequence in Q×Q, with{

un(t) → u(t) in Eω,

xn(t) → x(t) in Eω,
for each t ∈ I,

and

(3.11)

{
wn ∈ N1(un),

yn ∈ N2(xn).
for n ∈ {1, 2, 3, . . .}.

We shall show that {
w ∈ N1(u),

y ∈ N2(x).

By (3.11) there exist fn ∈ SF1◦un and gn ∈ SF2◦xn such that{
wn =

∫ T
a Gα1(t, s)fn(s)ds,

yn =
∫ T
a Gα2(t, s)gn(s)ds.

We must show that there exist f ∈ SF1◦u and g ∈ SF2◦x such that for each t ∈ I,{
w =

∫ T
a Gα1(t, s)f(s)ds,

y =
∫ T
a Gα2(t, s)g(s)ds.

Since Fi, i = 1, 2 has compact values (so weakly compact), there exist a Pettis
integrable subsequence fnm , gnm such that

fnm(t) ∈ F1(t, u
t
n, x

t
n) a.e. t ∈ I,
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fnm(·) → f(·) in Eω as m→ ∞,

and

gnm(t) ∈ F2(t, u
t
n, x

t
n) a.e. t ∈ I,

gnm(·) → g(·) in Eω as m→ ∞.

As Fi(t, ·, ·), i = 1, 2 has weakly sequentially closed graph, f(t) ∈ F1(t, u
t, xt) and g(t) ∈

F2(t, u
t, xt). Then by the Lebesgue dominated convergence theorem for the Pettis

integral, we obtain

φ(wn(t)) → φ

(∫ T

a
Gα1(t, s)fn(s)ds

)
,

i.e., wn(t) → (N1u)(t) in Eω for each t ∈ I, which implies that w ∈ N1(u),
and

φ(yn(t)) → φ

(∫ T

a
Gα2(t, s)gn(s)ds

)
,

i.e., yn(t) → (N2u)(t) in Eω for each t ∈ I, which implies that y ∈ N2(x).
Step 4. Now let V = V1×V2 be a subset of Q such that V = conv(N(V )∪{(0, 0)}).

Obviously

V (t) ⊂ conv(N(V )(t) ∪ {(0, 0)}).
Since V is bounded and equicontinuous, the function t 7−→ v(t) = µ(V (t)) is contin-
uous on [a− r, T + β]. By (H1)− (H4), Lemma 2.13, and the properties of measure
µ, for each t ∈ I, we have

v(t) ≤ µ(N(V )(t) ∪ {(0, 0)})
≤ µ((NV )(t))

≤ µ ({((N1u)(t), (N2v)(t)) : (u, v) ∈ V })

≤ µ
{∫ T

a
|Gα1(t, s)|(d(s), 0)ds

+

∫ T

a
|Gα2(t, s)|(0, z(s))ds d(t) ∈ F1(t, u

t, vt), z(t) ∈ F2(t, u
t, vt), (u, v) ∈ V

}
≤

∫ T

a
|Gα1(t, s)|

(
p1(s)µ({(d(s), 0), d(t) ∈ F1(t, u

t, vt), (u, v) ∈ V }ds
)

+

∫ T

a
|Gα2(t, s)|(p2(s)µ({(0, z(s)); z(t) ∈ F2(t, u

t, vt), (u, v) ∈ V }ds)

≤
∫ T

a
|Gα1(t, s)|p1(s)µ(V (s))ds

+

∫ T

a
|Gα2(t, s)|p2(s)µ(V (s))ds

≤
(
G̃α1p

∗
1 + G̃α2p

∗
2

)
‖v‖c.

Thus

‖v‖c ≤
(
G̃α1p

∗
1 + G̃α2p

∗
2

)
‖v‖c.
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From (3.7)we get ‖v‖c = 0, that is µ(V (t)) = 0 for each t ∈ I.
For t ∈ [a− r, a], we have

v(t) = µ((ϕ1(t), ϕ2(t)))

= 0.

Also for t ∈ [T, T + β] we have

v(t) = µ(ψ1(t), ψ2(t))

= 0.

Then V (t) is weakly relatively compact in E. In view of Ascoli–Arzela theorem, V
is weakly relatively compact in C. Applying Theorem 2.14, we conclude that N has
a fixed point that is a weak solution of problem (1.1)− (1.2).

4. An Example

Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}
be the Banach space with the norm

‖u‖E =

∞∑
n=1

|un|.

Consider the coupled system Caputo type modification of the Erdélyi–Kober frac-
tional differential inclusions with retarded and advanced arguments

(4.1)



(u(t), v(t)) = (et − 1, t2) t ∈ [−1, 0],

2
cD

3
2

0+
u(t) ∈ Fn(t, u

t, vt), t ∈ I = [0, 1]

2
cD

4
3

0+
v(t) ∈ Gn(t, u

t, vt), t ∈ I = [0, 1]

(u(t), v(t)) = (t− 1, et − e) t ∈ [1, 2],

where

Fn(t, u
t, vt) =

e−3

1 + ‖u‖C([−1,1]) + ‖v‖C([−1,1])

[
utn − 1;utn

]
t ∈ [0, 1], u, v ∈ C([−r, β], E),

and

Gn(t, u
t, vt) =

e−t−6

1 + ‖u‖C([−1,1]) + ‖v‖C([−1,1])

[
vtn; v

t
n + 1

]
t ∈ [0, 1], u, v ∈ C([−r, β], E).

Set

u = (u1, u2, . . . , un, . . .), F = (F1, F2, . . . , Fn, . . .)

and
v = (v1, v2, . . . , vn, . . .), G = (G1, G2, . . . , Gn, . . .),



FRACTIONAL DIFFERENTIAL INCLUSIONS 181

with

α1 =
3

2
, α2 =

4

3
, ρ = 2, r = 1, β = 1.

For each u, v ∈ C([−1, 1]), t ∈ [2, 4], we have

‖F (t, ut, vt)‖P ≤ e−3,

and
‖G(t, ut, vt)‖P ≤ e−t−6.

Hence, (H2) is verified with p∗1 = e−3, p∗2 = e−6.
For each t ∈ I, i = 1, 2 we have∫ T

a
|Gαi(t, s)|ds ≤

1

Γ(αi)

(
tρ − aρ

T ρ − aρ

)∫ T

a

∣∣∣∣∣
(
T ρ − sρ

ρ

)αi−1

sρ−1

∣∣∣∣∣ ds

+
1

Γ(αi)

∫ t

a

∣∣∣∣∣
(
tρ − sρ

ρ

)αi−1

sρ−1

∣∣∣∣∣ ds.
Then ∫ T

a
|Gαi(t, s)|ds ≤

2

Γ(αi + 1)

(
T ρ − aρ

ρ

)αi

.

Therefore

G̃αi ≤
2

Γ(αi + 1)

(
T ρ − aρ

ρ

)αi

, i = 1, 2.

Condition (3.7) is satisfied. Indeed, we have

G̃α1p
∗
1 + G̃α2p

∗
2 ≤ 2e−3

2
3
2Γ(32 + 1)

+
2e−6

2
4
3Γ(43 + 1)

≈ 0.02813526732

< 1,

with T = 1, a = 0, α1 = 3
2 , and α2 = 4

3 . Since all conditions of Theorem 3.4 are
satisfied, problem (4.1) has at least one solution.
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Department of Mathematics, University of Säıda–Dr. Moulay Tahar, P.O. Box 138, EN-Nasr,
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