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WEAK SOLUTIONS OF COUPLED SYSTEMS OF CAPUTO
TYPE MODIFICATION OF THE ERDELYI-KOBER
FRACTIONAL DIFFERENTIAL INCLUSIONS WITH RETARDED
AND ADVANCED ARGUMENTS

MOKHTAR BOUMAAZA, SAID ABBAS, AND MOUFFAK BENCHOHRA

ABSTRACT. In this paper, we study the existence of weak solutions for a system
of Caputo type modification of the Erdélyi—-Kober fractional differential inclusions
with retarded and advanced arguments. The main result of the paper is based on
the fixed point theorem of Ménch’s type and the technique of measure of weak
noncompactness. We illustrate our results by an example in the last section.

1. INTRODUCTION

Fractional differential equations and inclusions appear in several areas such as en-
gineering, mathematics, bio-engineering, physics, viscoelasticity, electrochemistry,
control, porous media, electromagnetism, etc. For examples and details on the
progress of fractional calculus, we refer the reader to the monographs [1-3, 18, 25,
32,34, 36], and the references therein.

In [4,6,11,12,16], the authors studied the existence and uniqueness of solutions
for boundary value problems of Hadamard-type fractional functional differential
equations and inclusions involving both retarded and advanced arguments. In [28]
the authors provide some properties of Caputo-type modification of the Erdélyi—
Kober fractional derivative. More details on the Erdélyi-Kober fractional integral
and fractional derivative are given in [7,25-27,35]. In our investigation, we apply
the measure of weak noncompactness introduced by De Blasi [15] and the fixed
point theorem of Mdnch type [29]. For a comprehensive study of the measure of
non compactness we refer, for example, to [9,22]. It was subsequently considered
and used in many papers; see, for example, [8,13,20,21,29]. As far as we know, there
are very few results devoted to weak solutions for nonlinear fractional differential
equations [33]. In [5], Abbas et al. studied the coupled system of Hilfer fractional
differential inclusions in Banach spaces given by

Hpebu(t) € Fi(t,ult), v(t))
HDeBy(t) € Fy(t,u(t), v(t))

with the initial conditions

; te[1,T],

(1Y) (t) |i=1= ¢1
(I ug)(t) |i=1= o2,

2020 Mathematics Subject Classification. 34A08, 34G20, 34K05.

Key words and phrases. Caputo type modification of the Erdélyi-Kober fractional derivative,
system of fractional differential inclusions, fractional integral, existence, retarded arguments, ad-
vanced arguments, fixed point.



170 M. BOUMAAZA, S. ABBAS, AND M. BENCHOHRA

where T'> 1, o € (0,1),8 € [0,1] F; : 1,T] x E> = P(E); i = 1,2 are given
multivalued maps, (E, |||/ ) is a real separable Banach space , 7 Df’ﬁ is the Hilfer—
Hadamard fractional derivative of order @ and type f.

In this paper we discuss the existence of weak solutions to the coupled system
of Caputo type modification of the Erdélyi—-Kober fractional differential inclusions
involving both retarded and advanced arguments given by:

(1.1) {(gDﬁ”)(t) CAbV) ),

(6D22v)(t) € Fo(t,u’,v")
o) (u(t),v(t)) = (62(1). 62(0), ¢ € [a=r.a], 7> 0
(U( )7U(t)) - (wl(t)va(t))v le [T7T+B]7 B > 07

where T'> a >0, a; € (1,2]; i = 1,2; (E,|| - ||) is a real separable Banach space,
ngji is the Caputo type modification of the Erdélyi—Kober fractional derivative,
F; : IxC([-r,pB], E)xC(|-r,p], E) — P(FE) are given functions, ¢; € C([a—r,a], E)
with ¢;(a) = 0 and ¢; € C([T, T + 8], E) with ¢;(T) = 0; i = 1,2. We denote by y*
the element of C'([—r, 5]) defined by:

y'(s) =y(t+s):se[-r7l.

This paper initiates the study of differential inclusions involving the Erdélyi—
Kober fractional derivative, which include the Hadamard fractional derivative as
special case.

t
t

2. PRELIMINARIES

In this part, we present notations and definitions we will use throughout this
paper. By C([-r, ], E) we denote the Banach space of all continuous functions
from [—r, 8] into E equipped with the norm

1Yll=r.g) = sup{lly()]| - —r <t < 5}

Also, let By = C(la — r,a],E), B2 = C([T,T + 5], E). We denote by AC(I) the
space of absolutely continuous functions.

ACYHI) :={w:I — E:w' € AC(I)},
where

d
I —_—
w'(t) = t—dtw(t), tel.

C={y:la—nrT+Bl+— E:ylu—rq€ Cla—7,a],E),y |jorj€ AC'(I)
and y |rri5€ C([T,T + B, E)}
be the spaces endowed, respectively, with the norms
1Yllja—r.a) = sup{lly(® : @ =7 <t <aj,
[Yllrrvg = supflly(@)] : T <t <T + B},
lylle = supflly()]| o —r <t <T+f}.
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Define the weighted product space C := C x C with the norm

1(u, )|l == llulle + [vlle-
Let E, = (E,o(FE,E*)) be the Banach space E endowed with the weak topology
generated by the continuous linear functionals on E, and C(I, E,,) the Banach space
of weakly continuous functions on I, with the topology of weak uniform convergence.
Consider the space X% (a,b), (c € R, 1 < p < 00) of those complex-valued Lebesgue

measurable functions f on [a, b] for which || f||x» < oo, where the norm is defined
by:

umg:(/u%mr“), (1<p<o.ceR)
In particular, in case when ¢ = 5 the space X?(a,b) coincides with the LP(a,b)
space, Le., X% (a,b) = LP(a,b).
Let LY(I,E) f)e the Banach space of Bochner integrable functions y : I — F with
norm [y = f,' ly(t)ld.

Definition 2.1 ([24,26,27]): (Erdélyi-Kober fractional integral)). Let a, ¢ € R. The
Erdélyi-Kober fractional integral of order « of a function g € X¥(a,b) is defined by

11—«

(2.1) (PIfg)(t) = ?‘(a) /a sP7L(tP — sP)* L g(s)ds, t>a; p>0,

where I' is the Euler gamma function defined by
r(€) = / t"tetdt, € > 0.
0

Definition 2.2 ([23]). The generalized fractional derivative, corresponding to the
fractional integral (2.1) is defined,by:

, pl n+o - pd n t Sp_l J
(2.2) Dy g(t) = F(n—a)(t dt> /a(tp—sp)lf”rag(s) s

— (I 0<a<t,

where 5:} = (tl_p%)n

Definition 2.3 ([23,28]). The Caputo-type generalized fractional derivative £D%,
is defined via the above generalized fractional derivative (2.2) as follows:

n—1 (k) a
(23) @Dﬁmuw:QDxlmw— gkas—@1>.
=0

Lemma 2.4 ([23]). Let o, p € R, then

™M

[y

n—

# — aP\F
(2.4) (PI&EDY, g)(t Cr: ( > ,
k—

[en]

for some ¢, € R, n =[] + 1.
We define the following subsets of P(F) :
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Py(E)={Y € P(E):Y is closed},
(E) ={Y € P(E):Y is bounded},
Pyp(E)={Y € P(E):Y is compact}
P (E)={Y € P(E):Y is convex}

Pcp,w(E) = Py(E) N Py (E).

Definition 2.5. A multivalued map G : I — Py(FE) is said to be measurable if for
every y € F, the function:

t—d(y,G(t)) =inf{ly — 2| : z € G(t)}
is measurable.

Definition 2.6. A Banach space X is called weakly compactly generated (WCG,
for short) if it contains a weakly compact set whose linear span is dense in X.

Definition 2.7 ([31]). A function v : I — E is said to be Pettis integrable on I
if and only if there is an element u; € E corresponding to each J C [ such that

=[;0 J ))ds for all ¢ € E*, where the integral on the r1ght hand side is
assumed to ex1st in the sense of Lebesgue, (by definition, u; = [, u(s)ds).

Let P(I,E) be the space of all E—valued Pettis integrable functions on I, and
LY(I,E) be the Banach space of Bochner integrable functions u : I — E. Let
Py(I, E) denote the space P (I, E) = {u € P(I,E) : p(u) € L'(I,R); for every ¢ €
E*} normed by

T
lulp = sup /|so<u<x>>|dxx,

peE*, |lpl<1Ja

where A stands for a Lebesgue measure on 1.
The following result is due to Pettis (see [ [31], Theorem 3.4 and Corollary 3.41]).

Proposition 2.8 ([31]). If u € Pi(I,E) and h is a measurable and essentially
bounded real-valued function, then uh € Py(1, E).

Definition 2.9. A function h : E — F is said to be weakly sequentially continuous
if h takes each weakly convergent sequence in F to a weakly convergent sequence
in E (i.e., for any (z,) in E with x,, — x in E,, then h(z,) — h(z) in E,).

Definition 2.10. Let Py, (Q) = {Y € P(Q) : Y is closed and convex}. A function
F : Q — Pacw(Q) has a weakly sequentially closed graph, if for any sequence
(Tn,yn) € Q X Q,yn € F(xy) for n € {1,2,...}, with z, —» = in E,, and y, — y in
E,, then y € F(x).

From the Hahn—Banach theorem, we have the following result

Proposition 2.11. Let E be a normed space, and xo € E with xo # 0. Then, there
exists ¢ € E* with ||¢] =1 and p(z) = ||xo]|.

For a given set V of functions v : I — E let us denote by V(t) = {v(t) : v €
Vi, tel,and V(I) ={v(t):v eV, tel}.
Recall that the map u: Qg — [0,00) defined by

u(X) = inf{e > 0 : there exists a weakly compact 2 C F such that X C eB; + Q}
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is the De Blasi measure of weak noncompactness, where (2 is the bounded subset
of the Banach space E and Bj is the unit ball of E (for details, see [15]). The Blasi
measure of weak noncompactness satisfies the following properties.

Lemma 2.12 ([15]). Let A and B bounded sets.

(1) w(B) =0« B is compact (B is weakly relatively compact).
pleon(B) = (B).
w(B) =«a(B"), (B~ denote the weak closure of B.)
A C B = u(A) < u(B).
w(A+ B) < u(A) + u(B), where A+ B={zx+y:x €A, y¢E B}.
w(AB) = [A|u(B); A € R, where AB = {\z : z € B}.
1(AU B) = max{u(A), u(B)}.
(8) w(B + xo) = u(B) for any xy € E.

Lemma 2.13 ([14,17]). Let H C C(I, E,,) be a bounded and equicontinuous subset.
Then the function t — p(H(t)) is continuous on I, and

pe (H) = max u(H(?)),

" <{/Iu(s)ds cue H}) < /IM(H(S))ds,

where H(t) = {u(t) : w € H}; t € I, and puc is the De Blasi measure of weak
noncompactness defined on the bounded sets of C(1, E,).

and

In the sequel, we rely on the following fixed point theorem.

Theorem 2.14 ([30]). Let E be a Banach space with @ a nonempty, bounded,
closed, convex and equicontinuous subset of a metrizable locally convexr vector space
C such that 0 € Q. Suppose T : QQ — Pep v(Q) has weakly sequentially closed graph.
If the implication

(2.5) V =conv({0} UT(V)) =V is relatively weakly compact,
holds for every subset V C Q, then the operator T has a fized point.

3. EXISTENCE OF SOLUTIONS

We start this section by defining what we mean by weak solution.

Definition 3.1. A function z : [a — r, T + ﬁ] — F is called weak solution of the
problem (1.1) — (1.2) if x € C([a — r, T + 5], E,,) satisfies (1.1) and (1.2).

Lemma 3.2. Let1 < a <2, ¢ € C([a—r,al, E) with ¢(a) =0, € C([T,T+p5], E)
with ¥(T) =0, and h: I — E be an integrable function. Then the linear problem

(3.1) DS y(t) = h(t), forae tel:=[a,T], 1<a<2,
(3.2) y(t) = o(t), t € [a—r,al, r >0,

(3-3) y(t) =), t € [T,T+ B, B>0,
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has a unique solution, which is given by

(¢(t)a Zf le [a—r,a],

(3.4) y(t) =< — [T G(t,s)h(s)ds, if tel

Y(t), if tel[l,T+p],

where
(3.5)

B e e A (O L a<s<t<T,
G(t,s) =2

I(a)

(tﬂ,ap)(Tﬂ,SP)a—lsp—l
(T7=a?)

, a<t<s<T.

Here G(t,s) is called the Green function of the boundary value problem (3.1)-(3.3).
Proof. From (2.4), we have

tP —a”
(3.6) y(t) =co+ 1 ( ) +PI% h(s), co,c1 €R,
therefore
yla) =co =0,
TP — af pl—a T 1
yT:cl( > / TP — s”)* s h(s)ds,
(1) ) = )

and

2—«

T
“:_awimmml<w—“f*fﬂmm&

Substitute the value of ¢y and c1 into equation (3.6), we get equation (3.4).

;

o(t), if tela—ral,

y(t) = —faT G(t,s)h(s)ds, if tel

(w(t), if te[l,T+ 8],
where G is defined by equation (3.5), the proof is complete.

Lemma 3.3. Let F; : [ x C([-r, 5], E) x C([-r,B], E) — P(E),i = 1,2 be such
that Spoy C C for any u € C and Spoy C C for any v € C Then solving the
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system (1.1) —(1.2) is equivalent to the finding the solutions of the system of integral
equations

(¢1(t), if te€la—ral
u(t) = —faT Ga, (t,s)wi(s)ds, if tel

wl(t)v Zf le [T7T+B]a

and )
oao(t), if t€la—ral,
v(t) = { = [T Goy(t, s)wa(s)ds, if tel
0a(t), if te[ T+,
where
wy € SFlou7w2 S SFgan
and

. T
Ga, :sup{/ |Gai(t,s)|ds,tel}; i=1,2.

The following hypotheses will be used in the sequel:

(Hy) Fi,Fy : IxC([—r,B),E) x C([=7,B], E) = Pep.ci,co(E) have weakly sequen-
tially closed graph;

(Hz) For all continuous functions w,v : [—r, 8] — E, there exist measurable and
Pettis integrable functions w € Spou, z € Sryov, a.€. on I

(H3) There exist p1,p2 € L>(I,Ry) such that for all ¢ € E*, we have

| F1(t,u,v)||p < pi1(t), for a.e. t € I, and each u,v € C([—r, 5], E),
| Fa(t,u,v)||p < pa2(t), for a.e. t € I, and each u,v € C([—r, 5], E);
(H4) For all bounded sets B; C C([—r, (], E),i = 1,2 and each t € I, we have

p(Fi(t, Br, B2)) < pi(t) sup wu(Bi(s)),

s€[—r,0]
p(Fa(t, B1, Ba)) < pa(t) SEUP ]M(Bz(S)),
sE[—r,8
where
Bl(t) = {u(t) TuE Bl}7 1=1,2.
Set

p; = esssupp;(t); i =1,2.
tel

Now, we state and prove our existence result for problem (1.1)-(1.2) based on
Theorem 2.14.

Theorem 3.4. Assume that hypotheses (Hy)-(Hy) hold. If
(3.7) Goup} + Gy < 1,
then problem (1.1)-(1.2) has at least one solution.
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Proof: Let the operator N; : C — P(C), = 1,2 defined by
hi:la—r,T+pB] —C:

o1(t), if te€fa—ral,

38) (M) = ) ,
hi(t) = — [ Ga,(t,s)wi(s)ds, if tel

\M(t), it tel[T,T+p].
and
hy:la—r,T+p] —C:

¢a(t), if t€la—ral,

(3.9)  (Naw)(t) = .
ho(t) = — [ Gay(t,s)wa(s)ds, if tel

Po(t), if te [T, T+ p].
where
wy € Spyou = {u:Q — LYI,E) : wi(t) € Fi(t,ul,v?) ae. t € I},

and
Wy € Spyop = {v: Q — LYI,E) : wy(t) € Fy(t,ul,vt) ae. t € I}.

Consider the multi-valued map N : C — P(C) defined by:
(N (u,0))(t) = ((N1u)(t), (N2v)(t)).-

From Lemma 3.3 it is clear that the fixed points of N are solutions of (1.1)-(1.2) .

Set

(310) R > max {Ll + Lo, HCZ)lH[a—r,a] + H¢2H[a—r,a}7 leu[T,T—s—B] + ||¢2||[T,T+ﬂ}} ’
and define
1w, v)llz < R,

Q= (uv)elxC: luts) = ()l < bt f, 1Ga (t2,8) = Gay (1, 5)Ids,

and |v(ta) — v(t)||p < D5 [ |Gas(t2,8) — Gay(t1, 5)|ds; t1,t2 € I.
It is clear that ) is a bounded, closed and convex subset of C.
Step 1. N(u,v) is convex for each (u,v) € C.
If (h1,dy), (he, dz2) belong to N(u,v), then there exist v1,v2 € Spoy and 21, 22 € Spoy
such that for each t € I we have

T
hi(t) :/ Gq, (T, s)vi(s)ds; i =1,2,
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and
T
d;(t) :/ Ga,(t,s)zi(s)ds; i =1,2.
Let 0 < A < 1. For each t € I, we have
T
(Ah1 + (1 = A)ho)(t) = / Ga, (t,8)(Avi(s) + (1 — Ava(s))ds.

Since Sroy is convex (because F' has convex values), we have Ahj+(1—X)hy € Ny(u).
Also, for each t € I, we have

T
(M1 + (1 = N)de)(t) = / Gy (t, s)(Az1(s) + (1 — X)za2(s))ds.

Since SFoy is convex (because F' has convex values), we have Ad;+(1—X)d2 € Na(v).
Hence A(hy,di) + (1 — A)(he,d2) € N(u,v).

Step 2. N maps @ into itself.

Let h; € N;(Q),i = 1,2 then there exists u,v € @, such that hy € Ny(u), hy €
N3(v) and there exists a Pettis integrable function wy € Fj ou and wy € Fyowv,
assume that h;(t) # 0. Then there exists ¢ € E* such that ||h;(t)||g = |¢ (hi(t))|.
Thus, for any i € {1,2} we have

T
Il = [ Gt pusts)as).
If t € [a —r,a], then
Rl e = [[(h1(2), h2(D)ll e < 101][ja—ra) + [|#2]l[a—ra) < R,
and if ¢t € [T, T + (], then

[p@) e = 1(h1(8), ha (D2 < [ llizr48) + [W2llrrsg) < R

For each t € I, we have

T
rmwmz/r%ﬁmwwmmmnﬂﬁ

By (Hs), we get

Therefore

T
O Sﬁ/l%ﬂ@m

< pzé; = L;,
which implies that ||h;(t)||z < L;.
Hence we get
Ip®)le < L1+ Lo
< R
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Now, suppose that hy € Ni(u), he € No(v) and t1,ty € I = [a,T] with ¢t; < t2 so
that (hi(t2) — (hi(t1) # 0,7 = 1,2 then, there exists ¢ € E* such that,

[P (t2) = ha(t)ll e = @ (ha(ta) — ha(t1)),
and ||| = 1. Then, for any i € {1,2}, we have

[hi(te) — hai(t1)lle = @(ha(t2) — ha(t1))
T
< v ( | (Galtacs) - Ga1<t1,s>|w1<s>> .
Thus, we get

T
[h1(t2) — ha(t1)l|e / |Gay (t2,8) — Gay (1, 8)||p(wi(s))|ds

IN

T
< p{/ (G, (t2,8) — G (1, 5)|ds.

Similarly,

T
Iha(ts) — ha(t)llE < 5 / (Gan(t2, 5) — Ga (t1, 5)|ds.

Consequently,
N(@Q) C Q.
Step 3. N has weakly-sequentially closed graph.
Let (upn,wy), (Tn,yn) be a sequence in @ x @, with

{un(t) —u(t) in E,,

. for each t € I,
xn(t) = x(t) in E,,

and
n N mnj)»
(3.11) Wn € Ni(un), e (1,2,3,...}.
‘We shall show that
w € Ni(u),
(VNS Ng(x)

By (3.11) there exist f,, € Skou, and g, € Spyoz, such that

Wy = [ Gy (t,5) fnls)ds,
Yn = faT Ga,(t, 8)gn(s)ds.
We must show that there exist f € Sp o, and g € Sg,0, such that for each ¢ € I,

T
w= [T Gy (t, ) f(s)ds,
T
y= [ Gay(t, $)g(s)ds.
Since Fj,i = 1,2 has compact values (so weakly compact), there exist a Pettis
integrable subsequence f,, , gn,, such that

fon () € Fy(t,ul,2t) ae. t €1,

» o Yn
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fr, () = f(-) in E, as m — oo,
and

G, (1) € Fa(t,ul,xt) ae. t €1,

n,, () = g(+) in E, as m — oc.
As F(t,-,+),i = 1,2 has weakly sequentially closed graph, f(t) € Fy(t,u!,2!) and g(t) €
Fy(t,ut, 2t). Then by the Lebesgue dominated convergence theorem for the Pettis
integral, we obtain

owa®) > & ([ Gartt )15 ).

ie., wp(t) = (Niu)(t) in E,, for each t € I, which implies that w € N;(u),
and

oa®) = ([ Gostss)on(s)is)

i.e., yn(t) — (Nau)(t) in E,, for each ¢t € I, which implies that y € Na(z).
Step 4. Now let V' = V; x V5 be a subset of @ such that V' = conv(N(V)U{(0,0)}).
Obviously

V(t) C conv(N(V)(t) U{(0,0)}).

Since V is bounded and equicontinuous, the function t — v(t) = p(V(t)) is contin-
uous on [a —r,T + (]. By (H1) — (H4), Lemma 2.13, and the properties of measure
w, for each t € I, we have

v(t) p(N(V)(t) U{(0,0)})
p((NV)(2))
p({((N1w)(2), (N20)(1)) = (u,0) € V)

[ 16t 900,00

VANVANRVAN

IN

T
+ / |Gy (t,8)](0,2(s))ds d(t) € Fl(t,ut,vt),z(t) = Fg(t,ut,vt), (u,v) € V}
T
< / ’Gal (t, 8)‘ (pl(s)ﬂ({(d(s)v 0)7 d(t) € Fl(tv utv Ut)? (ua U) € V}ds)
T
+t/N%NJWW@MKW$M40GE%MMLWMGVM@
aT
st/mﬂwmwwwmw

T
+/W%ﬁﬂmwwww

< (Garpi + Gaup3) 0]l
Thus
[vlle < (Garpi + Gaap) l1o]le
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From (3.7)we get ||v||. = 0, that is u(V(¢)) = 0 for each t € I.
For t € [a — r,a], we have

o(t) = p((91(t), d2(1)))
= 0.

Also for t € [T, T + (] we have

v(t) = u((t),a(t))
= 0.

Then V(t) is weakly relatively compact in E. In view of Ascoli-Arzela theorem, V'
is weakly relatively compact in C. Applying Theorem 2.14, we conclude that N has
a fixed point that is a weak solution of problem (1.1) — (1.2).

4. AN EXAMPLE
Let

oo
E=1'= {u:(ul,u2,...,un7...),2|un| <oo}
n=1
be the Banach space with the norm
o0
lulls =) Junl-
n=1

Consider the coupled system Caputo type modification of the Erdélyi-Kober frac-
tional differential inclusions with retarded and advanced arguments

(u(t),v(t)) = (et — 1,#%) t € [-1,0],

3
ZDg u(t) € Fu(t,ut,0t), tel=10,1]

(4.1)
4
gD§+v(t) € Gu(t,ut,0h), telI=10,1]
(u(t),v(t)) = (t_17et_e) te [172]7
where
-3
Fnt7ut7vt = ‘ u%_lau% te 0717U7U€C _TaBaEa
) = T alloqo + Tolloqam © J e (t=r. 5, B)
and
Gty ut, o) = e ool +1] t€0,1,u,0 € C([~r. 5], E)
S L+ [lullogr + leqeigy =" T R
Set
u = (ul,u2,...,un,...), F = (Fl,FQ,...,Fn,...>
and

v=(v1,v2,...,0pn,...), G=(G1,Ga,...,Gp,...),
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with 5 4
041:570‘2:57 p:27 74:17 /8:1
For each u,v € C([—1,1]), t € [2,4], we have

and

Hence, (Hy) is verified with p} = e 3, ps = 5.

||F(t7ut?vt)”77 < 6_37

IG(t,u', o) < ™70
6

For each t € I,7=1,2 we have
T T a;—1
1 tP — af TP — gP\™
G (t,8)|ds < - r=1d
[ e <o (i) [ |(F57) |
1 t P — gP a;—1
+ / (8) s~ ds.
F(al) a 1Y
Then .
2 TP —aP\ ™
| (Gatsas < ( d ) |
a F(al + 1) P
Therefore

— 2 TP — P\ %
Go, < < a4 ) i=1,2.
Doy + 1) p

Condition (3.7) is satisfied. Indeed, we have

2e73 n 2¢6
203 +1) 2304 +1)
~ 0.02813526732
< 1,

Gal]f{ + Gagp§

with T'=1,a =0, aq = %, and as = %. Since all conditions of Theorem 3.4 are
satisfied, problem (4.1) has at least one solution.
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