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CONTINUOUSLY PARAMETRIZED SOLUTIONS OF A
FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSION

AURELIAN CERNEA

ABSTRACT. Existence of solutions continuously depending on a parameter of a
fractional integro-differential inclusion defined by a Caputo type fractional deriv-
ative is obtained. By using this result we deduce the existence of a continuous
selection of the solution set of the problem considered.

1. INTRODUCTION

In the last years one may see a strong development of the theory of differential
equations and inclusions of fractional order ( [5,15,20,21] etc.). The main reason is
that fractional differential equations are very useful tools in order to model many
physical phenomena. In the fractional calculus there are several fractional deriva-
tives. From them, the fractional derivative introduced by Caputo in [7] allows to
use Cauchy conditions which have physical meanings.

A Caputo type fractional derivative of a function with respect to another function
([20]) that extends and unifies several fractional derivatives existing in the literature
like Caputo, Caputo-Hadamard, Caputo-Katugampola was intensively studied in
recent years [1-3] etc.. In particular, existence results and qualitative properties of
the solutions for fractional differential equations defined by this fractional derivative
are obtained in [2,3,14].

The present paper is concerned with the following problem

(1.1) Dg’wl‘(t) € F(t,x(t),V(x)(t)) a.e. in [0,T], z(0)= xo,

where a € (0,1], Dg’w is the fractional derivative mentioned above, xg € R and
F:]0,T] x RxR — P(R) is a set-valued map. V : C([0,T],R) — C([0,T],R) is
a nonlinear Volterra integral operator defined by V(x)(t) = f(f k(t,s,z(s))ds with
E(.,.,.):[0,7] x R x R — R a given function.

Our goal is to obtain the existence of solutions continuously depending on a pa-
rameter for problem (1.1). A such kind of result may be interpreted as a continuous
variant of Filippov’s theorem ( [16]) for problem (1.1). Moreover, as usual at a Fil-
ippov type existence theorem, our result provides an estimate between the family
of starting ”quasi” solutions and the family of solutions of the fractional integro-
differential inclusion. By a "quasi” solution or an ”almost” solution we mean a
function for which we are able to estimate the distance between its derivative and
the values of the set-valued map computed in this function. Obviously, if this dis-
tance is zero one has a solution of the differential inclusion.
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Also, this result allows us to provide a continuous selection of the solution set
of problem (1.1). Our approach is essentially based on a well known theorem of
Bressan and Colombo ( [6]) concerning the existence of continuous selections of
lower semicontinuous multifunctions with decomposable values. We treat, also,
the case when the family of ”quasi” solutions reduces to a single element and we
establish a corresponding theorem.

The results in the present paper extend and unify similar results obtained for
fractional differential inclusions defined by Riemann-Liouville fractional derivative
([8,18]), by Caputo fractional derivative ([10]), by Hadamard fractional derivative
([9,11]) and by Caputo-Katugampola fractional derivative ([12,13]).

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and Section 3 is devoted to our results.

2. PRELIMINARIES

Let T'> 0, I := [0,7] and denote by L(I) the o-algebra of all Lebesgue mea-
surable subsets of I. Let X be a real separable Banach space with the norm |.|.
Denote by P(X) the family of all nonempty subsets of X and by B(X) the family of
all Borel subsets of X. If A C I then xa(.) : I — {0,1} denotes the characteristic
function of A. For any subset A C X we denote by cl(A) the closure of A.

The distance between a point z € X and a subset A C X is defined as usual by
d(z,A) = inf{|r — a|;a € A}. We recall that Pompeiu-Hausdorff distance between
the closed subsets A, B C X is defined by dy(A, B) = max{d*(A, B),d*(B,A)},
d*(A, B) = sup{d(a, B); a € A}.

As usual, we denote by C(I,X) the Banach space of all continuous functions
z(.) : I = X endowed with the norm |z(.)|¢ = sup,; |z(t)| and by L'(I, X) the
Banach space of all (Bochner) integrable functions z(.) : I — X endowed with the

T
norm |z(.)|1 = [y |=(t)|dt.
We recall first several preliminary results we shall use in the sequel.

Lemma 2.1 ([22]). Let u : I — X be measurable and let G : I — P(X) be a
measurable closed-valued multifunction.

Then, for every measurable function r : I — (0,00), there exists a measurable
selection g : I — X of G(-) such that

lu(t) — g(t)| < d(u(t),G(t)) +r(t) ae. in I.

Definition 2.2. A subset D C L!(I,X) is said to be decomposable if for any
u(+),v(-) € D and any subset A € £(I) one has uxa + vxp € D, where B = I\ A.
We denote by D(I, X) the family of all decomposable closed subsets of L!(I, X).
Next (S, d) is a separable metric space; we recall that a multifunction G(-) : S —
P(X) is said to be lower semicontinuous (L.s.c.) if for any closed subset C' C X, the
subset {s € S;G(s) C C} is closed.

Lemma 2.3 ([6]). Let F*(.,.) : I x S — P(X) be a closed-valued L(I) @ B(S)-
measurable multifunction such that F*(t,.) is l.s.c. for anyt € I.
Then the multifunction G(.) : S — D(I, X) defined by

G(s)={ve L'I,X); o(t) e F*ts) ae. in I}
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s 1.s.c. with nonempty closed values if and only if there exists a continuous mapping
p(.): S — LY(I,X) such that
d(0,F*(t,s)) <p(s)(t) a.e. in I, VseS.

Lemma 2.4 ([6]). Let G(.) : S — D(I,X) be a l.s.c. multifunction with closed
decomposable values and let ¢(.) : S — LY(I, X), ¥(.) : S — LY(I,R) be continuous
such that the multifunction H(.) : S — D(I,X) defined by

H(s) = cl{v(.) € Gs);  [o(t) — é(s)(t)] < w(s)(t) ace. in I}

has nonempty values.
Then H(.) has a continuous selection.

Consider 3 > 0, f(.) € L*(I,R) and %(.) € C*(I,R) such that ¢'(t) >0Vt € I.

Definition 2.5 ([20]). a) The 9 - Riemann-Liouville fractional integral of f of order
B is defined by

19 £ (1) / () ((t) — 0(s))P 1 (5)ds

where I is the (Euler’s) Gamma function defined by I'(8) = [;° t°~te~tdt.
b) The 1 - Riemann-Liouville fractional derivative of f of order § is defined by

D0 = o Gy ) ¥ 00 = (6P s

where n = [5] + 1.
¢) The ¢ - Caputo fractional derivative of f of order § is defined by

n—1 [k] 0)

DIV F(t) = DPY[f —(0)"],

k=0

where fl[pk} (t) = ( ,l(t) %)km(t), n=pFif « € N and n =[] + 1, otherwise .

We note that if 3 = m € N then Dg’wf(t) = fim} (t) and if n = [5] + 1 then
Dg’wf( = F(n fo — zp(s))"*aflfy](s)ds. Also, if ¥(t) = ¢ one ob-
tains Caputo’s fractlonal derlvatlve, if ¢ (t) = In(t) one obtains Caputo-Hadamard’s

fractional derivative and, finally, if ¥(¢) = ¢t one obtains Caputo-Katugampola’s
fractional derivative.

In what follows we need the following technical lemma proved in [2] (namely,
Theorem 2 in [2]).

Lemma 2.6. Let o € [0,1) and ¢(.) € CY(I,R) with ¢'(t) >0V t € I. For a given
integrable function h(.) : I — R, the unique solution of the initial value problem

Dg’wx(t) =h(t) ae. in I, z(0)= x,
s given by

2(t) = 20+ T / F($)(B(E) — (5))*  h(s)ds.
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Definition 2.7. By a solution of the problem (1.1) we mean a function z € C(I,R)
for which there exists a function h € L'(I,R) satisfying h(t) € F(t,z(t),V(z)(t))
a.e. in I, DEVx(t) = h(t) a.e. in I and z(0) = .

Also, the set of all solutions of (1.1) will be denoted with S(zo).

3. MAIN RESULTS
In what follows « € [0,1) and ¢(.) € CY(I,R) with ¢/(t) >0Vt € I.

Hypothesis 3.1. i) F(.,.) : I x R xR — P(R) is £L(I) ® B(R x R) measurable
with nonempty closed values.
ii) There exists I(.) € L*(I, (0,00)) such that, for almost all t € I

dH(F(t,ul, Ul), F(t,UQ,UQ)) é l(t)(|’LL1 - UQ‘ + ”Ul - 'U2|) W Ui, u2,v1, V2 € R.

iii) The mapping k(.,.,.) : I x R x R — R verifies: Vy € R, (s,t) — k(s,t,y) is
measurable.

iv) |k(s,t,y) — k(s,t,z)| <U(t)|ly — x| ae. (s,t) eI xI, Vy,zeR.
Hypothesis 3.2. (i) S is a separable metric space, the mappings a(.) : S — R and
g(.): S — (0,00) are continuous.

(ii) There exists g(.),q(.) : S — LY(I,R), y(.) : S — C(I,R) continuous that
satisfy

(Dy(s)&Y (1) = g(s)(t) for ae.t €I, VseS,
A(g(5)(8), F(t, y(5) (8), Vy(5)())(®) < g(s)(t) forae.tel, ¥se s,

Next, we use the following notation

L(t) = 1(t)(1 + /Otl(u)du), ted,

€(5) = 7 10(9) = ¥(S)O) + () + TVa(s)), 5 € 5,

where 1%V L := sup,¢; [I*YL(t)| and 1%%q(s) := sup,e; [I%%q(s)(t)].
Theorem 3.3. Assume that Hypotheses 3.1 and 3.2 are verified.
If 1YL < 1, then there exists z(.) : S — C(I,R) continuous such that z(s)(.) is
a solution of
DEV(t) € F(t,2(t), V(2)(1)),  2(0) = a(s)
and
[2(s)(t) —y(s)(D)] <&(s) ¥ (ts) €I xS
Proof. We consider the following notations g, (s) := (I*¥L)"(|a(s) — y(s)(0)| +
I%%q(s) + 27e(8)), n > 1, zo(s)(t) = y(s)(t), Vs € S,t € I. Define the set-valued
maps

Ap(s) = (F € LNLR): (1) € F(y() (1), Vu()()E) ae. in 1),
Bofs) =l € Au(s) 10~ )0 < a9 + 5 e}

By hypothesis, d(g(s)(t), F'(t,y(s)(1), V(y(s)()(®X) < qls)(t) < qls)(t)+

%6(3); hence with Lemma 2.1, By(s) is not empty.
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Define Go(t, s) = F(t,y(s)(t), V(y(s)(-))(t)) and one has

d(0,Go(t,5)) < [g(s)(t)] + q(s)(t) = ¢"(s)(?)
with ¢*(.) : S — LY(I,R) continuous.

Taking into account Lemmas 2.3 and 2.4 we deduce that exists hg a selection of
By that is continuous, i.e.

ho(s)(t) € F(t,y(s)(t),V(y(s)(.))(t)) a.e. in I, Vs€S,

I'a+1)
(Y (T) = (0))

Define z1(s)(t) = a(s) + ﬁfg P (u)((t) — (u))* tho(s)(u)du and we may

ho($)(2) — 9(s) ()] < a(s)(1) + 5 E(s) Vi€l seS.

t
21(5) () — 20(3)(8)] < la(s) — y(5)(0)] 1/ ' () (b (1) — (u))*L.

Iho(5) () — g(s) (w)|du < Jas) / ¥ (u ot
Ia+1)
2(T) — $(0))°

Next, we define the sequences h,(.) : S — L*(I,R), z,(.) : S — C(I,R) such
that

c(s))du < lafs) — y(s)(0)] + I*¥(s) + §s<s> = a1(s).

(g(s)(w) +

n(): S = C(,R), hy(.): S — LY(I,R) are continuous.
) € F(t, xn(s)()V( n(8)())(t)), s€ S, for a.e. t € 1.
t <

L(t)an(s), qn(s) = (I*YL)"(la(s) — y(s)(0)|+

€S, forae tel.
d) @ns1(s)(t) = als) + oy Jo ¥ t) — () ha(s) (u)du.

If we assume that h;(.), l() are already constructed with properties a)-c) and define
Zn+t1(.) as in d). It follows from c) and d) that

(31) < /O () ((2) — ()L (u)gn(s)du

< IVL - qu(s) = guia(s) = (I a’wL)n("Jj%
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On the other hand,
d(hn(s)(t), F(t, 2ng1(s)(t), V(@n41(5)(-))(1))
< U(E) (Jons1(5)(E) — zn(s)(t)] +/0 H(w)|@n41(5)(u) — zn(s)(u)|du)

< (1) (g1 (s) — U““)"mﬁam)

< L(t)(gn+1(s) — (Ia7wL)n2(n +€1()S()n +2) -

For s € S we define
A (s) = {f € LML, R); f(£) € F(t, 2nt1(s)(8), V(2ns1(5)())(1) a-e. in T},
Bria(s) = A{f € Apsa(s); 1£(8) = hn(9)(1)] < L(t)gns (5) ave. in T,
We are able now to apply Lemma 2.1 and find w(.) € L*(I,R) such that w(t) €
F(t, nt1(s) (1), V(znta(s)()(t)) ae. (I) and
w(t) = ha(s) ()| < d(hn(5) (), F(t, 2n41(s)(2), V(2nr1(s) () (#))
e(s)
2(n+1)(n+ 2))
e(s)

2(n+1)(n+2)

+ L(t)(I*VL)"

< L(t)gn41(s) = LIVL)"

FLOUL S = L)

i.e., Bpt1(s) is nonempty.
We introduce Gp41(t,s) = F(t, zp+1(s)(t), V(zn+1(5)(.))(t)). One may estimate

d(0, Gt1(t,8)) < [ha(s)(t)| + L(t)|znt1(s) () — zn(s) ()] <
|hn(8)(8)| + L(H)gnt1(s) = a5 41 (s)(t) ae. in I,

where ¢%,,(.) : S — L'(I,R) is continuous.
As above one may find h,,41(.) : S — L*(I,R) continuous and such that

hn+1(s)(t) € F(t, xnt1(5)(t), V(znt1(s)())(t)) Vse S, ae. in I,

|Pnt1(8)(t) — hn(s)(t)] < L(t)gnt1(s) Vs €S, ae. in I.
Using conditions c), d) and (3.1) one has

[2nt1(8)(-) = 2n(s)()le < gnya(s)
< (I*VL)"(la(s) — y(s)(0)| + I*¥q(s) + £(s))

[hng1(8) () = Bn(s) ()t < [L()|1gn(s)
(3.3) < LI L) (la(s) — y(s)(0)]
+ Io"d’q(s) +£(9)).

Since by hypothesis I%¥L < 1 from (3.2) and (3.3) it follows that the sequences
hn(8)(.), xn(s)(.) are Cauchy in spaces L'(I,R) and C(I,R), respectively. We
denote by h(.) : S — LY(I,R) and z(.) : S — C(I,R) their limits. The function

(3.2)
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s — |a(s) — y(s)(0)| + [I%¥q(s)| + &(s) is continuous, therefore locally is bounded.
Therefore, from (3.3) we obtain the continuity of s — h(s)(.) from S into L'(I,R).
As above, from (3.2), we obtain that the Cauchy condition is satisfied for the
sequence Z,(s)(.) locally uniformly with respect to s. Hence, the function s —
x(s)(.) is continuous. Since the convergence of x,(s)(.) to z(s)(.) is uniform and

d(hn(s)(8), F(t,2(5) (1), V(()()(®) < LEloa(s)(t) = a(s)(@)] ace. in I,
Vs € S we may pass to the limit in order to deduce that
h(s)(t) € F(t,x(s)(t),V(z(s)(.))(t)) VseS, ae. in I.

We note that we have the following estimate
ros| [ @@ — v s
@)l Jo "
- [ o = vt he e
Lt'u — P(u))> ! s)(u) — h(s)(u)|du
< F(a)/o P (u) (P (t) = () |hn(s)(u) — h(s)(u)|d
I a—
< F(a)/o & (w) (@(t) = P(u)* L) |2ni1 (s)() = 2 (s)()|cdu

< IO g1 (5)() — 2n(3) (e

It remains to pass to the limit in d) in order to find

2(5) (1) = / O () ((2) — () Vh(s) (u)dls

For all n > 1 we add 1nequaht1es (3.1) and we deduce

|[znt1(8)(1) —y(s)(B)] < Z a(s)
=1
=D (IYVL) 7 (b(s) + I7Vq(s) + e(s))
=1

= > (I*L) " (la(s) = y(s)(0)] +e(s) + I*Vq(s))

=

—

1
< . _ Iaﬂp
< i (Jals) — y(8)(0)] + () + %Vg(s))
= &(s).
Finally, passing to the limit in the last inequality we conclude the proof. O

Remark 3.4. If in Theorem 3.3 ¢(t) = ¢t we obtain Theorem 3.1 in [10]; if in
Theorem 3.3 v(t) = In(t) and V(z)(t) = I%¥2(t), B > 0 we get Theorem 3.6 in [9)]
and if in Theorem 3.3 1 (t) = t° we cover Theorem 3.3 in [12].

By using Theorem 3.3 we may find a continuous selection of the solution set of
problem (1.1).



164 AURELIAN CERNEA

Hypothesis 3.5. Hypothesis 3.1 is satisfied, I*¥L < 1, qo(.) € L*(I,R) exists
with d(0, F'(¢,0,V(0)(t)) < qo(t) a.e. (I).

Corollary 3.6. Hypothesis 3.5 is verified. Then there exists a function s(.,.) :
I x R — R with the following properties

a) s(.,z) € S(x), Vr € R.
b) x — s(.,z) is continuous from R into C(I,R).

Proof. 1t is enough to take in Theorem 3.3 S =R, a(z) =z, Vz € R, ¢(.) : R —
(0,00) an arbitrary fixed continuous mapping, g(.) = 0, y(.) = 0, g(x)(t) = qo(t)
Vre R, tel O

In the particular case when S reduces to a single element, Theorem 3.3 reduces
to a Filippov type existence result for problem (1.1).

Theorem 3.7. Assume that Hypothesis 3.1 is satisfied, I“VL(T) < 1 and let
y € C(I,R) be such that there exists q(.) € L'(I,R) with I*¥q(T) < +oo and

d(D&y(1), F(ty(t), V(y)(1)) < g(t) a.e. (I).
Then there exists x(.) a solution of problem (1.1) satisfying for all t € T

2(0) = 50 £ T—awggs (70 = O + I¥a(T)).
Sketch of proof. Since the proof is similar with the proof of Theorem 3.3 in [14] we
point out only the main steps of the proof. O
The set-valued map ¢t — F'(¢,y(t),V(y)(t)) is measurable with closed values and
F(t,y(t), V(y) (1) N {DE¥y(t) + q(t)[-1,1]} #0 a.e. in I.

It follows from celebrated Kuratowski and Ryll-Nardzewski selection theorem
(e.g., [4]) that there exists a measurable map fi(t) € F(t,y(t),V(y)(t)) a.e. in
such that

[f1(t) = DEy(®)] < q(t) a.e. in I.

Define z1(t) = 2o + ﬁ f(f Y (u)(P(t) — Y(u))® L f1(u)du and one has

|21(t) = y(1)] < |0 — y(0)| + I*¥Yq(T).
Then, by induction we construct two sequences z,,(.) € C(I,R), f.(.) € L'(I,R),
n > 1 with the following properties

=z b t "(u —(u)* ", (s)ds
B4 ) =m0t s [ V@O —s@) T s el
(3.5) fa(t) € F(t,xpn_1(t),V(zp_1)(t)) a.e. in I,

(3.6) [fny1(t) = fult)] < L(t)(|9:n(t)xn1(t)|+/0 L(s)|zn(s) — xn-1(s)|ds) a.e. T

If this construction is realized then, by a similar computation as in the proof of
Theorem 3.3, for almost all ¢t € I we have

[nr1(t) = 2 ()] < IV L(T))" (20 — y(0)] + I*Yq(T)) Vn € N.
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Therefore {z,(.)} is a Cauchy sequence in the Banach space C (I, R), hence con-
verging uniformly to some z(.) € C(I,R). In particular, it follows from (3.6) that
for almost all ¢ € I, the sequence {f,(t)} is Cauchy in R. Let f(.) be the pointwise
limit of f,(.).

Moreover, one has

|2 (t) =y ()| < fa1(t) !+Z\xz+1 — zi(t)]

< [aro — y(0)| + I*¥q(T) + Z (I*YL(T))"(lwo — y(0)| + IV q(T))

o — y(0)] + I°q(T)
1— [V L(T)

On the other hand, from (3.6) and (3.7) we obtain for almost all ¢t € I

| falt) — ()] < Z |[fir1(t) = fi(8)] + | f1(t) — DEPy(t)]

o — Y
SL(t)‘ - 13/_(01')l,:L1.(T)q<T)

Thus the sequence f,(.) is integrably bounded and therefore f(.) € L*(I,R).

Using Lebesgue’s dominated convergence theorem and passing to the limit we
deduce that z(.) is a solution of (1.1) satisfying the desired estimate.

Finally, the construction of the sequences x,(.), f,(.) with the properties in (3.4)-
(3.6) is done by induction.

Since the first step is already realized, assume that for some N > 1 we already
constructed z,(.) € C(I,R) and f,(.) € L*(I,R), n = 1,2,...N satisfying (3.4)-
(3.6). The set-valued map t — F(t, xN(t) V(xn)(t)) is measurable. Moreover, the
map t — L(t)(|en(t) — zn_1(t)] + fo s)|xn(s) — xn—_1(s)|ds) is measurable. By
the lipschitzianity of F'(t, ) we have that for almost all ¢t € 1

F(t an(8) N {n(0) + L) (en(t) — 2y (8)
" / L(s)|en(s) — a1 (s)|ds)[~1, 1]} £ 0.
0

Kuratowski and Ryll-Nardzewski selection theorem yields that there exist a mea-
surable selection fy11(.) of F(.,zn(.),V(zn)(.)) such that for almost all ¢t € [

[fn1(@) = In(@)] < L) (e () — 21 ()] +/0 L(s)|zn(s) — 2n-1(s)|ds).
We define xn11(.) as in (3.4) with n = N + 1. Thus fy41(.) satisfies (3.5) and
(3.6).

Remark 3.8. If in Theorem 3.7 ¢(¢) = t we find Theorem 3.3 in [10]; if in Theorem
3.7 ¢(t) = In(t) and V(z)(t) = I%¥x(t), f > 0 a similar result may be found in [11]
and if in Theorem 3.7 ¢(t) = t° we obtain Theorem 3.2 in [13].

+ q(t).
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