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Also, this result allows us to provide a continuous selection of the solution set
of problem (1.1). Our approach is essentially based on a well known theorem of
Bressan and Colombo ( [6]) concerning the existence of continuous selections of
lower semicontinuous multifunctions with decomposable values. We treat, also,
the case when the family of ”quasi” solutions reduces to a single element and we
establish a corresponding theorem.

The results in the present paper extend and unify similar results obtained for
fractional differential inclusions defined by Riemann-Liouville fractional derivative
( [8, 18]), by Caputo fractional derivative ( [10]), by Hadamard fractional derivative
( [9, 11]) and by Caputo-Katugampola fractional derivative ( [12,13]).

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and Section 3 is devoted to our results.

2. Preliminaries

Let T > 0, I := [0, T ] and denote by L(I) the σ-algebra of all Lebesgue mea-
surable subsets of I. Let X be a real separable Banach space with the norm |.|.
Denote by P(X) the family of all nonempty subsets of X and by B(X) the family of
all Borel subsets of X. If A ⊂ I then χA(.) : I → {0, 1} denotes the characteristic
function of A. For any subset A ⊂ X we denote by cl(A) the closure of A.

The distance between a point x ∈ X and a subset A ⊂ X is defined as usual by
d(x,A) = inf{|x − a|; a ∈ A}. We recall that Pompeiu-Hausdorff distance between
the closed subsets A,B ⊂ X is defined by dH(A,B) = max{d∗(A,B), d∗(B,A)},
d∗(A,B) = sup{d(a,B); a ∈ A}.

As usual, we denote by C(I,X) the Banach space of all continuous functions
x(.) : I → X endowed with the norm |x(.)|C = supt∈I |x(t)| and by L1(I,X) the
Banach space of all (Bochner) integrable functions x(.) : I → X endowed with the

norm |x(.)|1 =
∫ T
0 |x(t)|dt.

We recall first several preliminary results we shall use in the sequel.

Lemma 2.1 ( [22]). Let u : I → X be measurable and let G : I → P(X) be a
measurable closed-valued multifunction.

Then, for every measurable function r : I → (0,∞), there exists a measurable
selection g : I → X of G(·) such that

|u(t)− g(t)| < d(u(t), G(t)) + r(t) a.e. in I.

Definition 2.2. A subset D ⊂ L1(I,X) is said to be decomposable if for any
u(·), v(·) ∈ D and any subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.

We denote by D(I,X) the family of all decomposable closed subsets of L1(I,X).
Next (S, d) is a separable metric space; we recall that a multifunction G(·) : S →

P(X) is said to be lower semicontinuous (l.s.c.) if for any closed subset C ⊂ X, the
subset {s ∈ S;G(s) ⊂ C} is closed.

Lemma 2.3 ([6]). Let F ∗(., .) : I × S → P(X) be a closed-valued L(I) ⊗ B(S)-
measurable multifunction such that F ∗(t, .) is l.s.c. for any t ∈ I.

Then the multifunction G(.) : S → D(I,X) defined by

G(s) = {v ∈ L1(I,X); v(t) ∈ F ∗(t, s) a.e. in I}
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is l.s.c. with nonempty closed values if and only if there exists a continuous mapping
p(.) : S → L1(I,X) such that

d(0, F ∗(t, s)) ≤ p(s)(t) a.e. in I, ∀s ∈ S.

Lemma 2.4 ([6]). Let G(.) : S → D(I,X) be a l.s.c. multifunction with closed
decomposable values and let ϕ(.) : S → L1(I,X), ψ(.) : S → L1(I,R) be continuous
such that the multifunction H(.) : S → D(I,X) defined by

H(s) = cl{v(.) ∈ G(s); |v(t)− ϕ(s)(t)| < ψ(s)(t) a.e. in I}
has nonempty values.

Then H(.) has a continuous selection.

Consider β > 0, f(.) ∈ L1(I,R) and ψ(.) ∈ Cn(I,R) such that ψ′(t) > 0 ∀ t ∈ I.

Definition 2.5 ([20]). a) The ψ - Riemann-Liouville fractional integral of f of order
β is defined by

Iβ,ψf(t) =
1

Γ(β)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))β−1f(s)ds,

where Γ is the (Euler’s) Gamma function defined by Γ(β) =
∫∞
0 tβ−1e−tdt.

b) The ψ - Riemann-Liouville fractional derivative of f of order β is defined by

Dβ,ψf(t) =
1

Γ(n− β)
(

1

ψ′(t)

d

dt
)n

∫ t

0
ψ′(s)(ψ(t)− ψ(s))n−β−1f(s)ds,

where n = [β] + 1.
c) The ψ - Caputo fractional derivative of f of order β is defined by

Dβ,ψ
C f(t) = Dβ,ψ[f(t)−

n−1∑
k=0

f
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k],

where f
[k]
ψ (t) = ( 1

ψ′(t)
d
dt)

kx(t), n = β if α ∈ N and n = [β] + 1, otherwise .

We note that if β = m ∈ N then Dβ,ψ
C f(t) = f

[m]
ψ (t) and if n = [β] + 1 then

Dβ,ψ
C f(t) = 1

Γ(n−β)
∫ t
0 ψ

′(s)(ψ(t) − ψ(s))n−α−1f
[n]
ψ (s)ds. Also, if ψ(t) ≡ t one ob-

tains Caputo’s fractional derivative, if ψ(t) ≡ ln(t) one obtains Caputo-Hadamard’s
fractional derivative and, finally, if ψ(t) ≡ tσ one obtains Caputo-Katugampola’s
fractional derivative.

In what follows we need the following technical lemma proved in [2] (namely,
Theorem 2 in [2]).

Lemma 2.6. Let α ∈ [0, 1) and ψ(.) ∈ C1(I,R) with ψ′(t) > 0 ∀ t ∈ I. For a given
integrable function h(.) : I → R, the unique solution of the initial value problem

Dα,ψ
C x(t) = h(t) a.e. in I, x(0) = x0,

is given by

x(t) = x0 +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1h(s)ds.
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Definition 2.7. By a solution of the problem (1.1) we mean a function x ∈ C(I,R)
for which there exists a function h ∈ L1(I,R) satisfying h(t) ∈ F (t, x(t), V (x)(t))

a.e. in I, Dα,ψ
C x(t) = h(t) a.e. in I and x(0) = x0.

Also, the set of all solutions of (1.1) will be denoted with S(x0).

3. Main results

In what follows α ∈ [0, 1) and ψ(.) ∈ C1(I,R) with ψ′(t) > 0 ∀ t ∈ I.

Hypothesis 3.1. i) F (., .) : I ×R ×R → P(R) is L(I) ⊗ B(R ×R) measurable
with nonempty closed values.

ii) There exists l(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I

dH(F (t, u1, v1), F (t, u2, v2)) ≤ l(t)(|u1 − u2|+ |v1 − v2|) ∀ u1, u2, v1, v2 ∈ R.

iii) The mapping k(., ., .) : I ×R×R → R verifies: ∀y ∈ R, (s, t) → k(s, t, y) is
measurable.

iv) |k(s, t, y)− k(s, t, x)| ≤ l(t)|y − x| a.e. (s, t) ∈ I × I, ∀ y, x ∈ R.

Hypothesis 3.2. (i) S is a separable metric space, the mappings a(.) : S → R and
ε(.) : S → (0,∞) are continuous.

(ii) There exists g(.), q(.) : S → L1(I,R), y(.) : S → C(I,R) continuous that
satisfy

(Dy(s))α,ψC (t) = g(s)(t) for a.e. t ∈ I, ∀s ∈ S,

d(g(s)(t), F (t, y(s)(t), V (y(s)(.))(t)) ≤ q(s)(t) for a.e. t ∈ I, ∀ s ∈ S.

Next, we use the following notation

L(t) := l(t)(1 +

∫ t

0
l(u)du), t ∈ J,

ξ(s) =
1

1− Iα,ψL
(|a(s)− y(s)(0)|+ ε(s) + Iα,ψq(s)), s ∈ S,

where Iα,ψL := supt∈I |Iα,ψL(t)| and Iα,ψq(s) := supt∈I |Iα,ψq(s)(t)|.

Theorem 3.3. Assume that Hypotheses 3.1 and 3.2 are verified.
If Iα,ψL < 1, then there exists x(.) : S → C(I,R) continuous such that x(s)(.) is

a solution of

Dα,ψ
C z(t) ∈ F (t, z(t), V (z)(t)), z(0) = a(s)

and
|x(s)(t)− y(s)(t)| ≤ ξ(s) ∀ (t, s) ∈ I × S.

Proof. We consider the following notations qn(s) := (Iα,ψL)n−1(|a(s) − y(s)(0)| +
Iα,ψq(s) + n

n+1ε(s)), n ≥ 1, x0(s)(t) = y(s)(t), ∀s ∈ S, t ∈ I. Define the set-valued
maps

A0(s) = {f ∈ L1(I,R); f(t) ∈ F (t, y(s)(t), V (y(s)(.))(t)) a.e. in I},

B0(s) = cl{f ∈ A0(s); |f(t)− g(s)(t)| < q(s) +
Γ(α+ 1)

2(ψ(T )− ψ(0))α
ε(s)}.

By hypothesis, d(g(s)(t), F (t, y(s)(t), V (y(s)(.))(t)) ≤ q(s)(t) < q(s)(t)+
Γ(α+1)

2(ψ(T )−ψ(0))α ε(s); hence with Lemma 2.1, B0(s) is not empty.
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Define G0(t, s) = F (t, y(s)(t), V (y(s)(.))(t)) and one has

d(0, G0(t, s)) ≤ |g(s)(t)|+ q(s)(t) = q∗(s)(t)

with q∗(.) : S → L1(I,R) continuous.
Taking into account Lemmas 2.3 and 2.4 we deduce that exists h0 a selection of

B0 that is continuous, i.e.

h0(s)(t) ∈ F (t, y(s)(t), V (y(s)(.))(t)) a.e. in I, ∀s ∈ S,

|h0(s)(t)− g(s)(t)| ≤ q(s)(t) +
Γ(α+ 1)

2(ψ(T )− ψ(0))α
ε(s) ∀t ∈ I, s ∈ S.

Define x1(s)(t) = a(s) + 1
Γ(α)

∫ t
0 ψ

′(u)(ψ(t) − ψ(u))α−1h0(s)(u)du and we may

write

|x1(s)(t)− x0(s)(t)| ≤ |a(s)− y(s)(0)|+ 1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1.

|h0(s)(u)− g(s)(u)|du ≤ |a(s)− y(s)(0)|+ 1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1.

(q(s)(u) +
Γ(α+ 1)

2(ψ(T )− ψ(0))α
ε(s))du ≤ |a(s)− y(s)(0)|+ Iα,ψq(s) +

1

2
ε(s) = q1(s).

Next, we define the sequences hn(.) : S → L1(I,R), xn(.) : S → C(I,R) such
that

a) xn(.) : S → C(I,R), hn(.) : S → L1(I,R) are continuous.
b) hn(s)(t) ∈ F (t, xn(s)(t), V (xn(s)(.))(t)), s ∈ S, for a.e. t ∈ I.
c) |hn(s)(t) − hn−1(s)(t)| ≤ L(t)qn(s), qn(s) := (Iα,ψL)n−1(|a(s) − y(s)(0)|+
Iα,ψq(s) + n

n+1ε(s)), s ∈ S, for a.e. t ∈ I.

d) xn+1(s)(t) = a(s) + 1
Γ(α)

∫ t
0 ψ

′(u)(ψ(t)− ψ(u))α−1hn(s)(u)du.

If we assume that hi(.), xi(.) are already constructed with properties a)-c) and define
xn+1(.) as in d). It follows from c) and d) that

(3.1)

|xn+1(s)(t)− xn(s)(t)|

≤ 1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1|hn(s)(u)− hn−1(s)(u)|du

≤ 1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1L(u)qn(s)du

≤ Iα,ψL · qn(s) = qn+1(s)− (Iα,ψL)n
ε(s)

(n+ 1)(n+ 2)

< qn+1(s).
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On the other hand,

d(hn(s)(t), F (t, xn+1(s)(t), V (xn+1(s)(.))(t))

≤ l(t)(|xn+1(s)(t)− xn(s)(t)|+
∫ t

0
l(u)|xn+1(s)(u)− xn(s)(u)|du)

≤ L(t)(qn+1(s)− (Iα,ψL)n
ε(s)

(n+ 1)(n+ 2)
)

< L(t)(qn+1(s)− (Iα,ψL)n
ε(s)

2(n+ 1)(n+ 2)
).

For s ∈ S we define

An+1(s) = {f ∈ L1(I,R); f(t) ∈ F (t, xn+1(s)(t), V (xn+1(s)(.))(t)) a.e. in I},
Bn+1(s) = cl{f ∈ An+1(s); |f(t)− hn(s)(t)| < L(t)qn+1(s) a.e. in I}.

We are able now to apply Lemma 2.1 and find w(.) ∈ L1(I,R) such that w(t) ∈
F (t, xn+1(s)(t), V (xn+1(s)(.))(t)) a.e. (I) and

|w(t)− hn(s)(t)| < d(hn(s)(t), F (t, xn+1(s)(t), V (xn+1(s)(.))(t))

+ L(t)(Iα,ψL)n
ε(s)

2(n+ 1)(n+ 2)
)

< L(t)qn+1(s)− L(t)(Iα,ψL)n
ε(s)

2(n+ 1)(n+ 2)

+ L(t)(Iα,ψL)n
ε(s)

2(n+ 1)(n+ 2)
= L(t)qn+1(s).

i.e., Bn+1(s) is nonempty.
We introduce Gn+1(t, s) = F (t, xn+1(s)(t), V (xn+1(s)(.))(t)). One may estimate

d(0, Gn+1(t, s)) ≤ |hn(s)(t)|+ L(t)|xn+1(s)(t)− xn(s)(t)| ≤
|hn(s)(t)|+ L(t)qn+1(s) = q∗n+1(s)(t) a.e. in I,

where q∗n+1(.) : S → L1(I,R) is continuous.

As above one may find hn+1(.) : S → L1(I,R) continuous and such that

hn+1(s)(t) ∈ F (t, xn+1(s)(t), V (xn+1(s)(.))(t)) ∀s ∈ S, a.e. in I,

|hn+1(s)(t)− hn(s)(t)| ≤ L(t)qn+1(s) ∀s ∈ S, a.e. in I.

Using conditions c), d) and (3.1) one has

(3.2)
|xn+1(s)(.)− xn(s)(.)|C ≤ qn+1(s)

≤ (Iα,ψL)n(|a(s)− y(s)(0)|+ Iα,ψq(s) + ε(s))

(3.3)

|hn+1(s)(.)− hn(s)(.)|1 ≤ |L(.)|1qn(s)

≤ |L(.)|1(Iα,ψL)n(|a(s)− y(s)(0)|

+ Iα,ψq(s) + ε(s)).

Since by hypothesis Iα,ψL < 1 from (3.2) and (3.3) it follows that the sequences
hn(s)(.), xn(s)(.) are Cauchy in spaces L1(I,R) and C(I,R), respectively. We
denote by h(.) : S → L1(I,R) and x(.) : S → C(I,R) their limits. The function
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s → |a(s) − y(s)(0)| + |Iα,ψq(s)| + ε(s) is continuous, therefore locally is bounded.
Therefore, from (3.3) we obtain the continuity of s→ h(s)(.) from S into L1(I,R).

As above, from (3.2), we obtain that the Cauchy condition is satisfied for the
sequence xn(s)(.) locally uniformly with respect to s. Hence, the function s →
x(s)(.) is continuous. Since the convergence of xn(s)(.) to x(s)(.) is uniform and

d(hn(s)(t), F (t, x(s)(t), V (x(s)(.))(t)) ≤ L(t)|xn(s)(t)− x(s)(t)| a.e. in I,

∀s ∈ S we may pass to the limit in order to deduce that

h(s)(t) ∈ F (t, x(s)(t), V (x(s)(.))(t)) ∀s ∈ S, a.e. in I.

We note that we have the following estimate

1

Γ(α)

∣∣∣ ∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1hn(s)(u)du

−
∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1 · h(s)(u)du

∣∣∣
≤ 1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1|hn(s)(u)− h(s)(u)|du

≤ 1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1L(u).|xn+1(s)(.)− xn(s)(.)|Cdu

≤ Iα,ψL.|xn+1(s)(.)− xn(s)(.)|C .

It remains to pass to the limit in d) in order to find

x(s)(t) = a(s) +
1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1h(s)(u)du.

For all n ≥ 1 we add inequalities (3.1) and we deduce

|xn+1(s)(t)− y(s)(t)| ≤
n∑
l=1

ql(s)

=
n∑
l=1

(Iα,ψL)l−1(b(s) + Iα,ψq(s) + ε(s))

=

n∑
l=1

(Iα,ψL)l−1(|a(s)− y(s)(0)|+ ε(s) + Iα,ψq(s))

≤ 1

1− Iα,ψL
· (|a(s)− y(s)(0)|+ ε(s) + Iα,ψq(s))

= ξ(s).

Finally, passing to the limit in the last inequality we conclude the proof. □
Remark 3.4. If in Theorem 3.3 ψ(t) ≡ t we obtain Theorem 3.1 in [10]; if in
Theorem 3.3 ψ(t) ≡ ln(t) and V (x)(t) ≡ Iβ,ψx(t), β > 0 we get Theorem 3.6 in [9]
and if in Theorem 3.3 ψ(t) ≡ tσ we cover Theorem 3.3 in [12].

By using Theorem 3.3 we may find a continuous selection of the solution set of
problem (1.1).
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Hypothesis 3.5. Hypothesis 3.1 is satisfied, Iα,ψL < 1, q0(.) ∈ L1(I,R+) exists
with d(0, F (t, 0, V (0)(t)) ≤ q0(t) a.e. (I).

Corollary 3.6. Hypothesis 3.5 is verified. Then there exists a function s(., .) :
I ×R → R with the following properties

a) s(., x) ∈ S(x), ∀x ∈ R.
b) x→ s(., x) is continuous from R into C(I,R).

Proof. It is enough to take in Theorem 3.3 S = R, a(x) = x, ∀x ∈ R, ε(.) : R →
(0,∞) an arbitrary fixed continuous mapping, g(.) = 0, y(.) = 0, q(x)(t) = q0(t)
∀x ∈ R, t ∈ I. □

In the particular case when S reduces to a single element, Theorem 3.3 reduces
to a Filippov type existence result for problem (1.1).

Theorem 3.7. Assume that Hypothesis 3.1 is satisfied, Iα,ψL(T ) < 1 and let
y ∈ C(I,R) be such that there exists q(.) ∈ L1(I,R) with Iα,ψq(T ) < +∞ and

d(Dα,ψ
C y(t), F (t, y(t), V (y)(t))) ≤ q(t) a.e. (I).

Then there exists x(.) a solution of problem (1.1) satisfying for all t ∈ I

|x(t)− y(t)| ≤ 1

1− Iα,ψL(T )
(|x0 − y(0)|+ Iα,ψq(T )).

Sketch of proof. Since the proof is similar with the proof of Theorem 3.3 in [14] we
point out only the main steps of the proof. □

The set-valued map t→ F (t, y(t), V (y)(t)) is measurable with closed values and

F (t, y(t), V (y)(t)) ∩ {Dα,ψ
C y(t) + q(t)[−1, 1]} ̸= ∅ a.e. in I.

It follows from celebrated Kuratowski and Ryll-Nardzewski selection theorem
(e.g., [4]) that there exists a measurable map f1(t) ∈ F (t, y(t), V (y)(t)) a.e. in I
such that

|f1(t)−Dα,ψ
C y(t)| ≤ q(t) a.e. in I.

Define x1(t) = x0 +
1

Γ(α)

∫ t
0 ψ

′(u)(ψ(t)− ψ(u))α−1f1(u)du and one has

|x1(t)− y(t)| ≤ |x0 − y(0)|+ Iα,ψq(T ).

Then, by induction we construct two sequences xn(.) ∈ C(I,R), fn(.) ∈ L1(I,R),
n ≥ 1 with the following properties

(3.4) xn(t) = x0 +
1

Γ(α)

∫ t

0
ψ′(u)(ψ(t)− ψ(u))α−1fn(s)ds, t ∈ I,

(3.5) fn(t) ∈ F (t, xn−1(t), V (xn−1)(t)) a.e. in I,

(3.6) |fn+1(t)−fn(t)| ≤ L(t)(|xn(t)−xn−1(t)|+
∫ t

0
L(s)|xn(s)−xn−1(s)|ds) a.e. I

If this construction is realized then, by a similar computation as in the proof of
Theorem 3.3, for almost all t ∈ I we have

|xn+1(t)− xn(t)| ≤ (Iα,ψL(T ))n(|x0 − y(0)|+ Iα,ψq(T )) ∀n ∈ N.
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Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence con-
verging uniformly to some x(.) ∈ C(I,R). In particular, it follows from (3.6) that
for almost all t ∈ I, the sequence {fn(t)} is Cauchy in R. Let f(.) be the pointwise
limit of fn(.).

Moreover, one has

|xn(t)− y(t)| ≤ |x1(t)− y(t)|+
n−1∑
i=1

|xi+1(t)− xi(t)|

≤ |x0 − y(0)|+ Iα,ψq(T ) +

n−1∑
i=1

(Iα,ψL(T ))i(|x0 − y(0)|+ Iα,ψq(T ))

=
|x0 − y(0)|+ Iα,ψq(T )

1− Iα,ψL(T )
.

On the other hand, from (3.6) and (3.7) we obtain for almost all t ∈ I

|fn(t)−Dα,ψ
C y(t)| ≤

n−1∑
i=1

|fi+1(t)− fi(t)|+ |f1(t)−Dα,ψ
C y(t)|

≤ L(t)
|x0 − y(0)|+ Iα,ψq(T )

1− Iα,ψL(T )
+ q(t).

Thus the sequence fn(.) is integrably bounded and therefore f(.) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and passing to the limit we

deduce that x(.) is a solution of (1.1) satisfying the desired estimate.
Finally, the construction of the sequences xn(.), fn(.) with the properties in (3.4)-

(3.6) is done by induction.
Since the first step is already realized, assume that for some N ≥ 1 we already

constructed xn(.) ∈ C(I,R) and fn(.) ∈ L1(I,R), n = 1, 2, ...N satisfying (3.4)-
(3.6). The set-valued map t → F (t, xN (t), V (xN )(t)) is measurable. Moreover, the

map t → L(t)(|xN (t) − xN−1(t)| +
∫ t
0 L(s)|xN (s) − xN−1(s)|ds) is measurable. By

the lipschitzianity of F (t, .) we have that for almost all t ∈ I

F (t, xN (t)) ∩ {fN (t) + L(t)(|xN (t)− xN−1(t)|

+

∫ t

0
L(s)|xN (s)− xN−1(s)|ds)[−1, 1]} ̸= ∅.

Kuratowski and Ryll-Nardzewski selection theorem yields that there exist a mea-
surable selection fN+1(.) of F (., xN (.), V (xN )(.)) such that for almost all t ∈ I

|fN+1(t)− fN (t)| ≤ L(t)(|xN (t)− xN−1(t)|+
∫ t

0
L(s)|xN (s)− xN−1(s)|ds).

We define xN+1(.) as in (3.4) with n = N + 1. Thus fN+1(.) satisfies (3.5) and
(3.6).

Remark 3.8. If in Theorem 3.7 ψ(t) ≡ t we find Theorem 3.3 in [10]; if in Theorem
3.7 ψ(t) ≡ ln(t) and V (x)(t) ≡ Iβ,ψx(t), β > 0 a similar result may be found in [11]
and if in Theorem 3.7 ψ(t) ≡ tσ we obtain Theorem 3.2 in [13].
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