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Now for α ∈ [0, 1), the class T (α) is defined as

(1.3) T (α) =

{
f ∈ A, Re

{
f(z)

z

}
> α, z ∈ U

}
Also T (0) = T . The families T and T

(
1
2

)
play an important role in the theory of

univalent functions although their elements are functions which are not necessarily
univalent. One of the important results given by Marx [21] and Strohhäcker [32] is

C ⊂ S∗
(
1

2

)
⊂ T

(
1

2

)
where C is a class of convex function, S∗ (1

2

)
is class of starlike function of order 1

2 .
The interesting fact is that the function f(z) = z

1−z , z ∈ U is extremal function
for many computational problems in above three classes. The class T plays a
fundamental role in the theory of semigroups of analytic functions as a generator
of one-parameter continues semigroups studied by Berkson, Porta, Shoikhet, Elin
and others (see [31], [11]). For other classical results concerning the classes T and
T
(
1
2

)
see [ [20], [27]]. Kowalczyk et al. [14] proved third Hankel determinant for

class T (α).
The Hankel determinant Hq,n(f) where q ≥ 0, n ≥ 1 for a function f ∈ S was

defined by Pommerenke [24,25] as

(1.4) Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣
Computing the upper bound of Hq,n over subfamilies of A is an interesting problem
to study. The growth rate of Hq,n as n → ∞ has been studied by Noonan and Noor
[22,23] for different univalent functions. Sharp upper bound of H2,2(f) = a2a4 − a23
of order 2 were obtained by various authors. It is worth citing a few of them
[9,12–14,18].

The estimation of H3,1(f) is much more difficult than the case of H2,2(f). Very
few papers have been devoted to third Hankel determinant. The first paper on
H3,1(f) was given in 2010 by Babalola [5] in which he obtained the upper bound
of H3,1(f) for the families of S∗, C and R . Later on some other authors [ [29],
[30], [30], [6], [8], [28], [15]] published their work concerning H3,1(f) for different
subfamilies of analytic and univalent functions. In 2017, Zaprawa [33] improved the
results of Babalola [5] by proving

|H3,1(f)| =

 1 for f ∈ S∗

0.090 for f ∈ C
0.683 for f ∈ R

and claimed that these bounds are still not sharp. For the sharpness, he considered
the subfamilies of S∗, C and R consisting of function with m fold symmetry and
obtained the sharp upper bounds. But in 2018, Kwon et al. [16] improved the
zaprawa results for starlike function and proved H3,1(f) ≤ 8

9 . Different authors
have studied the third Hankel determinant for different subfamilies of S but till
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2018, no one succeeded. In 2018 Kowalczyk et al. [14] and Lecko et al. [17] proved
the sharp bounds H3,1(f) ≤ 4

135 and H3,1(f) ≤ 1
9 for the sets Convex function and

Starlike function of order half respectively. Research work on 2nd and 3rd Hankel
determinant is still continuing for various classes and subclasses of univalent and
analytic function while the research on fourth Hankel determinant has also started.
The first paper on H4,1(f) for function with bounded turning has been obtained by
Arif et al. [3] and they proved f ∈ R then |H4,1(f)| ≤ 0.78050. Here, in this paper
we contribute in the fifth Hankel determinant for a class of analytic function T (α)
with the motivation from recent paper of Arif et al. [4] fifth Hankel determinant for
function with bounded turning.

2. Preliminary lemmas

In order to find the sharp upper bound of H(5,1)(f) we need the following lemmas
and results

Lemma 2.1. If p ∈ P is of the form (1.2) , then

(2.1) |cn| ≤ 2 for n ∈ N

(2.2) |cn+k − λcnck| < 2 for 0 ≤ λ ≤ 1

(2.3) |cmcn − ckcl| ≤ 4 for m+ n = k + l

For the inequalities in (2.1) ,(2.2) , (2.3) see [26]

Lemma 2.2. If p ∈ P is of the form 1.2, then 2c2 = c21+x(4− c21) for some x with
|x| ≤ 1 This result is due to Libera [19]

Theorem 2.3. If f ∈ T then

(2.4) |an| ≤ 2

Let f ∈ T according to definition, f(z)z = p(z) where p ∈ P of the form (1.2) we
can easily obtain that an = cn−1 by using (2.1) , we get the result.

Theorem 2.4. If f ∈ T
(
1
2

)
then

(2.5) |an| ≤ 1

If f ∈ T (12) then
f(z)
z = 1

2(p(z) + 1) where p ∈ P of the form (1.2) we can easily
find the coefficients an = cn−1

2 Now apply (2.1) , we get our desired result.

3. Bounds of fifth Hankel determinant

First, H5,1(f) can be written in the form

(3.1) H5,1(f) = a5H4,2(f)− a4λ1 + a3λ2 − a2λ3 +H4,3(f)

where a′is are coefficients of function f ∈ A of the form (1.1) and λ1, λ2, λ3,H4,2(f)
and H4,3(f) are determinants of order 4 given by

(3.2) H4,2(f) = a8H3,2(f)− a7∆1 + a6∆2 − a5∆3;

(3.3) H4,3(f) = a9H3,3(f)− a8∆4 + a7∆5 − a6∆6;
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(3.4) λ1 = a2∆7 − a3∆8 + a4∆9 − a6∆10;

(3.5) λ2 = a2∆11 − a3∆12 + a4∆13 − a5∆14;

(3.6) λ3 = a2∆15 − a3∆16 + a4∆17 − a5∆18;

where

(3.7) H3,2(f) = a2(a4a6 − a25)− a3(a3a6 − a4a5) + a4(a3a5 − a24);

(3.8) H3,3(f) = a3(a5a7 − a26)− a4(a4a7 − a5a6) + a5(a4a6 − a25);

(3.9) ∆1 = a2(a4a7 − a5a6)− a3(a3a7 − a25) + a4(a3a6 − a4a5);

(3.10) ∆2 = a2(a5a7 − a26)− a3(a4a7 − a5a6) + a4(a4a6 − a25);

(3.11) ∆3 = a3(a5a7 − a26)− a4(a4a7 − a5a6) + a5(a4a6 − a25);

(3.12) ∆4 = a3(a5a8 − a6a7)− a4(a4a8 − a26) + a5(a4a7 − a5a6);

(3.13) ∆5 = a3(a6a8 − a27)− a4(a5a8 − a6a7) + a5(a5a7 − a26);

(3.14) ∆6 = a4(a6a8 − a27)− a5(a5a8 − a6a7) + a6(a5a7 − a26);

(3.15) ∆7 = a4(a6a9 − a7a8)− a5(a5a9 − a27) + a6(a5a8 − a6a7);

(3.16) ∆8 = a3(a6a9 − a7a8)− a4(a5a9 − a27) + a5(a5a8 − a6a7);

(3.17) ∆9 = a3(a5a9 − a8a6)− a4(a4a9 − a6a7) + a5(a4a8 − a5a7);

(3.18) ∆10 = a3(a5a7 − a26)− a4(a4a7 − a5a6) + a5(a4a6 − a25);

(3.19) ∆11 = a4(a7a9 − a28)− a5(a6a9 − a7a8) + a6(a6a8 − a27);

(3.20) ∆12 = a3(a7a9 − a28)− a5(a5a9 − a6a8) + a6(a5a8 − a6a7);

(3.21) ∆13 = a3(a6a9 − a7a8)− a4(a5a9 − a6a8) + a6(a5a7 − a26);

(3.22) ∆14 = a3(a6a8 − a27)− a4(a5a8 − a6a7) + a5(a5a7 − a26);

(3.23) ∆15 = a5(a7a9 − a28)− a6(a6a9 − a7a8) + a7(a6a8 − a27);

(3.24) ∆16 = a4(a7a9 − a28)− a6(a5a9 − a6a8) + a7(a5a8 − a6a7);

(3.25) ∆17 = a4(a6a9 − a7a8)− a5(a5a9 − a8a6) + a7(a5a7 − a26);

and

(3.26) ∆18 = a4(a6a8 − a27)− a5(a5a8 − a6a7) + a6(a5a7 − a26).

In (1.4) it can be easily checked that H5,1(f) is a polynomial of eight successive
coefficients a2, a3, a4, a5, a6, a7 and a8 of function f in the concerned class. These
coefficients are connected with the coefficients of p from class P.



UPPER BOUND OF FIFTH HANKEL DETERMINANT 81

Theorem 3.1. If f ∈ T of the form (1.1) then

(3.27) |H4,2(f)| ≤ 192

Proof Let f ∈ T of the form (1.3) , we have f(z)
z = p(z)

where p ∈ P of the form (1.2) by identifying the coefficients we can easily obtain
that

(3.28) an = cn−1

using (3.28) in (3.7) , (3.9) , (3.10) and (3.11), it follows that

H3,2(f) = c1c3c5 − c1c
2
4 − c22c5 + 2c2c3c4 − c33

∆1 = c1c3c6 − c1c4c5 − c22c6 + c2c
2
4 + c2c3c5 − c23c4

∆2 = c1c4c6 − c1c
2
5 − c2c3c6 + c2c4c5 + c23c5 − c3c

2
4

∆3 = c2c4c6 − c2c
2
5 − c23c6 + 2c3c4c5 − c34

by using (2.1) and (2.3) in above equations, we obtain

(3.29) |H3,2(f)| ≤ 24, |∆1| ≤ 24, |∆2| ≤ 24, |∆3| ≤ 24

Now by using the (3.29) along with (2.4) in (3.2) we obtain the desired result. Hence
it completes the proof of theorem.

Theorem 3.2. If f ∈ T of the form (1.1) then

(3.30) |H4,3(f)| ≤ 192

Proof Let f ∈ T of the form (1.3) and using (3.28) in (3.8) , (3.12) , (3.13) and
(3.14), it follows that

H3,3(f) = c2c4c6 − c2c
2
5 − c23c6 + 2c3c4c5 − c34

∆4 = c2c4c7 − c2c5c6 − c23c7 + c3c
2
5 + c3c4c6 − c24c5

∆5 = c2c5c7 − c2c
2
6 − c3c4c7 + c3c5c6 + c24c6 − c4c

2
5

∆6 = c3c5c7 − c3c
2
6 − c24c7 + 2c4c5c6 − c35

by using (2.1) and (2.3) in above equations, we obtain

(3.31) |H3,3(f)| ≤ 24, |∆4| ≤ 24, |∆5| ≤ 24, |∆6| ≤ 24.

Now by using the (3.31) along with (2.4) in (3.3) we obtain the desired result. Hence
it completes the proof of theorem.

Theorem 3.3. If f ∈ T of the form (1.1) then

(3.32) |λ1| ≤ 192

Proof Let f ∈ T of the form (1.3) and using (3.28) in (3.15) , (3.16) , (3.17) and
(3.18), it follows that

∆7 = c3c5c8 + c4c
2
6 − c24c8 − c3c6c7 + c4c5c7 − c25c6

∆8 = c2c5c8 − c2c7c6 + c24c7 + c3c
2
6 − c3c4c8 − c4c5c6

∆9 = c2c4c8 − c2c7c5 − c23c8 + c3c5c6 + c4c3c7 − c24c6

∆10 = c2c4c6 − c2c
2
5 − c23c6 + 2c3c4c5 − c34
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by using (2.1) and (2.3) in above equations, we obtain

(3.33) |∆7| ≤ 24, |∆8| ≤ 24, |∆9| ≤ 24, ∆10| ≤ 24

Now by using the (3.33) along with (2.4) in (3.4) , we obtain the desired result.
Hence it completes the proof of theorem.

Theorem 3.4. If f ∈ T of the form (1.1) then

(3.34) |λ2| ≤ 192

Proof Let f ∈ T of the form (1.3) and using (3.28) in (3.19) , (3.20) , (3.21) and
(3.22), it follows that

∆11 = c3c6c8 − c3c
2
7 − c4c5c8 + c4c6c7 + c25c7 − c5c

2
6

∆12 = c2c6c8 − c2c
2
7 − c24c8 + 2c4c5c7 − c25c6‘

∆13 = c2c5c8 − c2c7c6 − c3c4c8 + c3c5c7 + c4c5c6 − c35

∆14 = c2c5c7 − c2c
2
6 − c3c4c7 + c3c5c6 + c24c6 − c4c

2
5

by using (2.1) and (2.3) in above equations, we obtain

(3.35) |∆11| ≤ 24, |∆12| ≤ 24, |∆13| ≤ 24, |∆14| ≤ 24.

Now by using the( 3.35) along with (2.4) in (3.5) , we obtain the desired result.
Hence it completes the proof of theorem.

Theorem 3.5. If f ∈ T of the form (1.1) then

(3.36) |λ3| ≤ 192

Proof Let f ∈ T of the form (1.3) and using (3.28) in (3.23) , (3.24), (3.25) and
(3.26) , it follows that

∆15 = c4c6c8 − c27c4 − c25c8 + 2c5c6c7 − c36

∆16 = c3c6c8 − c3c
2
7 − c4c5c8 + c25c7 + c4c6c7 − c5c

2
6

∆17 = c3c5c8 − c3c7c6 − c24c8 + c4c5c7 + c4c
2
6 − c25c6

∆18 = c3c5c7 − c3c
2
6 − c24c7 + 2c4c5c6 − c35

by using (2.1) and (2.3) in above equations, we obtain

(3.37) |∆15| ≤ 24, |∆16| ≤ 24, |∆17| ≤ 24, |∆18| ≤ 24.

Now by using the (3.37) along with (2.4) in (3.6) , we obtain the desired result.
Hence it completes the proof of theorem.

Theorem 3.6. If f ∈ T of the form (1.1) then

(3.38) |H5,1(f)| ≤ 1728.

By putting the bounds found in theorem (3.1) , (3.2) , (3.3) , (3.4) and (3.5)
along with (2.4) in (3.1), we get our desired result.

Theorem 3.7. If f ∈ T
(
1
2

)
then

(3.39) |H4,2(f)| ≤ 12
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Proof Let f ∈ T
(
1
2

)
we have

(3.40)
f(z)

z
=

1

2
(p(z) + 1)

where p ∈ P of the form (1.2) by identifying the coefficients we can easily obtain
that

(3.41) an =
cn−1

2

using (3.41) in (3.7) , (3.9 , (3.10) and in (3.11) , it can be easily assemble as

H3,2(f) =
1

8
c1c3c5 −

1

8
c1c

2
4 −

1

8
c22c5 +

2

8
c2c3c4 −

1

8
c33

∆1 =
1

8
c1c3c6 −

1

8
c1c4c5 −

1

8
c22c6 +

1

8
c2c

2
4 +

1

8
c2c3c5 −

1

8
c23c4

∆2 =
1

8
c1c4c6 −

1

8
c1c

2
5 −

1

8
c2c3c6 +

1

8
c2c4c5 +

1

8
c23c5 −

1

8
c3c

2
4

∆3 =
1

8
c2c4c6 −

1

8
c2c

2
5 −

1

8
c23c6 +

2

8
c3c4c5 −

1

8
c34

by using (2.1) and (2.3) in above equations, we obtain

(3.42) |H3,2(f)| ≤ 3, |∆1| ≤ 3, |∆2| ≤ 3, |∆3| ≤ 3.

Now by using the (3.42) along with (2.5) in (3.2) , we obtain the desired result.
Hence it completes the proof of theorem.

Theorem 3.8. If f ∈ T
(
1
2

)
of the form (1.1) then

(3.43) |H4,3(f)| ≤ 12

Proof Let f ∈ T
(
1
2

)
of the form (1.3) and using (3.41) in (3.8) , (3.12) , (3.13)

and (3.14) , it follows that

H3,3(f) =
1

8

(
c2c4c6 − c2c

2
5 − c23c6 + 2c3c4c5 − c34

)
∆4 =

1

8

(
c2c4c7 − c2c5c6 − c23c7 + c3c

2
5 + c3c4c6 − c24c5

)
∆5 =

1

8

(
c2c5c7 − c2c

2
6 − c3c4c7 + c3c5c6 + c24c6 − c4c

2
5

)
∆6 =

1

8

(
c3c5c7 − c3c

2
6 − c24c7 + 2c4c5c6 − c35

)
by using (2.1) and (2.3) in above equations, we obtain

(3.44) |H3,3(f)| ≤ 3, |∆4| ≤ 3, |∆5| ≤ 3, |∆6| ≤ 3

Now by using (3.44) along with (2.5) in (3.3) , we obtain the desired result. Hence
it completes the proof of theorem.

Theorem 3.9. If f ∈ T
(
1
2

)
of the form (1.1) then

(3.45) |λ1| ≤ 12
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Proof Let f ∈ T
(
1
2

)
of the form (1.3) and using (3.41) in (3.15) , (3.16) , (3.17)

and (3.18), it follows that

∆7 =
1

8

(
c3c5c8 + c4c

2
6 − c24c8 − c3c6c7 + c4c5c7 − c25c6

)
∆8 =

1

8

(
c2c5c8 − c2c7c6 + c24c7 + c3c

2
6 − c3c4c8 − c4c5c6

)
∆9 =

1

8

(
c2c4c8 − c2c7c5 − c23c8 + c3c5c6 + c4c3c7 − c24c6

)
∆10 =

1

8

(
c2c4c6 − c2c

2
5 − c23c6 + 2c3c4c5 − c34

)
by using (2.1) and (2.3) in above equations, we obtain

(3.46) |∆7| ≤ 3, |∆8| ≤ 3, |∆9| ≤ 3, |∆10| ≤ 3.

Now by using the (3.46) , along with (2.5) in (3.4) , we obtain the desired result.
Hence it completes the proof of theorem.

Theorem 3.10. If f ∈ T
(
1
2

)
of the form (1.1) then

(3.47) |λ2| ≤ 12

Proof Let f ∈ T
(
1
2

)
of the form (1.3) and using (3.41) in (3.19) , (3.20) , (3.21)

and (3.22) , it follows that

∆11 =
1

8

(
c3c6c8 − c3c

2
7 − c4c5c8 + c4c6c7 + c25c7 − c5c

2
6

)
∆12 =

1

8

(
c2c6c8 − c2c

2
7 − c24c8 + 2c4c5c7 − c25c6

)
∆13 =

1

8

(
c2c5c8 − c2c7c6 − c3c4c8 + c3c5c7 + c4c5c6 − c35

)
∆14 =

1

8

(
c2c5c7 − c2c

2
6 − c3c4c7 + c3c5c6 + c24c6 − c4c

2
5

)
by using (2.1) and (2.3) in above equations, we obtain

(3.48) |∆11| ≤ 3, |∆12| ≤ 3, |∆13| ≤ 3, |∆14| ≤ 3.

Now by using the (3.48) along with (2.5) in (3.5) , we obtain the desired result.
Hence it completes the proof of theorem.

Theorem 3.11. If f ∈ T
(
1
2

)
of the form (1.1) then

(3.49) |λ3| ≤ 12

Proof Let f ∈ T
(
1
2

)
of the form (1.3) and using (3.41) in (3.23) , (3.24) , (3.25)

and (3.26) , it follows that

∆15 =
1

8

(
c4c6c8 − c27c4 − c25c8 + 2c5c6c7 − c36

)
∆16 =

1

8

(
c3c6c8 − c3c

2
7 − c4c5c8 + c25c7 + c4c6c7 − c5c

2
6

)
∆17 =

1

8

(
c3c5c8 − c3c7c6 − c24c8 + c4c5c7 + c4c

2
6 − c25c6

)
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∆18 =
1

8

(
c3c5c7 − c3c

2
6 − c24c7 + 2c4c5c6 − c35

)
by using (2.1) and (2.3) in above equations, we obtain

(3.50) |∆15| ≤ 3, |∆16| ≤ 3, |∆17| ≤ 3, |∆18| ≤ 3.

Now by using the (3.50) along with (2.5) in (3.6) , we obtain the desired result.
Hence it completes the proof of theorem.

Theorem 3.12. If f ∈ T
(
1
2

)
of the form (1.1) then

(3.51) |H5,1(f)| ≤ 60

By putting the bounds found in theorem (3.7 ), (3.8) , (3.9) , (3.10) and (3.11)
along with (2.5) in (3.1) , we get our desired result.

4. Bounds of H5,1(f) for twofold and fourfold Symmetric Functions

A function f is said to be n-fold symmetric if f(εz) = εf(z) holds for all z ∈ U,
where ε = exp(2Πι

n ) means the principal n-th root of 1. The set of all n-fold

symmetric functions belonging to S is denoted by S(n), i.e. n fold univalent function
having the following expansion

(4.1) f(z) = z +

∞∑
k=1

ank+1z
nk+1, z ∈ U

An analytic function f of the form (4.1) belongs to the family T (n) if and only if

f(z)

z
= p(z) with p ∈ P(n)

where

(4.2) P(n) = {p(z) : p(z) = 1 +

∞∑
k=1

cnkz
nk}

Observe that if f ∈ S(4) then f(z) = z+a5z
5+a9z

9+... and consequently H5,1(f) =

a35(a
2
5 − a9) and if f ∈ S(2) consists all function of S which are odd and of the form

f(z) = z+a3z
3+a5z

5+ ... so H5,1(f) = (a25−a3a7)(a
3
5+a9a

2
3+a27−2a3a5a7−a5a9).

Theorem 4.1. In four fold Symmetric function

1 f ∈ T (4) then |H5,1(f)| ≤ 16.

2 f ∈ (T (12))
(4) then |H5,1(f)| ≤ 3

√
12

25
√
5
.

Proof 1: Let f ∈ T (4) then there exist a function p ∈ P(n) such that

f(z)

z
= p(z)

using the series (4.1) and (4.2) for n = 4, we can write

(4.3) a5 = c4, a9 = c8

now H5,1(f) = a35(a
2
5 − a9).

Therefore H5,1(f) = c34(c
2
4 − c8)

as max{c34(c24 − c8); p ∈ P(n)} which is same as max{c31(c21 − c2); p ∈ P}
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because of the obvious equivalence p ∈ P(4) ⇔ q ∈ P provided that p(z) = q(z4)
By Lemma (2.2)

K = c31(c
2
1 − c2) =

1

2
c31(c

2
1 − x(4− c21))

where |x| ≤ 1. Since K is invariant under rotation, we can assume that c = c1 is a
non-negative real number; so c ∈ [0, 2]. Hence

|K| = 1

2
c3|c2 − (4− c2)x| ≤ 2|c|3

then max{2c3; c ∈ (0, 2)} = 16 Hence we get our desired result.

2. Let f ∈ T (12)
(4) then there exist a function p ∈ P(n) such that

f(z)

z
=

1

2
(p(z) + 1)

using the series (4.1) and (4.2) for n = 4, we can write

(4.4) 2a5 = c4, 2a9 = c8

now H5,1(f) = a35(a
2
5 − a9).

Therefore H5,1(f) = 1
32c

3
4(c

2
4 − 2c8) as max{ 1

32c
3
4(c

2
4 − 2c8); p ∈ P(n)} which is

same as max{ 1
32c

3
1(c

2
1 − 2c2); p ∈ P}

because of the obvious equivalence p ∈ P(4) ⇔ q ∈ P provided that p(z) = q(z4)
By Lemma (2.2)

K =
1

32
c31(c

2
1 − 2c2) =

1

32
c31(−x(4− c21))

where |x| ≤ 1. Since K is invariant under rotation, we can assume that c = c1 is a
non-negative real number; so c ∈ [0, 2]. Hence

|K| = 1

32
c3| − (4− c2)x| ≤ 1

32
c3(4− c2)

then it is easy to show that max{ 1
32c

3(4− c2); c ∈ (0, 2)} = 3
√
12

25
√
5
. Hence we get our

desired result.

Theorem 4.2. For Two fold symmetry

1 f ∈ T (2) then |H5,1(f)| ≤ 80.

2 f ∈ (T (12))
(2) then |H5,1(f)| ≤ 3.

1 Let f ∈ T (2) and it is clear that a2 = a4 = a6 = a8 = 0, Consequently

H5,1(f) = (a25 − a3a7)(a
3
5 + a9a

2
3 + a27 − 2a3a5a7 − a5a9)

Since f ∈ T (2) there exists a function p ∈ P(2) such that f(z)
z = p(z) by

using (4.1) and (4.2) for n = 2, we get

1 + a3z
2 + a5z

4 + a7z
6 + ... = 1 + c2z

2 + c4z
4 + c6z

6 + ...

∴ a3 = c2, a5 = c4, a7 = c6, a9 = c8

|H5,1(f)| = |(c24 − c2c6)((c4c8 − c26) + c2(c2c8 − c4c6) + c4(c
2
4 − c2c6))|

By using triangular inequality and Lemma (2.3) we get our desired result.
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2 For f ∈ (T (12))
(2) there exists a function p ∈ P(2) such that 2f(z)−z

z = p(z) by
using (4.1) and (4.2) for n = 2, we get we can easily assemble the estimates

∴ 2a3 = c2, 2a5 = c4, 2a7 = c6, 2a9 = c8

|H5,1(f)| = |1
4
(c24 − c2c6)(

1

4
(c4c8 − c26) +

1

8
c2(c2c8 − c4c6) +

1

8
c4(c

2
4 − c2c6))|

By using triangular inequality Lemma (2.3) we get our desired result.
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